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ABSTRACT
Vocal individuality has been documented in a variety of mammalian 
species and it has been proposed that this individuality can be used 
as a vocal fingerprint to monitor individuals. Here we provide and 
test a classification method using Mel-frequency cepstral coefficients 
(MFCCs) to extract features from Bornean gibbon female calls. Our 
method is semi-automated as it requires manual pre-processing to 
identify and extract calls from the original recordings. We compared 
two methods of MFCC feature extraction: (1) averaging across all time 
windows and (2) creating a standardized number of time windows for 
each call. We analysed 376 calls from 33 gibbon females and, using 
linear discriminant analysis, found that we were able to improve 
female identification accuracy from 95.7% with spectrogram features 
to 98.4% accuracy when averaging MFCCs across time windows, and 
98.9% accuracy when using a standardized number of windows. We 
divided our data randomly into training and test data-sets, and tested 
the accuracy of support vector machine (SVM) predictions over 100 
iterations. We found that we could predict female identity in the test 
data-set with a 98.8% accuracy. Using SVM on our entire data-set, we 
were able to predict female identity with 99.5% accuracy (validated 
by leave-one-out cross-validation). Lastly, we used the method 
presented here to classify four females recorded during three or 
more recording seasons using SVM with limited success. We provide 
evidence that MFCC feature extraction is effective for distinguishing 
between female Bornean gibbons, and make suggestions for future 
vocal fingerprinting applications.

Introduction

Passive acoustic monitoring is a non-invasive technique that utilizes sound recording 
devices to monitor vocal animals (Merchant et al. 2015). The potential for passive acoustic 
monitoring to improve conservation efforts for terrestrial animals is widely recognized 
(Blumstein et al. 2011; Wrege et al. 2017), and bioacoustics techniques are being used to 
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identify individuals in a wide variety of taxa including owls (Grava et al. 2008), orangutans 
(Spillmann et al. 2017) and tigers (Ji et al. 2013), as well as for occupancy detection of pri-
mates (Heinicke et al. 2015; Kalan et al. 2015) and monitoring of primate group ranging 
and territory use (Kalan et al. 2016). The use of bioacoustical methods to address ecological 
and conservation questions has become increasingly popular due to the increase in data 
storage capabilities and battery life, a decrease in size and cost of recording devices and 
the development of new methods for automating acoustic analyses (Blumstein et al. 2011).

Acoustic identification of individuals requires two main steps: feature extraction and 
subsequent classification using an algorithm. The traditional method of feature extraction 
in many bioacoustics applications, particularly in studies of primates, is to convert the wave-
form obtained from recorded vocalizations to a spectrogram, and then manually estimate 
features, such as note duration and frequency, from the spectrogram (Marler and Hobbett 
1975; Haimoff and Tilson 1985; Feng et al. 2014; Terleph et al. 2015). This technique is 
often subjective and highly labour-intensive, and it is not clear which features most accu-
rately permit individual discriminability (Kirschel et al. 2009). The use of Mel-frequency 
cepstral coefficients (MFCCs) provides a fully automated method of feature extraction 
that is standardized and reproducible (Mielke and Zuberbühler 2013). MFCCs have been 
used successfully in human speech recognition (Picone 1993; Han et al. 2006), bird song 
classification (Chou et al. 2008; Lee et al. 2006), classification of species, call type and caller 
identity in blue monkeys (Mielke and Zuberbühler 2013) and discrimination between male 
orangutan individuals (Spillmann et al. 2017).

The main goal of classification in bioacoustics is to predict predefined class member-
ship (e.g. individual identity) based on extracted call features (Lee 2010). One of the most 
commonly used methods for classification of primate vocalizations is linear discriminant 
function analysis (DFA) (Delgado 2007; Wich et al. 2008; Heller et al. 2010; Santorelli et al. 
2013). Linear DFA is a supervised, multivariate technique that tests whether different classes 
of objects (e.g. calls) can be distinguished by a set of parameters (or features) estimated 
from each of those objects (Venables and Ripley 2002; Mundry and Sommer 2007). A major 
limitation of linear DFA in bioacoustics applications is that it only permits consideration 
of a single factor at a time. For example, most studies of animal calls include multiple calls 
per subject, and studies that investigate differences in calls between species, sex or social 
context exhibit a two-factorial design, with ‘subject’ being one factor and species, sex or 
social context being the second factor (Mundry and Sommer 2007). Linear discriminant 
analysis is therefore appropriate for distinguishing between individuals, but not between 
sexes or sites when several replicate calls are included for each individual, or if the same 
individual is recorded at two separate times, as this violates the assumptions of statistical 
independence (Venables and Ripley 2002).

Support vector machines (SVMs) are supervised classification techniques that are recog-
nized as the leading approach for many discriminative problems. They make fewer assump-
tions about the underlying data structure (Roma et al. 2010) and consequently, they are 
more flexible than linear DFA. SVMs were originally developed for binary classification 
problems, and perform classification by maximizing the margin between two classes (Cortes 
and Vapnik 1995). Multi-class classification can be done using SVM with a variety of dif-
ferent strategies; one of the more successful approaches is ‘one-against-one’, where a binary 
classifier is trained for each pair of classes in the data-set (Hsu and Lin 2002). SVMs have 
been used to effectively classify bird songs (Cheng et al. 2010; Dufour et al. 2014), dolphin 
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whistles (Esfahanian et al. 2014), 88 different insect species (Noda et al. 2016) and primates 
(chimpanzees, Fedurek et al. 2016; marmosets, Turesson et al. 2016).

Gibbons (family Hylobatidae) provide a model system for using passive acoustic moni-
toring, as they are highly territorial species with relatively long territory tenure (Bartlett et 
al. 2016), and most gibbons regularly engage in duetting (Geissmann 2002). Vocal individ-
uality has been documented in many gibbon species including the white-handed gibbon 
(Hylobates lar; Terleph et al. 2015), the agile gibbon (H. agilis; Oyakawa et al. 2007) and the 
Bornean gibbon (H. muelleri; Clink et al. 2017). Gibbon researchers have proposed that 
this vocal individuality may be useful for tracking and monitoring individuals, a technique 
known as vocal fingerprinting (Sun et al. 2011). Wide-scale acoustic monitoring of gibbons 
has yet to be adopted, presumably due in part to the lack of automated, easy-to-use acoustic 
identification methods. In fact, the use of vocal individuality in census or monitoring roles 
has been under-utilized across taxa (Terry et al. 2005), and more work is needed to collect 
and analyze acoustic data in ways that will be relevant to conservation (Pimm et al. 2015).

Here, we present and test a semi-automated vocal fingerprinting method to identify 
Bornean gibbon females within the landscape of a large-scale habitat fragmentation experi-
ment at the Stability of Altered Forest Ecosystems site in Sabah, Malaysia. First, we compare 
the effectiveness of two distinct methods of MFCC feature extraction for identification of 
individual gibbon females. Second, to compare the influence of different SVM kernel types 
on our prediction accuracy, we test the ability of SVMs to predict female identity using 
a multi-class SVM and four different kernel types over multiple iterations of randomly 
selected sets of training and test calls. Third, using the SVM kernel that yielded the highest 
classification accuracy, we compare the results of SVM classification with linear discrimi-
nant analysis using our entire data-set (validated using leave-one-out cross-validation). 
Lastly, we use a multi-class SVM to predict identity of calls recorded at the same recording 
location but during different recording seasons (which are assumed to have been produced 
by the same female). We used a reduced data-set with only four females for which we had 
recordings taken over at least three separate recording seasons.

Methods

Study site

We conducted our study at the Stability of Altered Forest Ecosystems (SAFE) project located 
within the Kalabakan Forest Reserve (N04°422367′, E117°3559′), in Sabah, Malaysia. The 
SAFE project covers approximately 7200 ha, with a significant portion of the land allotted 
for conversion to oil palm plantation, and 800 ha of cultivable land to be left as forest frag-
ments. A complete description of the study site can be found in Ewers et al. (2011). The 
SAFE site is divided into six replicate blocks (denoted by the letters A–F), each containing 
plots with samples of four 1 ha fragments, two 10 ha fragments and one 100 ha fragment. 
A control plot of 2200 ha of old growth forest is located within the reserve, and there are 3 
control plots located in 1 million ha of continuous old growth forest located approximately 
60 km away from SAFE, in the Maliau Basin Conservation Area. DJC visited the SAFE site 
in January 2013, July–August 2013, December 2015, August 2015 and September 2016. As 
of September 2016, most of the site had been cleared for conversion to oil palm.
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Study subjects and data collection

A detailed explanation of data collection methods can be found in Clink et al. (2017). All 
analyses presented here focused on the female contribution to the duet, known as the great 
call (Geissmann 2002). Briefly, recordings were made using a Marantz PMD 660 flash 
recorder equipped with a RODE NTG-2 directional condenser microphone at a distance 
of ~250 m or less, at a sample rate of 44.1 kHz and 16-bit. Data collection was augmented 
using a Roland CUBE Street EX 4-Channel 50-Watt Battery Powered Amplifier to broad-
cast a recorded duet in assumed territories of gibbon groups to elicit vocal responses. We 
considered females that were recorded >500  m apart as separate females, as this is the 
approximate width of a gibbon territory (Brockelman and Srikosamatara 1993; Bartlett et 
al. 2016). Previously, we found there were no substantial differences between call features 
collected during playbacks vs. spontaneous calling bouts (Clink et al. 2017), so we lumped 
all calls together for the present analysis.

Female identification

We identified groups based on recording location, group composition and unique behav-
iours (e.g. long calling bouts, unique male contribution, co-singing daughters). As we were 
working with wild, unhabituated gibbons it was difficult to distinguish among individuals 
via unique markings, which is a commonly used method to identify habituated primates. To 
identify groups across recording season we relied mostly on recording location along with 
group composition. Gibbons are highly territorial, and maintain relatively long territory 
tenure. For example, lar gibbons (H. lar) were found to have highly stable territories over the 
course of 10 years (Bartlett et al. 2016). Therefore, it seems unlikely that gibbons at our study 
site would have shifted their territories substantially over the course of our study period.

Call pre-processing

Our method required pre-processing to identify and extract individual great calls from field 
recordings. To do this, we created spectrograms using the program Raven Pro 1.5 Sound 
Analysis Software (Cornell Lab of Ornithology, Bioacoustics Research Program, Ithaca, 
New York). We made spectrograms with a 512-point (11.6 ms) Hann window (3 dB band-
width = 124 Hz), with 75% overlap, and a 1024-point DFT, yielding time and frequency 
measurement precision of 2.9 ms and 43.1 Hz. Gibbon female great calls follow a highly 
standardized structure with a series of longer, frequency modulated notes leading into 
rapidly repeated shorter notes. Bornean gibbon great calls recorded at our site range in 
duration from 9.1 to 27.3 s, with the total number of notes ranging from 42 to 124 (Clink 
et al. 2017). We defined the start of the great call as the portion of the call when notes first 
reach a duration greater than 0.20 s, the start of the trill as the point when introductory 
note duration decreases to 0.135 s or less, and the end of the call to be when the trill ends 
(representative spectrogram in Figure 1). We identified each instance of a female great call 
and then saved each individual great call as a Waveform Audio file.
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MFCCs: averaging over time windows

For the first method of MFCC feature extraction we followed the steps outlined in Figure 
2. First, we converted each Waveform Audio file to a waveform in the time domain (Figure 
2(A)). Then we extracted overlapping frames of 0.25 s at 0.01 s intervals. For each 0.25 s 
frame we applied the Fast Fourier Transform to convert the signal into a power spectrum 
(Figure 2(B)). We calculated 12 Mel-filters (or band pass filters) between 400 and 2000 Hz 
(the frequency range of Bornean gibbon female great calls), applied the Mel-filters to the 
power spectrum and calculated the energy in each filter (Figure 2(C)). The Mel-filter is 
based on the ‘mel’ scale, which more closely aligns with pitch perception in terrestrial ver-
tebrates (Deecke and Janik 2006), with smaller filters at lower frequencies and larger filters 
at higher frequencies. Animals perceive changes in frequency below 1000 Hz linearly, but 
that is not the case at frequencies above 1000 Hz, which means that the linear scale tends 
to overemphasize high-frequency components of vocalizations (Cheng et al. 2010).

We took the logarithm of each of the Mel-filter energies, which is motivated by human 
hearing, as humans don’t hear loudness on a linear scale (Stevens and Guirao 1962). We then 
took the discrete cosine transform of each of the log Mel-filter energies, which de-corre-
lates the values as they tend to be highly correlated due to their overlapping time windows. 
This results in a vector with 12 elements for each time frame; longer signals will have more 
vectors (Figure 2(E)). The first MFCC for each window corresponds to the power of the 
signal, and represents signal loudness (Han et al. 2006; Muda et al. 2010), which will vary 
depending on distance to calling animal, ambient background noise and many other factors, 
therefore we did not include the first MFCC for our discriminative tasks, as it may improve 
discrimination based characteristics of the particular recording and not the calling animal. 
To create a feature vector of standardized length to be used in subsequent analyses, we took 
the mean and the standard deviation of the values for each Mel-filter across the entire signal 
(Guo and Li 2003), which resulted in a vector containing 24 features for each great call.

Figure 1. Representative spectrogram of Bornean gibbon female great call.
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Figure 2.  Steps outlining the calculation of Mel-frequency cepstral coefficients and the two MFCC 
feature extraction methods presented. (A) Representative waveform of a Bornean gibbon great call; (B) 
Representative power spectrum from a single time frame; (C) 12 Mel-filters applied to the power spectrum; 
(E) A plot of the 12 MFCC coefficients calculated for each time frame of the great call.
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MFCCs: using a standardized number of time windows and recursive feature 
elimination

For the second method of MFCC feature extraction, we created a standardized number of 
windows for each great call (Mielke and Zuberbühler 2013), and calculated the MFCCs 
as outlined above for each of the windows (Figure 2; steps A–D). We used eight windows 
for this feature extraction method, and gibbon great calls range in duration from 9.1 to 
27.3 s, so our window length ranged from 1.13 to 3.4 s. Although this window length is 
substantially longer than those used by other authors (e.g. Mielke and Zuberbühler 2013), 
we experimented with shorter window lengths and did not find that this improved our 
classification ability. We also calculated the delta-cepstral coefficients, which have been 
proposed to capture the dynamics of the MFCCs over the course of a call (Kumar et al. 
2011); delta coefficients are the first-order derivative of the original cepstral coefficient (Beigi 
2011). Including the delta coefficients allowed us to incorporate information about how the 
MFCCs change over the course of a call. We included a standardized number of windows 
for each call, and this did not provide information about call duration, so we included call 
duration as an additional element, which resulted in a vector with 177 elements for each call.

Our second method of MFCC feature extraction included many more features than the 
previous method of averaging over time windows, and many of these features were likely 
to be redundant. Therefore, to identify which of the features were most important we used 
recursive feature selection (Guyon et al. 2002). Recursive feature selection is an iterative 
process wherein predictors are ranked, and the less important features are subsequently 
eliminated, until a subset of predictors is identified that can produce an accurate model 
(Kuhn 2008). We implemented recursive feature selection using the ‘mSVM-rfe’ package 
(Colby 2011) in the R programming environment (R Development Core Team 2017). The 
SVM-RFE fits a simple linear SVM, ranks the features, then eliminates the feature with the 
lowest rank, which results in a list of features ranked from most to least important (Guyon 
et al. 2002; Colby 2011).

Linear discriminant function analysis

Linear DFA is a supervised technique wherein classes are defined prior to analysis (Venables 
and Ripley 2002). The use of DFA was appropriate for distinguishing between females when 
recordings were taken during a single recording session (i.e. there were no repeat recordings 
at the same location on different days), as the data-set structure consisted of replicate calls 
within females, resembling a one-way analysis of variance with ‘individual’ as the factor 
(Mundry and Sommer 2007). We used DFA to compare the two methods of MFCC feature 
extraction presented here with previously published features estimated from the spectro-
gram using the same data-set (Clink et al. 2017), and we used leave-one-out cross-validation 
to estimate accuracy. To identify the ideal number of features to include for our second 
MFCC feature extraction method we calculated a linear DFA (validated using leave-one out 
cross-validation), and sequentially added the highest ranked features, until we identified 
the minimum number of features needed to obtain a high classification accuracy. We also 
compared the results of DFA with SVM using both MFCC feature extraction techniques 
(methods outlined below).
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Support vector machines

SVM is a supervised machine learning algorithm where each data point is plotted in n-di-
mensional space (where n is the number of features) and the value of each feature determines 
the coordinate; classification is then performed by finding the hyperplane that best differ-
entiates between classes (Cortes and Vapnik 1995; Lee 2010). We used SVMs to distinguish 
between females using the ‘one-against-one’ approach wherein a binary classifier was created 
for each pair of females. To improve the performance of SVM, the cost parameter and the 
kernel function parameters need to be chosen carefully, as the SVM can be highly sensitive 
to variation; the method of choosing the values for these parameters that minimizes the 
identification error is known as tuning (Duan et al. 2003).

Tuning the cost and gamma parameters for SVM

The cost parameter controls the penalty of misclassified instances, and when the cost is 
small the margins will be very wide and there will be many support vectors (Karatzoglou et 
al. 2004; Roma et al. 2010; James et al. 2013; Figure 3). We tested the effect of varying cost 
parameters on our prediction accuracies, using the ‘tune’ function in the ‘e1071’ R package 
(Meyer et al. 2017), and running the SVM using the following cost parameter values: 0.001, 
0.01, 0.1, 1, 2, 10, 100, 1000. The gamma parameter controls the curvature of the hyperplane 
for non-linear kernels; if gamma is too small then the model is too constrained and cannot 
capture the complexity of the data, whereas if gamma is too large this can lead to overfitting 
and low generalizability (Pedregosa et al. 2011). For the non-linear kernels we tested the 
following gamma parameters: 0.001, 0.01, 0.1, 0.5, 1.0, 2.0.

SVM training and validation

Data are often not linearly separable (Roma et al. 2010), so we experimentally tested which 
of the four different kernel types: ‘linear’, ‘polynomial’, ‘radial basis’ or ‘sigmoid’, resulted 
in the best ability to predict the test data from the training data. We randomly assigned 
approximately 80% of our original data-set as training data, and the remaining 20% of our 
data-set to the test data-set (Murphy 2012; Fedurek et al. 2016; Turesson et al. 2016). The 
‘svm’ function in the ‘e1071’ R package allows the user to set the k-fold cross-validation 
parameter, wherein the training data is divided into k-folds, with one fold being used to 
validate the model and the rest used to train the model (Meyer et al. 2017). We set the 
k-fold parameter equal to 5, which means that 80% of our training data was used to train 
the model, and 20% of the training data was used for validation. Therefore, our data were 
effectively divided into three sets: training (64%), validation (16%) and test (20%). We 
then calculated the accuracy of the SVM model predictions of female identity by creating 
a confusion matrix of actual versus predicted female identity in the test data-set, and then 
averaging over the classification accuracies for each female. We did this over 100 iterations 
for each of the kernel types, running the ‘tune’ function on the test data-set over each 
iteration. After identifying which kernel yielded the best performance, we then tested the 
performance of the SVM classification using our whole data-set, and estimated classification 
accuracy using leave-one out cross-validation.
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Females with repeat recording sessions

There were four females that we believe were recorded in at least three separate recording 
seasons, so we assigned the two recording seasons for each female to the training data-set 
and the third recording to the test data-set, and rotated the training and test seasons so that 
all seasons were contained in the test and training data-set. This type of analysis would not 

Figure 3. The influence of cost parameter and kernel type on SVM decision boundaries between two 
females (red and blue) in a highly simplified two-dimensional feature space showing: (A) a linear kernel 
when the cost parameter is low; (B) a linear kernel when the cost parameter is high; and (C) a radial kernel 
when the cost parameter is high.
Notes: The solid line represents the decision boundary (i.e. optimal hyperplane) and the dotted lines represent the margins; 
observations that lie within the margin or on the wrong side of the margin are called the support vectors (represented by 
the bold points) and influence the classifier. When the cost parameter is small (A), the margins will be large and there will 
be more support vectors, whereas if the cost parameter is high (B) there will be fewer support vectors and smaller margins. 
Figures made using the “kvsm” package (Karatzoglou et al. 2004).
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be appropriate for classification using DFA, as it is a two-factorial data-set that includes 
‘individual’ and ‘recording season’ as two distinct factors (Mundry and Sommer 2007). We 
used the ‘one-against-one’ approach, creating a binary classifier for each pair of females in 
the training set, and then calculated the accuracy of SVM model predictions for the test 
data-set. All SVM models were created using the ‘e1071’ package in the R programming 
environment (Meyer et al. 2017; R Development Core Team 2017).

Data availability

All data and R code for the present analyses are available as online supporting material and 
on GitHub (https://github.com/DenaJGibbon/MFCC-Vocal-Fingerprinting).

Results

MFCC feature extraction

We analyzed 376 calls from 33 females (median number of calls: 12; range: 3–43; recording 
locations shown in Figure 4). We compared two methods of MFCC feature extraction, one 
that averages MFCCs over all time windows, and another which divides each call into a 
standardized number of windows and incorporates delta-cepstral coefficients, providing 
information about how the calls change over time. We found that both MFCC feature 
extraction methods substantially improved classification accuracy when using DFA (98.4% 
correct identification when averaging over time windows and 98.9% when using a stand-
ardized number of time windows), compared to DFA using 23 features estimated from the 
spectrogram (95.7% accuracy; Clink et al. 2017).

Figure 4. Approximate recording location of Bornean gibbon females in the Stability of Altered Forest 
Ecosystems landscape in Sabah, Malaysia. Letters A–F denote replicate fragment blocks within the SAFE 
landscape and VJR denotes the virgin jungle reserve (see Ewers et al. 2011 for a complete explanation 
of the study design).
Note: Blue circles denote recording locations for which we have a recording taken during a single season, and red triangles 
denote recording locations where we recorded gibbons over multiple seasons.

https://github.com/DenaJGibbon/MFCC-Vocal-Fingerprinting
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For our second MFCC feature extraction method, we used recursive feature elimination 
to identify the features with the most predictive power, and found that including the 45 
highest ranked features resulted in the highest classification accuracy, but including more 
features did not improve our classification ability (Figure 5). The most important features 
for distinguishing between individuals were a combination of MFCCs and the delta coef-
ficients. Loadings of the first five discriminant functions are available as online supporting 
material (Online Supporting Material Table 1).

Training and test data with random subsets of calls

We randomly assigned approximately 20% of calls to the test data-set and the remain-
ing 80% of calls to the training data-set (which was further divided into 80% training 
and 20% validation) over 100 iterations for each kernel type (‘linear’, ‘polynomial’, ‘radial 
basis’ or ‘sigmoid’). We found that using MFCC features averaged over time windows and 
an SVM with a ‘sigmoid’ kernel yielded the most accurate predictions (mean  =  98.8% 
accuracy, SD = 1.2, Figure 6), but the ‘radial basis’ (mean = 98.7%, SD = 1.5) and ‘linear’ 
(mean = 98.6%, SD = 1.7) kernel yielded only slightly lower mean prediction accuracies. 
The ‘polynomial’ kernel yielded substantially lower prediction accuracies for our data-set 
(mean = 92.1%, SD = 3.5). Using MFCC features estimated for a standardized number of 
time windows yielded slightly lower mean classification accuracies (90.1–96.8% accuracy).

SVM classification using our full data-set

We tested the performance of SVM for classification of gibbon females using our full data-
set. We found that the ‘sigmoidal’ kernel yielded the highest classification accuracies so we 
used this kernel. Using the time averaged MFCC feature extraction method we found that 
classification with SVM accuracy (validated using leave-one-out cross-validation) increased 
to 99.5% accuracy, and with the second MFCC feature extraction method (using a stand-
ardized number of time windows) the classification accuracy was 96.8%.

Figure 5. Plot of classification accuracy using linear discriminant analysis (validated via leave-one-out 
cross-validation) iteratively adding the highest to lowest ranked MFCC features.
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Females with repeat recording sessions

There were four females in our data-set that had repeated recording sessions over three or 
more recording seasons. To account for potential changes in calls over time, we trained the 
SVM using two recording seasons, and used the third recording season as the test data-set. 
We found that when we used the first and second recording seasons as the training set, and 
the third recording season as a test set, our classification accuracy was 94.8%. However, 
when we rotated the recording seasons used for training our classification accuracy ranged 
from 61.7 to 78.5%.

Discussion

We tested and validated a semi-automated vocal fingerprinting method to monitor female 
Bornean gibbons. We show that MFCC feature extraction is highly effective for distin-
guishing between individual Bornean gibbon females, improving accuracy of linear DFA 
from 95.7% with features estimated from the spectrogram to 98.9% accuracy using MFCC 
features. Importantly, the use of MFCC feature extraction reduces call processing time 
substantially compared to spectrogram feature extraction. Using a multi-class SVM and 
‘one-against-one’ approach wherein binary classifiers were created for each pair of females 
with a randomly chosen subset of calls to train the SVM, we were able to identify females 
in the test data-set with a mean 98.9% accuracy. Using the MFCC features averaged over all 
the time windows, the accuracy of female identification for our entire data-set using SVM 
increased to 99.5% (validated using leave-one-out cross-validation). Lastly, we used our 
method to identify females recorded at the same recording location but during different 
recording seasons with limited success (mean identification accuracy of 78%), which may 
be related to our inability to effectively identify females recorded over subsequent years. 
With continually improving technology, and decreasing costs of recording devices, auto-
mated identification and classification systems for gibbon individuals have the potential to 
revolutionize monitoring efforts of gibbon species across SE Asia.

Figure 6. Density plots of the percent of correct female identification over 100 iterations using randomly 
selected calls to train and test the SVM for four different kernel types.
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MFCCs

MFCCs have been used extensively as a feature extraction method in human speech rec-
ognition (Han et al. 2006; Chou et al. 2008; Muda et al. 2010; Dahake and Shaw 2016), 
and their success in these applications is in part because they were designed with human 
hearing and perception of sound in mind. Humans do not perceive changes in frequency 
on a linear scale; as frequencies increase (above 1000 Hz), a human’s ability to detect rela-
tively small changes in frequencies decreases (Stevens and Guirao 1962), and the Mel-scale 
more accurately reflects human frequency perception. Although gibbon great calls serve 
a different function than human speech, gibbons are primates and it seems likely that we 
share many similarities in sound production and perception (Belin 2006). We show here that 
MFCCs are more efficient and effective for classifying individual Bornean gibbon females 
than spectrogram feature extraction methods.

Somewhat surprisingly, averaging over the time windows yielded slightly better clas-
sification results, compared to calculating MFFCs over a standardized number of time 
windows, which incorporated information about changes in MFCCs over the course of a 
call. Regardless of the MFCC feature extraction method used, interpreting the results is 
somewhat challenging. MFCCs have high potential to be useful for classification problems, 
but since MFCCs are not on the typical linear scale used to study sounds, they are difficult 
to interpret (Mielke and Zuberbühler 2013), and spectrogram feature extraction methods 
are likely to be more informative for questions regarding the mechanism and function of 
call variation. For example, when calculating MFFCs over a standardized number of time 
windows we found that the most important feature for discriminating among females was 
the fourth MFCC calculated for the fourth time window. Whether variation in this feature 
has any biological relevance, or if gibbon individuals can detect variation in this feature 
remains to be determined. Nonetheless, we urge other researchers to expand and adapt the 
methods presented here for classification problems, particularly in field sites where long-
term acoustic monitoring is feasible and individual identities are known.

Limitations

A major limitation of the present study was our inability to continually monitor groups, and 
our resulting inability to identify females with a high degree of certainty. Our only method 
to identify groups across years was based on group composition, location and characteristic 
behaviours of the group (i.e. long calling bouts). Therefore, the potential for misidentifying 
females from year to year was quite high. It is possible that our low classification accuracy 
of re-recorded females is due to our error in female identification, as opposed to limitations 
of the classification algorithm. In addition, the SAFE site around the B fragment, where we 
have many repeat recordings, was logged between subsequent recording seasons. Although 
some of the groups were still present in the same location, it is possible that there was move-
ment of groups around the area that could have influenced our results. Also, the distance 
between the caller and the microphone has been shown to influence the accuracy of caller 
identification in orangutans (Spillmann et al. 2017), and it is possible that differences in 
recording distances of the focal females between subsequent seasons could have influenced 
our results. Despite these limitations, our mean classification accuracy across seasons (78%) 
was substantially better than chance (25%) and it seems likely that with a larger data-set 
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our classification accuracy would improve. We provide these results as a test case for a new 
and promising method of analysis, but would not feel comfortable making management 
recommendations based on our results.

Future directions

Although we were able to successfully identify gibbon females using MFCC feature extrac-
tion and SVM classification algorithms, there is still much that needs to be done before vocal 
fingerprinting can be used to effectively monitor gibbon populations. First, our method 
still requires a substantial amount of pre-processing, as it requires the individual calls to 
be extracted from the longer recordings. There are many existing methods that have been 
successful in call detection, such as spectrogram cross-correlation (Munger et al. 2005), 
Hidden Markov Models (Spillmann et al. 2015) and SVMs (Zeppelzauer et al. 2015), and 
it is seems likely that these methods can be successfully adapted for detection of gibbon 
calls. Second, consistent, long-term monitoring is necessary to establish group territories 
or core areas, and more accurate methods to distinguish individuals are needed (e.g. focal 
follows, genetic data and/or continuous acoustic monitoring) to ‘ground-truth’ acoustic 
classification results. Third, relatively little is known about the stability of acoustic signa-
tures over time. Feng et al. (2014) documented vocal stability in four male Cao Vit Gibbons 
(Nomascus nasutus) over 2–4 years, but more research is needed to determine if these results 
are generalizable to both sexes and all species of gibbons. Finally, more research needs to 
be done on the similarity between the calls of parents and offspring, as individual turnover 
may not be detected if offspring replace their parents, and there is a strong family signature 
in call structure.
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