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Highlights 
 A framework to rapidly detect dynamics of functional network states. 

 It captures functional connectivity patterns more effectively than other methods. 

 Functional similarity metric measures global network response to local changes. 

 It bridges the gap between time scales of neural activity and behavioral states. 

 

 

 

 

 

 

 

 

Abstract: 
Background 

Recent advances in neurophysiological recording techniques have increased both the spatial and 

temporal resolution of data. New methodologies are required that can handle large data sets in an 

efficient manner as well as to make quantifiable, and realistic, predictions about the global 

modality of the brain from under-sampled recordings.   

New Method 
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To rectify both problems, we first propose an analytical modification to an existing functional 

connectivity algorithm, Average Minimal Distance (AMD), to rapidly capture functional network 

connectivity.  We then complement this algorithm by introducing Functional Network Stability 

(FuNS), a metric that can be used to quickly assess the global network dynamic changes over time, 

without being constrained by the activities of a specific set of neurons.  

Results 

We systematically test the performance of AMD and FuNS (1) on artificial spiking data with 

different statistical characteristics, (2) from spiking data generated using a neural network model, 

and (3) using in vivo data recorded from mouse hippocampus during fear learning. Our results 

show that AMD and FuNS are able to monitor the change in network dynamics during memory 

consolidation. 

Comparison with other methods 

AMD outperforms traditional bootstrapping and cross-correlation (CC) methods in both 

significance and computation time. Simultaneously, FuNS provides a reliable way to establish a 

link between local structural network changes, global dynamics of network-wide representations 

activity, and behavior. 

Conclusions 

The AMD-FuNS framework should be universally useful in linking long time-scale, global 

network dynamics and cognitive behavior.   

Key words: 

Functional connectivity structure, network dynamics, functional stability 
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Introduction 
New multisite recording techniques have generated a wealth of data on neuronal activity 

patterns in various brain modalities (Buzsaki, 2004; Lichtman et al., 2008; Luo et al., 2008; Chorev 

et al., 2009). An unresolved question is how, using such data sets, one can correctly identify large-

scale network dynamics from populations of neurons which either may, or may not, include 

neurons involved in a particular cognitive process of interest. This is due in part to the fact that 

even high-density recordings sample only a sparse subset of the neural system responsible for the 

modality in question. It is also complicated by the inherent separation of temporal scales over 

which neural vs. behavioral measurements occur.  

In response to this question, multiple linear and non-linear techniques have been developed 

over the years to assess functional connectivity between neurons, and to possibly infer from it 

structural connectivity (see for example: Friston et al., 2013; Bastos and Schoffelen, 2016; 

Cimenser et al., 2011; Cestnik and Rosenblum, 2017; Zaytsev et al., 2015; Poli et al., 2016; Shen 

et al., 2015; Wang et al., 2014). More recent approaches utilize network theory to establish links 

between recorded data and the underlying connectivity (see for example: Newman, 2004, 2006, 

2010; Ponten et al., 2010; Rubinov and Sporns, 2010; Sporns et al., 2000; De Vico Fallani et al. 

2014; Supekar et al., 2008; Boccaletti et al., 2006; Stafford et al., 2014; Petersen and Sporns, 2015; 

Misic and Sporns, 2016; Park and Friston, 2013; Bassett et al., 2010; Feldt et al., 2011; Gu et al., 

2015; Medaglia et al., 2017; Davison et al., 2015; Hermundstad et al., 2011; Bassett, et al., 2011; 
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Shimono and Beggs, 2015; Nigam et al., 2016; Nakhnikian et al., 2014; Pajevic and Plenz, 2009). 

The idea is that, by estimating networks based on functional interactions, one can potentially gain 

insight into global dynamics, which reflect the general property of the whole network, instead of 

a specific subset of neurons. While all these approaches can provide insightful information, they 

share some the same problems. These methods are often limited by under-sampling (and 

potentially unrepresentative sampling) of neuronal recordings, and are not optimized for 

monitoring changes in network structure across extended time periods (i.e., those associated with 

behaviors of interest, such as memory formation).  

Here we propose a novel technique that rapidly estimates functional connectivity between 

recorded neurons. Then, rather than characterizing details of the recovered network, the metric 

measures changes in the network dynamical stability over time. The technique is based on an 

estimation of Average Minimal Distance (AMD) between spike trains of recorded neurons, a 

metric which has previously been compared to other clustering algorithms (Feldt et al., 2009). 

Here, we expand on this work and show that the analytic estimation of AMD for the null case, 

when the two cells are independent, allows for rapid estimation of the significance of pairwise 

connections between the spike trains, without need for time-expensive bootstrapping.  

Further, Functional Network Stability (FuNS) is introduced and is monitored over 

timescales relevant for behavior. We show that FuNS measures global change in network 

dynamics in response to localized changes within the network. This, in part, alleviates the problem 

of sparse sampling so prevalent in neuroscience. 

 Below, the statistical underpinnings of AMD and FuNS are detailed. We compare AMD 

and cross-correlation (CC) on both surrogate data and model simulation data. Model results show 

the applicability of AMD and FuNS on excitatory-only networks, as well as on mixed networks of 

excitatory and inhibitory neurons poised near a balance between excitation and inhibition, a regime 

thought to be a universal dynamical state achieved by brain networks, resulting in enhanced 

information processing properties (Froemke, 2015; Barral and Reyes, 2016; Poil et al., 2012; Berg 

et al., 2007; Rubin et al., 2017).  We end by analyzing experimental data recorded from the mouse 

hippocampus during contextual fear memory formation. Our results indicate that AMD yields 

results comparable to that of the gold-standard CC, but, importantly, it is orders of magnitude 

faster and reports statistically significant increases in FuNS due to behavioral-based network 

topological changes compared to CC FuNS. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1: List of Common Abbreviations 

Abbreviation Full Name 
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AMD Average Minimal Distance 

CA1 Cornu Ammonis 1 

CC Cross-correlation 

CFC Contextual Fear Conditioning 

E/I Excitatory/Inhibitory Ratio 

FC Functional Connectivity 

FCM Functional Connectivity Matrix 

FSM Functional Stability Matrix 

FuNS Functional Network Stability 

IAF Integrate and fire 

ISI Interspike interval 

 

Methods  
1. Statistical methods 

 

1.1.Average minimal distance (AMD) and its significance estimation 

Pairwise functional connectivity is estimated using average minimal distance (AMD) 

(Feldt et al., 2009) (Figure 1) separating the relative spike times between neurons. AMD is 

calculated as follows:  given the full spike trains {S1, S2, …, Sn} for n neurons within a network, 

the pairwise functional relationship, FCij, of the ith and jth neurons is evaluated by comparing the 

average temporal closeness of spike trains Si and Sj to the expected sampling distance of train Sj 

(Figure 1a). That is, 

 𝑨𝑴𝑫𝒊𝒋 =
𝟏

𝑵𝒊
∑ ∆𝒕𝒌

𝒊
𝒌 , where Ni is the number of events in Si and ∆𝒕𝒌

𝒊  is the temporal distance 

between an event k in Si to the nearest event in Sj. With AMD measured, the functional 

connectivity (FC) is calculated as 𝑭𝑪𝒊𝒋 = √𝑵𝒊 ∗ (𝑨𝑴𝑫𝒊𝒋 − 𝝁𝒋) 𝝈𝒋⁄ , which is expressed in terms 

of probabilistic significance of connectivity between pair ij. The mean and standard deviation, μj 

and σj, of the expected sampling distance, assuming that the spike trains are independent, can be 

calculated from either: 1) boot-strapping (i.e. randomizing the spike trains multiple times and 

reassessing the AMD for the null hypothesis being statistically independent of the two spike 

trains), or 2) numerical estimation of expected values given the distribution of inter-spike intervals 

(ISIs) on Sj. Hereafter, the analytical method is referred to as “fast AMD” and the bootstrapping 

method as “bootstrapped AMD”. For a system with n neurons, the functional connectivity value 

between each pair of spike trains is calculated, generating an n-by-n Functional Connectivity 

Matrix (FCM). 
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In the fast AMD approach, the maximal distance between an input spike and any spike in 

the spike train to be analyzed is 
𝑰𝑺𝑰𝒊

𝟐
. Then, the expected mean distance between spikes in the 

independent spike trains is 𝝁𝒊 =
𝑰𝑺𝑰𝒊

𝟒
, where ISIi is the corresponding interspike interval of spike 

train i (Figure 1b). Calculating the first and second raw moments from the maximal distance then 

yields 𝝁𝟏
𝑳 =

𝟏

𝟒
𝑳 and 𝝁𝟐

𝑳 =
𝟏

𝟏𝟐
𝑳𝟐 for a specific ISI with length L. Taking into account the probability 

of observing an ISI with length L over the recording interval T,  𝒑(𝑳) =  
𝑳

𝑻
 , the first and second 

moment for sampling the whole spike train randomly are then 𝝁𝟏 = ∑
𝑳

𝑻
𝝁𝟏

𝑳 =
𝟏

𝟒𝑻
∑ 𝑳𝟐

𝑳𝑳  and  𝝁𝟐 =

∑
𝑳

𝑻
𝝁𝟐

𝑳 =
𝟏

𝟏𝟐𝑻
∑ 𝑳𝟑

𝑳𝑳 , respectively. The expected mean and standard deviation of a random spike 

train are then calculated as 𝝁 = 𝝁𝟏 and 𝝈 =  √𝝁𝟐 − 𝝁𝟏
𝟐.   

 
1.2.   Unidirectional AMD for causality detection: 

The bidirectional AMD described above (i.e. the temporal distance between spikes of two 

different neurons, measured in either direction) can be extended to be unidirectional to identify 

causality between the two spike trains. In this scenario, the temporal distance is measured only 

Figure 1. Calculation of AMD and analytical significance. The average minimal distance 

algorithm calculates shortest temporal length between spikes emitted by a neuron to the closest 

spikes in a reference neuron, looking in either both temporal directions (a), or in a single 

temporal direction (b), e.g. forward in time. The maximal possible distance between spikes is 

either half the interspike interval (c) or the full interspike interval (d), when looking in either 

both temporal directions or a single temporal direction, respectively. The measurements require 

a collective average timing sequence to be below one quarter (bidirectional) or one half the 

interspike interval (unidirectional) in order to be considered significant. 
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forward in time and the mean delay time expected within the null hypothesis (i.e. independence of 

both spike trains) is only set to 𝝁𝒊 =
𝑰𝑺𝑰𝒊

𝟐
, assuming a maximal temporal distance equal to the ISI 

(Figure 1c and 1d). The calculation of first and second moment change accordingly to 𝝁𝟏 =
𝟏

𝟐𝑻
∑ 𝑳𝟐

𝑳  and 𝝁𝟐 =
𝟏

𝟑𝑻
∑ 𝑳𝟑

𝑳 ; the mean and standard are then calculated in the same manner as 

above. 

 

1.3. Functional Stability Matrices (FSMs) and functional network stability (FuNS)  

The fast AMD metric offers critical advantage over the bootstrapped AMD method, as well 

as over the standard CC method, for quantifying functional connectivity measured over 

behaviorally-relevant timescales (i.e., hours to days). It allows rapid analysis of functional 

connectivity that can then be used to link neuronal activity with behavior. 

The speed of the fast AMD metric is utilized to introduce Functional network stability 

(FuNS) as a way of measuring the dynamics of functional connectivity over time. Namely, we 

want to assess the stability of functional connectivity between the neurons within the network 

rather than to characterize the detailed network connectivity, which, again, is usually based on 

extremely sub-sampled systems. The remainder of this section is focused on characterizing the 

stability metric. Later, we show that changes in stability provide information about gross structural 

changes in the network.  

Calculating the stability of network-wide functional connectivity patterns across time 

requires a division of the data sets into at least two time-windows; the remaining theoretical 

discussion assumes two time-windows for simplicity. The functional connectivity matrices are 

denoted as FA and FB where A and B represent the first and second time windows, respectively. 

The functional stability between these data sets is then calculated using cosine similarity, 𝑪𝑨,𝑩 =

𝒄𝒐𝒔 𝜽𝑨𝑩 =
<𝑭𝑨,𝑭𝑩>

√<𝑭𝑨,𝑭𝑨>∗<𝑭𝑩,𝑭𝑩>
, with an absolute value of 1 denoting no change (maximum 

similarity) and 0 indicating great change (no similarity; orthogonality) between the time intervals 

(Figure 2a). Functional stability can thus be calculated in a pairwise manner across all time bins 

for a given recording in order to generate what we call a functional stability matrix (FSM; Figure 

2b, see also Figure 8), or only on directly-adjacent time windows (Figure 2a), to generate a single 

measure of stability: 𝑭𝒖𝑵𝑺 =
𝟏

𝑻
∑ 𝑪𝒕,𝒕+𝟏

𝑻−𝟏
𝒕=𝟎 . 
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FuNS can also be used to determine the effect behavior has on neural network dynamics. 

In this scenario, stability is calculated before and after the presence of a synaptic heterogeneity 

(see Methods 2.2), 𝑭𝒖𝑵𝑺𝑨,𝑩 and 𝑭𝒖𝑵𝑺𝑪,𝑫, respectively. The significance of stability increase 

over many simulations is then given as a Z-score: 𝒁𝒔 =  (𝝁𝑪,𝑫 − 𝝁𝑨,𝑩) (
𝝈𝑨,𝑩

𝟐

𝑵
+

𝝈𝑪,𝑫
𝟐

𝑵
 )

−𝟏
𝟐

 with values 

greater than 2 indicating a significant increase in stability due to behavioral effects and values less 

than -2 indicating a significant decrease in stability. Here, μ and σ represent the mean and standard 

deviation of functional network stability, respectively, taken over many simulations or recordings. 

 

2. Computer simulations  

 

2.1.Simulations of integrate and fire networks 

Neural activity is simulated using leaky integrate-and-fire model neurons with dynamics 

given by 𝑽̇ = −𝜶𝑽 +  ∑ 𝝎𝒊𝒋𝑿𝒋𝒋 +  𝑰𝝃. 

The summation represents the total input from recently fired (within ~20ms) pre-synaptic neurons 

with connectivity strength 𝝎𝒊𝒋 and input dynamics given by the double exponential  

𝑿𝒋 = 𝒆𝒙𝒑(−(𝒕 − 𝒕𝒋
𝒔𝒑𝒌

)/𝟑. 𝟎) − 𝒆𝒙𝒑(−(𝒕 − 𝒕𝒋
𝒔𝒑𝒌

)/𝟎. 𝟑), where 𝒕𝒋
𝒔𝒑𝒌

 represents the timing of the 

last pre-synaptic spike. 

Figure 2. Calculation of Functional Network Stability and Construction of Functional Stability 

Matrices. a) Given the spike time series of neurons (top), the functional connectivity matrices 

(FCMs) are calculated over each interval (center), whereupon FuNS is calculated by measuring 

the mean cosine similarity between each consecutive time interval (bottom). b) Alternatively, 

similarity can be calculated in a pairwise manner across all time intervals to yield the functional 

stability matrix (FSM). 
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In addition to synaptic input, each neuron receives noisy input 𝑰𝝃 = 𝟎. 𝟏𝟓 +  𝟏𝟎𝑯(𝝃 − 𝒑), where 

H is the Heaviside step function, 𝝃 = 𝟏𝟎−𝟓, and 𝒑 ∈ {[𝟎, 𝟏]} is real-valued, random variable 

generated at every integration step from a uniform distribution.  

Networks are formed using 1000 excitatory neurons arranged on a ring network. 

Connection densities range from 1.5% to 4.5% of the network population and connection weights 

range from ω = 0.02 to ω = 0.045 unless stated otherwise. The networks are initially connected 

locally and subsequently rewired with probability pr. This parameter is varied from zero to unity, 

changing network topology from completely local connections to completely random. Each 

simulation is completed using the Euler integration method. 

 Additional network are simulated using a mixed population of excitatory/inhibitory cells.  

In this scenario, connections are completely local (𝒑𝒓 = 𝟎), have a connection density of 2%, and 

synaptic weights are pulled from a uniform distribution 𝝎𝒋𝒊 ∈ {[𝟎, 𝟎. 𝟐]}. These networks follow 

the same dynamics as the excitatory only networks, except that 225 inhibitory neurons are added 

to the existing networks, evenly spaced among the excitatory cells, with inhibitory output 

connectivity strength 𝝎𝒋𝒊
∗ = −𝜷𝝎𝒋𝒊. The variable 𝜷 is used to investigate network dynamics when 

excitation or inhibition dominate. We calculate the ratio of excitation to inhibition, E/I, as the ratio 

between total excitatory to inhibitory synaptic input, averaged over all neurons not in the 

heterogeneity. Balance between excitation and inhibition (E/I ~ 1) occurs at 𝜷 = 𝟑. 𝟎. 

 

 

2.2.Introduction of synaptic heterogeneities and their long-range dynamical effects 

Sensory input causes topological changes in anatomical network structure through both the 

strengthening and weakening of synapses (Feldman, 2012; Song et al., 2000) as well as through 

the introduction of new synapses (Ghiani et al., 2007) and depletion of unused synapses 

(Vanderhaeghen and Cheng, 2010). Here, we focus solely on the strengthening of synaptic 

coupling for simplicity. The effect of synaptic strengthening is mimicked by introducing a discrete 

heterogeneity in network connectivity, i.e. a small, localized region spanning 10% of the network, 

with increased synaptic connectivity between nodes. To simplify comparing networks with and 

without these synaptic heterogeneities, the underlying pairwise connectivity and synaptic strengths 

are conserved. 

To analyze the potential long-range effects of such a heterogeneity, we calculate the mean 

synaptic distance to the heterogeneity for each neuron not in the heterogeneity. The mean synaptic 

distance here is the average number of steps that need to be taken from neurons in the heterogeneity 

to any other neuron in the network, along synaptic connections. The calculation of the distance is 

adopted from Newman (2010).  In the simplest way, the synaptic distance between every neuron 

can be measured by calculating AN, where A is the adjacency matrix and the power N is the number 

of synaptic steps necessary to reach every other neuron. With each successive multiplication of A, 

new non-zeros entries appear, representing new long-range (i.e. not directly connected), multi-unit 

synaptic connections. The synaptic distance d is the number of multiplications of A with itself, 

necessary to give rise to the new long-range connection. With the full synaptic distance matrix 

populated, the mean synaptic distance to the heterogeneity is calculated by averaging over all 

heterogeneity distances calculated for a given neuron. The mean synaptic distance to 

heterogeneity, and indeed between any two neurons, changes based on the size and connectivity 

density of the network. We thus normalize the distance to heterogeneity with a value of 1 

representing neurons farthest from the heterogeneity, incorporating the entire network, and a value 
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of 0 representing the minimum degree of separation from the heterogeneity (i.e. within the 

heterogeneity). It should be noted that by definition of d, the shortest distance to heterogeneity 

would be for a neuron not in the heterogeneity but connected to every other neuron within the 

heterogeneity, attaining a normalized value of =
𝟏

𝑵
 . 

 

3. Experimental design 

3.1.Recordings from mouse CA1 before and after contextual fear conditioning (CFC) 

 To test the effects of memory formation on network dynamics in vivo, C57BL/6J mice (age 

1-4 months) were implanted with custom-built driveable headstages (see Ognjanovski et al., 2014, 

2017) with bundles of stereotrodes targeting hippocampal area CA1. Following postoperative 

recovery, mice were handled daily while gradually lowering stereotrodes into the pyramidal cell 

layer of CA1 to obtain stable recordings. A 24-h baseline recording of neuronal and LFP activity 

was initiated at CT0, after which mice underwent a single-trial CFC as described previously. 

Contextual fear memory was assessed 24 h after CFC, using previously-described methods. 

 

 

Results 
1. Comparing AMD and CC in surrogate data 
1.1 Comparison of bootstrapped AMD, fast AMD, and CC for rapid estimation of functional connectivity. 

We first compare the bootstrapped and fast AMD metrics for different distributions of ISIs 

(Figure 3): Gaussian, Poisson, uniform, and exponential. To measure the performance of the 

metrics, a single spike train following any one of these distributions is generated and cloned, with 

clones receiving a bidirectional jitter of their spike times equal to the jitter width depicted on the 

x axis (Figure 3). The jitter from every spike is drawn from the same distribution as the original 

spike train, of which the standard deviation serves as the jitter width. For all cases, the mean ISI is 

arbitrarily chosen to be ~33ms (this ISI gives a 30Hz signal, representative of awake brain 

oscillations). Figure 3 depicts the mean z-score and its standard deviation, calculated as a function 

of the jitter width for the two approaches. In all four instances, the two AMD methods perform 

nearly identically.  

Next, we compare the performance of fast AMD to CC, using the same distributions as 

above, i.e. Gaussian, Poisson, etc., with jittering (Figure 4). To calculate CC between two spike 

trains, the two spike trains are convolved with a Gaussian having one of three different widths,  

= 1ms, 5ms, or 33ms. Both metrics are calculated for 0 temporal shift between the spike trains. 

Importantly, we note that AMD does not have any free parameters and, at the same time, better 

captures finer characteristics for Poisson spike distributions compared to CC with any Gaussian 

convolution width. 

Critically, the fast AMD approach provides a rapid estimation of the significance of 

pairwise functional connectivity. Figure 5 shows the computing times of fast AMD, bootstrapped 

AMD, and CC with zero time-shift and bootstrapping for spike trains having various numbers of 

spikes and network sizes. The reduction of the computing time for fast AMD is very significant 

(up to 10000 times faster) which may be crucial for multiscale data analysis. 
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Figure 3. Comparison of bootstrapped and fast AMD metrics for rapid estimation of functional 

connectivity (FC). Two identical spike trains were artificially generated using various 

distributions of inter-spike intervals: a) Gaussian, b) Poisson, c) uniform, and d) exponential; 

the second spike train was jittered using the same type of statistical distribution, with various 

jitter widths (x-axis) to progressively de-correlate the spike trains. Each set of spiking data 

represents a 1s long recording (the time length is arbitrary, however all values are scaled to 

length) and contains 30 spikes. The analytical value of pairwise functional connectivity (𝑭𝑪𝟐𝟏) 

is calculated using the method described in the text (Methods 1.1). For all the distributions, 

AMD detects the significant functional connectivity when jitter width is small. The average 

value at which FC loses significance is a quarter of mean ISI, ~ 8ms. For a Poisson distribution 

(b), due to the fact that the mean value and standard deviation are controlled by the same 

parameter, when the jitter width equals around 17ms, the mean value of jitter is also around 

17ms, and the maximal value of the AMD and therefore FC has the most negative value. The 

same reasoning applies when the jitter width is around 33ms. The significance from 

bootstrapping was obtained by shuffling the ISIs of the second train 100 times. As before, the 

Z-score of the AMD values represents the FC. The results agree with the analytical values. 
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Figure 4. Comparison between fast AMD and CC. We compared the traditional cross-correlation 

(CC) method to fast AMD using a) Gaussian, b) Poisson, c) uniform, and d) exponential 

distributions, as in Figure 3. For the CC calculation, spike trains are convolved with a Gaussian 

waveform having a standard deviation σ as a free parameter. We used sigma σ = 1ms, 5ms and 

33ms respectively. As before, the Z-score of CC was based on bootstrapping. AMD and CC 

results are equivalent for σ = 1ms. For larger σ, CC cannot capture the specific features of ISIs 

distributions, but behaves generally in a similar manner as AMD for increasing jitter width.  
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1.2  Comparison of bidirectional and unidirectional AMD performance. 

 

Next, the performance of unidirectional fast AMD and bidirectional fast AMD on surrogate 

data sets is compared (Figure 6). A set of 5 spike trains are generated such that they are: 1) 

coincident (but not causal) with respect to each other, or 2) are causal, with FCMs calculated in 

each scenario. First, one spike train is generated from a Gaussian distribution. In the case of 

coincidence, the “master” spike train is copied and each spike is subsequently jittered following 

the same distribution. This process is repeated, with subsequent spike trains copying the previously 

jittered spike train. In the case of causality, copied spike trains retain the same interspike intervals 

as the original master copy, but are delayed slightly in time. Figure 6 depicts the result of 

bidirectional AMD (Figure 6a) and unidirectional AMD (Figure 6b) estimation for coincident 

spike trains. As expected, bidirectional AMD reports highly significant temporal relations between 

the two trains whereas the unidirectional AMD estimation reports lack of causality (i.e., the 

significance is lower that one standard deviation). Figure 6c and 6d depict similar calculations for 

causally related spike trains. Here both measures report high temporal coincidence, however 

unidirectional AMD provides additional information about causal relationships.  

Figure 5. Comparison of computation speeds obtained for fast AMD, bootstrapped AMD, and 

bootstrapped CC. We measured the calculation time (recorded by CPU time from MATLAB) 

for three methods: CC, bootstrapped AMD and fast AMD. a) Calculation time for increasing 

the number of cells in the system. B) Calculation time for increasing the number of spikes in a 

two-cell system. Fast AMD is more than 20 times faster than bootstrapped AMD, and 200 

times faster than CC calculation. For two-cell systems with different number of spikes (b), the 

advantage of fast AMD is more significant for larger spike trains, up to four orders of 

magnitude less than CC when the number of spikes is 10000. The sharp increases in CC 

computation time is most likely related to the memory allocation of the computer. The results 

for fast and bootstrapped AMD were averaged over 200 realizations, whereas 10 realizations 

were used for CC. The reported results are based on shuffling the ISIs 100 times for CC and 

bootstrapped AMD calculations. 
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1.3   Functional stability between functional connectivity matrices (FCMs). 

 

We sought to determine how functional stability between FCMs can capture the similarity 

between different functional connectivity patterns in the network. Changing functional 

connectivity patterns are constructed by jittering five copies of a master spike train. For increasing 

jitter amplitude, all spike trains become increasingly de-correlated, resulting in different functional 

connectivity patterns. The FCM is first calculated using the fast AMD metric for the five spike 

trains. Then, the stability between FCMs for different realizations of the spike trains having various 

jitter width is determined (Methods 1.3). Figure 7 shows the functional stability as a function of 

jitter of the compared spike trains. For small jitter, the FCMs yield stability values close to one, 

Figure 6. Bidirectional AMD and unidirectional AMD FCMs. An example of functional 

connectivity matrices (FCMs) calculated using two AMD methods for coincidence (a, b; 

bidirectional time lags taken into account) and causality (c, d; unidirectional time-lags taken 

into account) of functional connectivity (FC) patterns. Color represents the significance of fast 

AMD. In the case of coincidence, the FCM calculated by bidirectional AMD is almost 

symmetric and captures the functionally connected neurons (a), but unidirectional AMD does 

not (b); conversely in the causality case, the anti-symmetric FC matrix given by unidirectional 

AMD indicates the causal relationship (d), while bidirectional AMD does not differentiate from 

the coincidence case (c). The results were averaged over 100 realizations. 
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indicating high similarity between the FCMs. On the other hand, when a small jitter FCM is 

compared to a high jitter FCM, similarity rapidly declines to negative values. This is due to 

switching from a well-defined network structure to a random one. Finally, when two largely 

random states are compared (i.e. both FCMs have high jitter and are de-correlated) the stability 

value hovers around 0.2. Taken together, these results indicate that functional stability reasonably 

quantifies the similarity between functional connectivity in the network. 

 

 

1.4 Functional Stability Matrix (FSM) and FuNS as a monitor of changes in functional connectivity patterns. 

Following the data generating procedure used in Figure 8, a five cell system is simulated 

to demonstrate the applicability of the Functional Stability Matrix (FSM) (Figure 8) in monitoring 

changes in dynamical network states over time. A bidirectional jitter with a width of 8ms is applied 

during the first and last 7 seconds of the spike train, while a bidirectional jitter of width 15ms 

(Figure 8a and 8c) or unidirectional jitter of width 8ms (Figure 8b and 8d) is applied during the 

middle 7 seconds. After segmenting the time series into 21 bins of equal size and calculating the 

Figure 7. Similarity between FC patterns. A five-cell system is simulated, where the other four 

spike trains were jittered from the master train with same jitter width. Each train contains 30 

spikes and time recording is set arbitrarily to 1 second. After calculating the functional 

connectivity matrix (FCM) for each jitter width, the similarity between each pair of FCMs is 

measured. The result is averaged over 100 realizations. Similarity is high when both jitter 

widths are small as the AMD values are small for both cases. There is a transition to negative 

values as one of the jitter widths gets significantly larger. For the pair of FCMs, both with high-

valued jitter width, FC patterns are relatively random and similarity is low (~0.2). 
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5-by-5 FCMs using the fast AMD algorithm, the FSM is obtained by calculating the functional 

stability between each pair of FCMs (Figure 8a and 8b). For both cases, significantly positive 

stability values in region I and III and low values in region IV indicate the temporal relationship 

between different functional connectivity patterns in the network. Importantly, region V in both 

cases demonstrates that the functional connectivity returns to the same pattern observed in the first 

7s, subsequent to the changes occurring during the 8-14s time window. In the bidirectional case, 

the network loses stability during the middle 7s in region II (Figure 8a), while in unidirectional 

case region II (Figure 8b), due to the corresponding unidirectional shifts, the stability between 

FCMs attains a high value. Hence, FSM gives effective information to keep track of the similarity 

in functional connectivity patterns in the network at any time point. Figure 8c and 8d illustrate the 

functional stability trace over time, with the red line indicating FuNS, i.e. the mean of the stability 

values (0.4362 for bidirectional and 0.7720 for unidirectional). As expected, the minimum 

similarity in both cases happens at the point when FC changes, at the end of 7s and 14s, 

respectively. These results thus give a reliable way to track functional network changes in time, 

which may be due to cognitive processing, for example. 

 

 

 
1.5 Estimation of fast AMD for functional connectivity for mutually delayed spike trains. 

Figure 8.  Functional Similarity Matrix (FSM) and similarity trace over time. Simulation of 

temporal changes in spike relationships between five neurons. The spike trains are jittered 

bidirectionally with a jitter width of 8ms from the master train during the first and last 7 seconds 

of the spike train. During the middle 7 seconds, jitter was bidirectional with width 15ms (a,c) 

and unidirectional with width 8ms (b,d), respectively.  The spike trains were binned into 21 

time windows and a five by five functional connectivity matrix (FCM) was calculated by 

bidirectional AMD for each window. (a,b) Similarity value between each pair of FCMs. FCMs 

originating from spike trains having common properties show high similarity (c,d). Similarity 

trace over time, within which only FCMs in adjacent time windows are compared. Red line 

indicates the functional network stability (FuNS), the average of the similarity trace values. 
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We tested the performance of fast AMD on spike trains with applied time delay (Figure 9). 

Two random spike trains with Gaussian ISIs are generated with a jitter width of 5ms. Time delay 

is added to the second train by shifting each spike time by a constant value. In Figure 9a, the FC 

and standard deviation between two trains are estimated by fast AMD for different time delays. 

Around a delay of 7.5ms, FC is around 0 due to the fact that the second train is shifted to one 

quarter of the average ISI (33ms). FC values become negative with the increase of the delay time, 

indicating an anti-correlation between two trains.  

Next, fast AMD is utilized to detect the delay and to recover the original, non-delayed z-score. The 

estimated delay time (DT) from Si to Sj, as given by fast AMD, is defined as 𝑫𝑻𝒊𝒋 =
𝟏

𝑵𝒋
∑ (𝒕𝒌

𝒋
− 𝒕′𝒌

𝒊 )𝒌 , where 𝒕𝒌
𝒋
 is the temporal value of the kth spike in Sj and 𝒕′𝒌

𝒊  refers to the temporal 

value of the nearest event to 𝒕𝒌
𝒋
 in Si. Then, Sj is shifted by –DT12 and FC is re-calculated using 

fast AMD. The red line on Fig 9a depicts the FC values after the shift, and as a function of original 

delay time. Fast AMD reliably detects the delay and restores FCs back to the level of no delay 

(indicated by the black dash line). As a comparison, we also calculated the FC with and without 

subtracting the estimated DT for non-delayed spike trains (Figure 9b). There is no significant 

difference after subtracting DT, indicating that no spurious correlations were introduced for non-

delayed spike trains. 

 

 

To further test performance of the tools on the delayed spike trains, we calculated FuNS 

for a 5-cell system with jittering and applied variable time-delay (Figure 10); with mean delay time 

in the system denoted on the y-axis. The total recording time duration was 10s. FuNS was 

calculated from 10 equal length time bins. The top row indicates the system without delay. When 

the system is strongly connected (i.e., a small jitter width), FuNS is highly robust to delays, 

Figure 9. Fast AMD can be adjusted to account for time delays. A copy of the original random 

spike train having Gaussian ISIs is jittered with a jitter width of 5ms and then is shifted by 

variable time-delay. a) The FC between two trains is estimated by fast AMD (blue trace). Next 

the second train is shifted back by the amount of delay that is estimated by fast AMD algorithm, 

and FC is re-calculated (red trace). The black dashed line shows the FC for non-delayed spike 

times. b) The same analysis is applied to spike trains with no delay, and the FCs show no 

significant differences. The results were averaged over 100 realizations. ACCEPTED M
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reporting nearly identical values as the case without delay. For bigger jitter width, as expected, 

FuNS is low when the delay time is around one quarter of the average ISI, i.e. when the FC between 

spike trains loses significance. Thus, even though FC values can be affected by delays, FuNS can 

still quantify the stability level of the system effectively.   

 

 

 

 

2. Effects of localized network heterogeneity in model networks 

 
2.1 Characterizing dynamics and connectivity of integrate-and-fire networks. 

 

 

Using the statistical tools introduced above, we investigate networks of leaky integrate-

and-fire neurons for dynamic stability. The focus here is to establish how the new metrics help to 

elucidate network connectivity structure, as well as potential changes in network dynamics, due to 

the formation of localized network heterogeneities. As noted previously, these heterogeneities 

represent the formation of localized cognitive representations (e.g. memories) within the network. 

Figure 10.  Functional Network Stability (FuNS) of the delayed dataset. A 5-cell system is 

simulated by adding jitter and time delay to spike trains to randomly generate spike train using 

Gaussian distribution of ISIs. The color scale represents FuNS calculated after binning the data 

into 10 one-second time windows. A control realization, where no delay is added to the spike 

trains, is indicated by the top row. The results were averaged over 10 simulations. FuNS reports 

robust stability despite the delay.  
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Figure 11. Z-Score significance between functional connectivity matrices as a function of 

network topology. Functional connectivity matrices (FCMs) were parsed based on the existence 

or non-existence of synaptic connections between neurons and fast AMD results for these two 

groups were generated. a) Mean grouped-averaged functional connectivity as a function of 

connectivity density for a connection strength of ω = 0.0325 and rewiring parameter equal to 0 

(red traces: directly connected neurons; black traces: unconnected neurons). Error bars represent 

standard error of the mean. Lack of variation in network structure (i.e. there is no rewiring of 

local connections) results in uniformly small standard error; the network for each simulation is 

exactly the same and so responds to random input in nearly the same manner. b-f) Color images 

indicate the logarithmically scaled significance, with warmer colors indicating a greater 

significance, with the white bands indicating the level above which the Z-score is significant 

(consistent with two standard deviations from the mean). As synaptic connectivity strength ω 

increases from very low values (b) through moderate values (c) to higher values (d), significance 

increases between the parsed groups over an increasingly large topological parameter region. 

As ω further increases, more than half of the parameter region has a significant separation 

between groups (e) but saturates, admitting no additional significant parameters (f). The black 

box in panel (c) indicates the range of data used to generate panel (a). All results were averaged 

over five trials. 
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2.2 Identification of direct structural connections within the network. 

 We first constructed sparsely connected, excitatory only networks to investigate whether, 

and for what ranges of connectivity parameters, is it possible to statistically separate sets of neurons 

with direct structural connectivity from those who lack direct connections. This corresponds to 

adjacency matrix entries of 1 and 0, respectively. We use the bidirectional, fast AMD metric to 

measure the functional connectivity between pairs of neurons that share direct structural 

connections and those that do not. The distribution of FC values are then characterized (i.e. their 

mean and variance are calculated) for the two populations and we subsequently calculate the 

statistical separation between groups in terms of a Z-score: 𝒁𝒔 =  (𝝁𝒘𝒄 − 𝝁𝒏𝒄) (
𝝈𝒘𝒄

𝟐

𝑵
+

𝝈𝒏𝒄
𝟐

𝑵
 )

−𝟏
𝟐
, 

where wc, wc and  nc, nc represent mean and standard deviation of the distributions of functional 

connectivity values for directly coupled pairs and non-coupled pairs, respectively. Figure 11 shows 

the Z-Score comparison between these two populations (Figure 11a). Each colored panel 

represents the statistical separation of the two populations as a function of network topology for 

increasing synaptic connectivity. The obtained results indicate that there is a well-defined 

parameter region where the two populations can be separated with a large degree of accuracy. As 

expected, weak network connectivity prohibits this separation (Figure 11b). Also, the statistical 

significance is lower in networks deviating from local to random connectivity (Figure 11b-f). 

Importantly, significance between the groups is seen even under very strong connectivity, though 

eventually the response is saturated and no new network parameter values result in an increase in 

significance (Figure 11e and 11f). 

 

 
2.3 Changes in functional connectivity and stability of the network with introduction of network 

heterogeneity. 

It is still not clear how localized changes in network structure (i.e. inclusion of a network 

heterogeneity) affect network-wide dynamics. To address this, functional connectivity and the 

subsequent stability of these matrices is measured between the neurons that are not included in the 

heterogeneity, using the fast AMD method. Simulations are cut into two parts and we subsequently 

measure both the change in FC as well as FuNS, both given as a function of network topology and 

connectivity density (Figure 12). Figure 12a depicts FuNS in the same network before the 

heterogeneity is introduced (black line) and after its introduction (red line) as a function of the 

connection rewiring parameter. Significant changes in network stability are observed for localized 

network topologies with significance decreasing as the topologies become more random. Figure 

12b depicts changes of network stability upon the introduction of a heterogeneity, as a function of 

both connectivity density and network topology, and compares it to changes in mean value of FC, 

averaged over all pairwise indices of the corresponding FCM, for the network (Figure 12c). We 

note that while FuNS changes are quite significant for a wide parameter range (up to Z-score of 

64, noting the logarithmic scale), the changes in mean functional connectivity are quite 

insignificant and provide a less clear picture of how the FCM itself changes. This leads us to 

conclude that measuring the changes of FuNS is a more tenable indicator of global change in 

network dynamics in response to introduction of network heterogeneity compared to FC. 
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2.4 FuNS as a global measure of structural network changes. 

We have shown above that FuNS is sensitive to the introduction of a discrete network 

heterogeneity. Thus, it allows the identification of the existence of structural network changes 

without the requirement of measuring specific cells that participate in that change. This is of 

paramount importance in the situation when the experimental measurement is critically under-

sampled and there is no way to identify either the specific neurons participating in the structural 

network reorganization or the anatomical network structure. To quantify the long-range effects of 

synaptic heterogeneities, we set out to measure the synaptic distances from network heterogeneity 

where significant changes in network stability are observed.  

Neurons are grouped depending on their mean synaptic distance from heterogeneity 

(Methods 2.2). Functional connectivity matrices for each group of cells is calculated separately, 

whereupon we determine the mean change in FuNS within each group due to introduction of 

heterogeneity (Figure 13). Figure 13a shows an example of change in FuNS as a function of mean 

distance from heterogeneity, normalized by the maximum possible distance to the heterogeneity. 

Some network parameters results in a persistently significant separation of FuNS at long distances 

from the heterogeneity, while other parameters result in a rapid decline of FuNS away from the 

heterogeneity. Thus, the Z-score of FuNS is calculated between networks with and without 

synaptic heterogeneity at each synaptic distance in order to determine the normalized distance 

Figure 12. Functional Network Stability detects dynamic changes due to synaptic 

heterogeneities over a large topological parameter region. a) FuNS as a function of connection 

rewiring parameter for networks before (black trace) and after (red trace) introduction of a 

synaptic heterogeneity. Synaptic heterogeneities are defined as spatial regions within the 

network, where connections between neurons only in the region were appointed a greater 

synaptic connectivity compared to the rest of the network. Error bars indicate the standard error 

of the mean. b) Z-score of FuNS as a function of connection density ρ and rewiring parameter, 

scaled using a logarithm of base two. Warmer (cooler) colors denote an increase (loss or no 

change) in stability due to the introduction of a synaptic heterogeneity. The black bar on the 

color scale indicates the minimum value needed to be considered significant. The black box in 

the main panel shows the parameter region used to generate FuNS curves in the left panel. c) 

Difference in average FC over the entire FCM as a function of ρ and rewiring parameter is less 

robust than analyzing FuNS. All results shown are for a synaptic coupling strength of A = 0.03, 

averaged over five trials. 
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where significance is lost. Figure 13b depicts the normalized mean distance from the heterogeneity 

at which the results become insignificant, as a function of connection density and strength. Here, 

a value of one corresponds to the situation where we can detect changes in FuNS throughout entire 

network. We observe that localized heterogeneity has global dynamical effects on the system under 

a large array of network topologies, giving credence to the notion of dynamical attractors in neural 

networks. 

 

 
2.5 FuNS sensitivity to structural heterogeneity in mixed excitatory and inhibitory networks.  

Finally, we measure changes in FuNS in response to introduction of network heterogeneity 

in mixed inhibitory and excitatory networks. Specifically, FuNS is measured as a function of the 

ratio of total excitation and inhibition generated by neurons in the network (i.e. E/I ratio; Methods 

2.1). Generally, we observe that for low values of E/I ratio the reported FuNS is low regardless of 

the presence of a heterogeneity and, at the same time, a high E/I ratio saturates FuNS in both cases 

(Figure 14). The greatest response of the networks, in terms of stabilizing dynamics in presence of 

heterogeneity, is near a balance between excitation and inhibition, i.e. E/I ~ 1 (Figure 14b). Thus, 

only near such an E/I balance can the dynamics of the network respond in a distributed manner to 

the introduction of heterogeneity. This provides another piece of evidence that mixed networks 

near E/I balance increase their dynamic range in response to even localized structural network 

changes, in agreement with previous studies (Poil et al., 2012; Gautam et al., 2015). 

Figure 13. Local synaptic heterogeneities globally increase Functional Network Stability 

(FuNS). a) Example FuNS traces as a function of normalized synaptic distance from the 

heterogeneity for networks before (darker colors) and after (lighter colors) introduction of a 

synaptic heterogeneity. Some values of the simulation parameters result in a distance dependent 

decrease or no change in FuNS Z-scores (blue traces), while others result in consistent, network-

wide significance (red traces). The black, dashed line indicates the normalized distance where 

FuNS loses significance in the example case shown. Error bars indicate standard error of the 

mean. b) Normalized distance from the heterogeneity where FuNS significance is lost. Values 

of one indicate that the global network observes an increase in FuNS due to a localized synaptic 

heterogeneity. All results averaged over five trials. 
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We further compare FCM and FuNS measurements between the fast AMD approach and 

the CC approach (Figure 15) at the point where FuNS observes a maximum increase in Figure 14b, 

i.e. E/I ~ 1. As expected, the FCM analysis for both methods is very similar and, indeed, does not 

show a significant difference between networks with and without a synaptic heterogeneity (Figures 

15a and 15b). However, we observe a significant increase in FuNS for the fast AMD method 

(Figure 15d) but not for the CC method (Figure 15c), assuming a non-normalized Gaussian 

distribution for both. Thus, though the resulting FCMs are similar, FuNS more accurately picks up 

on discrete changes in functional network topologies generated using AMD compared to cross-

correlation. 

Figure 14. Introduction of synaptic heterogeneities maximize increased Functional Network 

Stability near a balance between excitation and inhibition. a) FuNS as a function of the ratio 

between excitation and inhibition. Introduction of synaptic heterogeneities (red traces) 

increases stability over networks missing a synaptic heterogeneity (black traces). b) Difference 

in FuNS between networks containing and not-containing synaptic heterogeneities. All error 

bars indicate the standard deviation of the mean, taken over five trials. 
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3. FuNS applied to in vivo data 

Finally, we wanted to know whether functional connectivity and stability changes could be 

detected following network reorganization in vivo (Figure 16). We hypothesize that synaptic 

plasticity in hippocampal area CA1 following single-trial contextual fear conditioning (CFC) 

(Tronson et al., 2009) is a plausible biological model to investigate how rapid structural network 

changes underlying memory formation affects network dynamics. CA1 network activity is 

necessary for fear memory consolidation in the hours following CFC (Daumas et al., 2005). For 

this reason, we recorded the same population of CA1 neurons from C57BL/6J mice over a 24-h 

baseline and for 24 h following CFC (placement into a novel environmental context, followed 2.5 

Figure 15. Comparing FC and FuNS between AMD and CC near the E/I Balance. The 

probability of observing a mean FC value was measured for functional structures from both CC 

(a) and AMD (b) derived methods, only over the excitatory neurons in the mixed networks, 

before (black) and after (red) adding a network heterogeneity. The distributions were not 

significantly different, within a 5% confidence interval (K-S test; CC: p = 0.83, AMD: p=0.54).  

Similarly, non-normalized Gaussian distributions of FuNS were constructed for CC (c) and 

AMD (d) before (black) and after (red) introduction of a synaptic heterogeneity. Calculating 

FuNS for AMD yielded significantly different distributions whereas FuNS for CC did not, 

within a 5% confidence interval (K-S test; CC: p = 0.09, AMD: p = 𝟕 × 𝟏𝟎−𝟗). Error bars 

represent standard error of the mean, whereas Gaussian widths stem from the standard 

deviation. Averaged over 5 trials. 
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min later by a 0.75 mA foot shock) to determine how functional network dynamics are affected by 

de novo memory formation. CFC affects many aspects of CA1 network dynamics; for a detailed 

description of the obtained results, please refer to (Ognjanovski et al., 2014, 2017). 

The results presented here focus on comparing performance of the metrics (fast AMD and 

CC, both together with FuNS assessment) for the case when mouse was subjected to successful 

Figure 16. Application of AMD and FSM to in vivo mouse data. We extracted spike data 

from intervals of slow wave sleep across 6-hour recordings for both before (baseline) and 

after (post stimulation) the contextual fear conditioning. The spike trains were first divided 

into multiple one-minute bins, then the functional connectivity (FC) pattern for each bin is 

calculated by bidirectional AMD and CC. We compared the distribution of both FC values 

(a,b) and stability values (c,d). For FC values, the elements are extracted collectively from all 

the FCMs. The histogram shows us that AMD is able to capture the functional connectivity 

changes from baseline to post contextual fear conditioning more sensitively than CC. For 

stability values, the elements were extracted from the FSMs for baseline and post-stimulation 

respectively, and calculated as described in Results 1.4. We observe significant shift in 

stability for both CC and AMD calculation, however, AMD gives a more statistically 

significant separation between the two distributions. 
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memory consolidation (success was determined by observing behavioral changes 24 hours after 

training). First, the 6-hour baseline and 6-hour post stimulation are divided into 1-minute time 

windows, and FCMs are calculated in each bin, which are further used to calculate FSM. Figure 

16 shows comparisons of the distribution of functional connectivity values (Figures 16a and 16b) 

and stability values (Figures 16c and 16d). Comparing with CC, AMD is shown to be more 

sensitive to capture the change of functional connectivity and stability in the network during 

memory consolidation. Furthermore, the more significant shift of similarity distribution indicates 

that stability is a better measurement of the change in global network properties.  

 

Discussion 
The advent of new recording techniques allowing for prolonged recordings from an 

increasing number of neurons in the brain drives the necessity to develop new analysis tools to 

meaningfully process data. Two underlying issues however need to be overcome. First, there is a 

severe under-sampling problem: how is it possible to identify universal properties of neuronal 

dynamics during information processing if the number of recorded cells remain tremendously 

small in comparison with number of cells participating in the computation? Second, and related to 

the first question, is how to characterize the data so that the (small) recorded population provides 

a representative picture of the dynamics of whole modality? Solutions to the latter attempt to bridge 

the timescales between neuronal activity and behavioral states which they encode, while prolonged 

recordings on freely behaving mice are now possible, they generate enormous data sets which need 

to be meaningfully processed in a finite amount of time.   

In this paper we have addressed both of these problems - we have introduced a framework, 

based on the AMD between spikes in individual neurons’ recorded spike trains, which allows for 

rapid assessment of network functional connectivity structure throughout extended time periods. 

We showed that we can extend the developed metrics so that we can rapidly estimate significance 

of functional connectivity between neuronal pairs, based on analysis of distribution of ISI intervals 

of the neurons in question, not only without loss of resolution, but often with improved sensitivity 

as compared to cross-correlation based methods. At the same time, rapid assessment of 

significance allows us to speed up functional connectivity reconstruction by a couple of orders of 

magnitude, primarily due to the fact that we can bypass typical bootstrapping methods without loss 

of accuracy (Results 1.1-1.5). 
Further, we used this fast, AMD-based method to reconstruct instantaneous functional 

connectivity within the network and subsequently introduced Functional Network Stability 

(FuNS), a measure that assesses the temporal stability of functional connectivity networks. We 

showed that FuNS is especially useful in detecting changes in network-wide dynamics due to 

discrete changes in network structural connectivity, referred to here as synaptic heterogeneities. 

Namely, we show that localized and relatively small heterogeneities can induce dynamical changes 

throughout the entire network, as is evidenced by high FuNS in neuronal groups distantly 

connected to the heterogeneity region (Figure 14). This in turn allows for robust detection of such 

changes experimentally, even in the conditions of severe under-sampling (Skilling et al., 2017; 

Ognjanovski et al., 2017). These results indicate that while reconstruction of functional 

connectivity between the recorded neurons may yield ambiguous results as the functional relation 

of the recorded cells to the computational task is unknown, the changes in the global dynamics of 

the representations is a more robust measure of local network changes in response to computational 

tasks. (Results 2.1-2.4) To better exemplify this point, we used both model simulations and in vivo 
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experimental recordings to show that discrete changes to network structure may yield ambiguous 

results in terms of reconstruction of detailed changes in functional network connectivity, but at the 

same time show robust stabilization of dynamical network representations (Results 3.1). 

Finally, we investigate whether observed stabilization of dynamical network 

representations can inform us about universal network properties that are underlying the 

computation. Here, we show that in mixed excitatory-inhibitory networks, the highest sensitivity 

(in terms of changes in global network representations) to introduction of localized heterogeneity 

is achieved near a balance between excitation and inhibition (E/I balance; Results 2.5).  This result 

is in line with other existing results which have shown that E/I balance emerges naturally in neural 

networks (Vreeswijik and Sompolinsky, 1996) and that neurons operating in networks near E/I 

balance exhibit faster linear responses to stimulation, and greater dynamic range (Vreeswijik and 

Sompolinsky, 1996). Recent findings have also shown that E/I balance is required for heightened 

neuronal selectivity (Rubin et al., 2017). 

Altogether, we believe that the introduced framework for rapid calculation of functional 

network connectivity allows for robust analysis of multiunit recordings. Numerous linear and 

nonlinear, methods have been developed over the last decade to reconstruct and characterize 

functional network connectivity. We have earlier compared the performance of functional 

grouping based on AMD assessment to some of these methods (Feldt et al., 2009). Many of the 

developed tools require assessment of functional adjacency matrix. We believe that the algorithm 

proposed here provides a robust alternative for the commonly used cross-correlation method. 

Further we believe that fast AMD together with evaluation of FuNS helps to overcome two major 

constraints in neuroscience: undersampling and the difficulty of bridging diverse timescales of 

neuronal dynamics and cognition. We believe that this framework will be widely applicable to 

numerous problems in systems neuroscience.  
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