
Directed evolution to improve protein folding in vivo
Veronika Sachsenhauser1 and James CA Bardwell1,2

Available online at www.sciencedirect.com

ScienceDirect
Recently, several innovative approaches have been developed

that allow one to directly screen or select for improved protein

folding in the cellular context. These methods have the

potential of not just leading to a better understanding of the in

vivo folding process, they may also allow for improved

production of proteins of biotechnological interest.
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Introduction
Most proteins are only marginally stable, exhibiting net

free energies of folding in the range of only a few kcal/

mol [1,2��]. This marginal stability is not only a source of

experimental frustration to scientists working with pro-

teins but also greatly inhibits the use of proteins for

biotechnological purposes. Optimizing protein folding

would thus be of great practical value. Moreover, in vivo
optimization of folding would give us a better under-

standing of how proteins normally fold in the cell,

possibly granting us insight into how protein misfolding

can lead to disease. Improving protein stability either in
vivo or in vitro, however, is rather challenging as most

amino acid substitutions are destabilizing [1], and those

rare stabilizing variants that can be found often interfere

with protein function [1,3,4]. Attempts to circumvent

this function-stability tradeoff by manipulating cellular

chaperones in beneficial ways is also challenging; this is

not surprising as millions of years of evolution have been

at work optimizing these in vivo folding machines. Most

chaperones are designed to work on many proteins [5].

This fact may help explain why chaperone variants

specifically selected for improved function with one

protein often show impaired function in their folding

of other proteins [6]. These issues may help account for
www.sciencedirect.com 
the mixed results that have been obtained with protein

stabilization efforts.

Although our general understanding of protein folding has

been significantly advanced by in vitro experiments, apply-

ing the lessons learned in vitro to improve folding in vivo has

been difficult. In vivo folding differs substantially from in
vitro folding due to the effects of macromolecular crowding,

hindered diffusion, co-translational folding, and chaperone-

facilitated folding that are at play in the cellular environ-

ment. These areas have been the subject of recent excellent

reviews and so will not be further discussed here [7–10].

Innovative in-cell reporting systems that allow for the

fluorescent detection of in vivo protein denaturation after

in-cell urea titration suggest that at least protein thermody-

namic stability is not radically different in the in vivo and in
vitro environments [11,12��,13]. However, in vivo stability

is not just thermodynamic stability; in vivo stability also

entails the protein’s persistence in a functional, non-aggre-

gated form in the cell. While in vivo protease susceptibility

is roughly correlated with in vitro thermodynamic stability

[2��,14], aggregation susceptibility is poorly assessable as it

is strongly affected by the in vivo environment. Aggregation

is a crucial factor for rationally designed proteins, as proteins

often fold into insoluble oligomeric states in vivo due to the

effect of unanticipated intermolecular interactions that

occur within the cell [15].

Optimizing protein folding in the cell could at least in

principle fix many of these problems. The simplest and

most generic methods commonly used to improve protein

folding in vivo are by optimizing growth and expression

conditions, including growth temperature, time of induc-

tion, promoter strength, inducer concentration, codon

usage, and the use of solubility-enhancing fusion tags.

These approaches are well documented and will thus not

be discussed further here [16–19]. A more targeted way to

improve protein folding is by using directed evolution.

These methods typically involve the generation of a pool of

mutant variants followed by a selection process to find

those with improved folding properties. Through multiple

iterative rounds of Darwinian selection, folding-optimized

variants with multiple mutations can be obtained, includ-

ing many that are unlikely to have been generated using

rational design or phylogenetic comparison approaches. In

addition to evolving the proteins themselves for improved

stability, directed evolution can also be used to customize

host organisms to provide an optimized folding environ-

ment for specific proteins [20].

In this review, we outline recent advances in harnessing

the power of directed evolution to optimize protein
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folding in the cell. Approaches include novel selection

and screening methods for protein variants and host

strains as well as the evolution of chaperones.

Harnessing the power of molecular biology for
genetic diversification
Genetic variation can be generated using several different

methods. Classic random mutagenesis techniques such as

chemical and physical mutagenesis, and error prone PCR,

transposon insertion mutagenesis, gene shuffling as well

as more recently developed technologies for targeted

mutagenesis including Multiplex Automated Genome

Engineering (MAGE) facilitate the introduction of

genetic changes in vitro and in vivo. The diverse methods

are described in several excellent reviews and articles and

will not be discussed further here [21–24].

Systems to assay for improved protein folding
The accuracy, power, throughput, and stringency of selec-

tion or screening approaches are crucial to the success of a

Darwinian optimization process. Various selection and

screening systems have recently been developed to allow

for the identification of stabilized protein variants (Figure 1).

Selection for improved folding based on an
endogenous property
One very straightforward way to select for increased

stability is to take advantage of an inherent property of

the protein of interest, such as its enzymatic activity or

any other property that can be easily screened for

(Figure 1a). Unfortunately, the limited availability of

simple assays for these properties makes this approach

very protein-specific and generally relatively low-

throughput [25–28]. However, one recent and very prom-

ising approach [29��] allows one to directly assay protein

solubility in vivo, bypassing the need for protein-specific

assays. In this assay, cells expressing the protein are

incubated at elevated temperatures, lysed on a Durapore

membrane filter which blocks variants that tend to aggre-

gate but allows variants that remain soluble to pass

through. These soluble variants are then retained on a

nitrocellulose membrane and detected either with anti-

bodies against the protein of interest itself or against an

affinity tag attached to the protein. This method is not

protein-specific, thus potentially broadly applicable and

can be conducted in high-throughput.

Improving protein folding using folding
reporter tags
Another way around the lack of an easily assayed property

is to fuse the protein of interest to a reporter protein with

the hope that the activity of the reporter will reflect the

folding of its fusion partner. Improved folding of a tagged

protein variant, for instance, could result in a parallel

increase in the amount of the reporter protein. Quantifi-

cation of the reporter then provides an indirect measure

of the effective abundance of the protein of interest
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(Figure 1b). Green fluorescent protein (GFP) is one of

the first and most commonly used fusion tags employed in

screens for improved stability in vivo [30,31]. By combin-

ing GFP fusions with fluorescence activated cell sorting

(FACS), folding variants can be screened and isolated in

high throughput [32]. Other C-terminal reporter fusion

tags that rely on chromogenic, enzymatic, or antibiotic

resistance-conferring properties have also been devel-

oped and applied to screen or select for improved folding

[33–36]. For example, dihydrofolate reductase has been

used as a solubility reporter to select for soluble expres-

sion constructs [37]. These reporter fusion tag systems

have disadvantages, however. They entail a propensity

for false positives due to truncations or cleavage arti-

facts and fusions can alter the solubility of the protein

variant [38].

To help eliminate these problems, split GFP systems

have been developed in which only a short, non-fluores-

cent portion of GFP is fused to the C terminus of the

protein of interest (Figure 1c). Expression of the remain-

der of GFP from a second plasmid will only complement

the short portion well (and thereby emit fluorescence) if

the protein of interest is soluble and remains intact (i.e. it

is not degraded). The short nature of the GFP portion of

these fusion constructs links it more closely to the folding

and solubility properties of the protein of interest [39�].

In an alternative approach, Lindman et al. successfully

used trans-complementation of fragments of GFP to

screen for improved thermodynamic stabilization of the

B1 domain of protein G (PGB1) [40,41�]. The rationale

here is that mutations that stabilize a protein chain, in this

case of PGB1, will tend to increase the affinity between

two fragments of that chain. If these two fragments are

fused to different portions of GFP, fragment stabilization

will tend to drive the GFP portions together, resulting in

better complementation and increased fluorescence [41�].

Tripartite protein folding sensors to optimize
protein stability
More recently, advanced tripartite folding reporters have

been developed in which a protein of interest is inserted

at a permissive site within a reporter protein (Figure 1d).

In the Proside (Protein stability increased by directed

evolution) approach, the protein is inserted between two

domains of an essential bacteriophage capsid protein.

Stable variants will be more resistant to in vitro proteolysis

and can be selected on that basis [42,43]. Several in vivo
folding biosensors have also been developed based on a

similar rationale; that is, the two parts of the reporter

protein will only be able to fold together and confer the

reporter’s intrinsic function if the inserted protein folds

well. If the inserted protein is poorly folded, it will be

cleaved by the plethora of proteases in the cell. This will

separate the two halves of the reporter, resulting in lower

levels of reporter function. This cis-complementation
www.sciencedirect.com
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Figure 1
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Selection and screening systems for improved protein folding in vivo. (a) An inherent, measurable function (e.g. enzymatic, chromogenic reaction)

of a protein of interest (POI) is exploited to screen for stabilized protein variants. (b) A screen or selection for stabilized POI variants is enabled by

fusion to a reporter protein with a measurable function. (c) Tight interaction of two portions of POI variants leads to proper complementation of

fused fluorescent reporter protein portions and thereby allows screening for stabilized protein variants. Unstable protein variants will be depleted

from the screen by degradation. (d) Split halves of a reporter protein will only interact and confer its inherent selectable/screenable function if the

inserted protein variant folds well and doesn’t get proteolyzed or aggregated. (e) The twin arginine translocation (Tat) system relies on

translocation of exclusively well-folded protein variants into the periplasm where proper folding is additionally selected for by a fused b-lactamase

tag. POI, protein of interest; POIa/POIb, POIa half or POIb half, respectively, of split POI; Ra/Rb, Ra half or Rb half, respectively, of split reporter

protein R; P, proteolysis; Tat, twin arginine translocase; ss, Tat signal sequence; b-lac, b-lactamase resistance marker.
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tripartite fusion approach is advantageous in that it dis-

criminates against artifacts arising from internal ribosome

initiation sites and other events that can untether the

reporter from the target protein. Several tripartite protein

folding reporter systems have been developed based on

GFP [44]. Tripartite protein-based systems that rely on

antibiotic resistance markers enable an efficient ‘fold or

die’ selection for improved stability [2��,45]. The protein

of interest is fused between the split marker halves of an

antibiotic resistance gene. Improved folding of the

inserted protein will result in complementation of the

split marker halves and in turn, increased antibiotic

resistance. Foit et al. optimized folding of Immunity

protein 7 (Im7) in the Escherichia coli periplasm by apply-

ing a b-lactamase-based tripartite system. Interestingly,

mutants that enhanced the thermodynamic stability of

Im7 almost entirely mapped to surface residues involved

in binding to its natural binding partner E7, suggesting

that a stability-function tradeoff exists for this protein.

This b-lactamase-based tripartite system has been

applied to evaluate and further evolve the folding of

rationally designed proteins [46,47] and to identify small

molecule inhibitors of aggregation in vivo [48�].

Another tripartite selection also couples proper folding of a

test protein to antibiotic resistance but is based on an

entirely different principle: only folded proteins will be

efficiently exported to the periplasm by the twin arginine

transport (Tat) quality control system (Figure 1e). In this

approach [49,50,51��], the Tat signal sequence is fused to

the N-terminus of the protein of interest followed by

fusion to b-lactamase, which will only encode antibiotic

resistance if it is exported into the periplasm. The test

protein must be properly folded to be recognized and

exported by the Tat apparatus. This selection has been

used to improve the in vivo solubility of several proteins

[49,50,52,53]. A two-hybrid type version of this approach,

based on the ability of the Tat translocase to carry with it

non-covalently interacting proteins, has enabled the selec-

tion of protein variants with stronger protein-protein inter-

actions [54–56] and enhanced intracellular stability [57].

Evolving an improved folding environment
Protein folding is not exclusively dependent on the

protein sequence — the cellular folding environment is

also important. There has been significant interest in

engineering bacterial strains for the improved folding

and expression of recombinant proteins [58]. Folding

can be optimized by evolving the redox capacity to

facilitate disulfide bond isomerization [59,60]. A specially

designed strain called SHuffle has been generated that

contains several cleverly targeted alterations and shows

substantially improved folding of proteins with multiple

disulfide bonds [61�].

General chaperone overexpression can promote in vivo
protein folding [56]. It fosters protein evolution through
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buffering the destabilizing effect of thermodynamically

unfavorable mutations of folding intermediates

[58,62,63]. However, this approach is not aimed at

improving the folding of specific proteins and is not

broadly applicable given that even the generalist chaper-

one GroEL is estimated to interact with only about 10%

of proteins in E. coli [64,65]. Chaperone expression has

already been efficiently balanced in the cell by evolution,

perhaps explaining why chaperone co-expression is only

occasionally successful in improving the in vivo expres-

sion of specific proteins [66,67].

A more effective approach to improve in vivo folding may

be to specifically evolve the cellular environment for the

folding of a single protein of interest. Our group tested

this strategy by using the tripartite b-lactamase approach

in E. coli to select for host variants that improved the

folding of Im7 [68]. The selected variants overproduced

the periplasmic chaperone Spy. This protein, when puri-

fied, was shown to inhibit the aggregation and facilitate

the refolding of a variety of proteins including Im7.

As protein folding can be improved by overexpressing

client-specific chaperones, expression of a specifically

optimized chaperone should have a similarly beneficial

effect. It appears that the foldability of proteins and the

sequence of highly specific chaperones has co-evolved

[69]. Thus, it seems unlikely that these types of

chaperone–client interactions can be easily further opti-

mized. In contrast, promiscuous chaperones that normally

interact with many different binding partners can be

evolved to enhance their interaction with one specific

client protein. A detailed review about chaperone

enhancement has been published recently by Mack

et al. [70].

For example, Wang et al. evolved variants of the Hsp60

chaperone GroEL and co-chaperone GroES that showed

an enhanced ability to stabilize GFP in E. coli [6].

Unfortunately, these GroEL/S mutants were defective

in their ability to fold other proteins, reflecting the

specificity-promiscuity tradeoff that one is faced with

in the evolution of most chaperones.

Aponte et al. focused on improving another chaperone,

Hsp70 DnaK. The evolved chaperone showed several-

fold improved refolding ability for soluble, denatured

luciferase as compared to wild-type DnaK [71]. Their

selection system was based on a destabilized antibiotic

resistance marker that only confers antibiotic resistance in
vivo if properly folded (a variation on the schema illus-

trated in Figure 1a). Overexpression of effective DnaK

variants allowed the phenotype to be rescued.

Our group has isolated Spy variants that not only improve

the stability of unstable Im7 mutants, but other proteins

as well, implying that they may be generally more
www.sciencedirect.com
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effective [72�,73,74]. One interesting class appears to

work by enhancing the flexibility of a segment in Spy

whose flexibility is known to be important for Spy’s

action. Interestingly, the residue change found in one

of these ‘super Spy’ mutants is actually quite common in

evolution. It seems likely that the affected residue may

act as an evolutionary rheostat, tuning the flexibility of

this segment to fit the organism’s need for Spy’s substrate

diversity, balanced with its need to maintain some mini-

mal stability for Spy.

A comparable concept has been observed with potenti-

ated Hsp104 variants selected for increased disaggre-

gation activity. In this case as well, some mutants appear

to act by increasing the flexibility of the chaperone [75],

highlighting the importance of chaperone flexibility in

their action [76].

Conclusions and outlook
Insights from directed evolution studies highlight the

various and sometimes unexpected ways that protein

folding, the product of many years of evolution, can

actually be improved upon in vivo. Newly developed

fusion approaches that allow for the direct selection of

proteins with improved folding in vivo and direct ways of

screening for improved solubility present a diverse plat-

form for future creative endeavors.
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