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Chaperones are important in preventing protein aggregation

and aiding protein folding. How chaperones aid protein folding

remains a key question in understanding their mechanism. The

possibility of proteins folding while bound to chaperones was

reintroduced recently with the chaperone Spy, many years after

the phenomenon was first reported with the chaperones GroEL

and SecB. In this review, we discuss the salient features of

folding while bound in the cases for which it has been observed

and speculate about its biological importance and possible

occurrence in other chaperones.
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Introduction
Molecular chaperones are responsible for keeping proteins

in their folded form and preventing protein aggregation in

the cell [1]. Defects in protein folding can lead to myriad

diseases, including Alzheimer’s [2], Parkinson’s [3], and

Huntington’s disease [4]. Although much has been learned

in recent years, our current understanding of how chaper-

ones aid protein folding remains incomplete. Chaperones

have traditionally been divided into two categories: first,

ATP-dependent chaperones, which use ATP hydrolysis to

drive large conformational changes in the chaperone and

promote correct protein folding, and second, ATP-inde-

pendent chaperones, which bind to proteins that are at risk

of aggregating and later pass them to ATP-dependent
www.sciencedirect.com 
chaperones for folding [5]. However, these two categories

belie a third possibility—chaperones that aid protein fold-

ing without the assistance of ATP hydrolysis. In this

scenario, the client protein still folds to its native state,

but the chaperone continuously interacts with the client in

a passive manner during folding. Three prominent exam-

ples of chaperones that exhibit this phenomenon are

GroEL (in this case, without its co-chaperone GroES),

SecB, and the periplasmic chaperone Spy. Here, we review

what is known about this mechanism, speculate on the

potential for other chaperones to utilize similar mecha-

nisms, and evaluate its possible physiological role.

Folding while bound to GroEL and SecB
The bacterial chaperonin GroEL is the most extensively

studied chaperone to date. An essential protein, it aids

the folding of approximately 10% of the bacterial prote-

ome [1]. GroEL binds to and hydrolyzes ATP to drive

conformational changes that regulate client binding and

release [1]. One often overlooked aspect of GroEL’s

function, however, is that it can help proteins fold without

its co-chaperone GroES or ATP [6–8].

As early as 1993, Fersht and colleagues observed that

barnase, a model protein for folding studies, could fold

while continuously interacting with GroEL [7,8]. The

authors performed refolding experiments in the presence

and absence of the chaperone, and analyzed its effect on

barnase refolding rates. Intriguingly, they found that the

asymptote of the refolding rate constant at increasing

GroEL concentrations did not go to zero. This result

indicated that a significant portion of the refolding that

they observed occurred while barnase was continuously

bound by the chaperone (Figure 1a) [8]. Although the

authors noted that multiple other groups had found con-

flicting results with different client proteins, a then-

recent paper by the Buchner lab suggested that a similar

mechanism could be employed by a Fab fragment of a

monoclonal antibody [9]. Gray et al.’s interpretation,

which still rings true many years after these initial studies,

was that the interactions between chaperones and their

clients are likely different for different clients.

For the past two decades, studies on how GroEL func-

tions as a chaperone have focused on the ATP-dependent

aspects. However, a series of recent reports have revived

the question as to whether folding while bound to GroEL

may be an important feature of its mechanism of action.

In two papers, Libich et al. use thermodynamically unsta-

ble variants of the Fyn SH3 domain to analyze SH3
Current Opinion in Structural Biology 2018, 48:1–5
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Figure 1
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Currently known mechanisms of folding while bound to a chaperone. The sums of the forward and reverse rate constants for each conformational

change step, kex, are depicted by different colors (see strip gradient on right) and numbers above the double arrows in s�1. Binding and release

rate constants are not shown (gray arrows). Subscripts U, I, and F denote unfolded, intermediate, and folded states, respectively. The subscript

n denotes multiples bound to the chaperone simultaneously. Note that the proteins are not scaled to size, and that in the case of SecB and

GroEL, the clients are considerably smaller than the chaperones. (a) Folding of barnase (B) (left) and SH3 (right) while bound to GroEL (Gr) [6,10��].
(b) Folding of barnase (left) and MBP (right) while bound to SecB (Se) [18,20]. Note that GroEL concentrations were not saturating, and so the

folding while bound rate constants could be overestimated [18]; also, the release and binding of folded MBP to SecB was not modeled [20].

(c) Folding of Im7 while bound to Spy [26�].
folding in the presence of GroEL [10��,11�]. Using a

combination of relaxation-based NMR methods, relaxa-

tion-dispersion, and dark-state saturation transfer experi-

ments, they discovered that GroEL preferentially binds

the intermediate state of the protein. However, they

also found that the transition between the native and

intermediate states of SH3 occurs while bound to GroEL

and is even catalyzed by the chaperone, leading to rate

increases of 2–3 orders of magnitude (Figure 1a) [10��]. In

a subsequent report using a different variant of SH3, the
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authors observed that GroEL can interact with folded

SH3 in at least two distinct modes, one of which tumbles

at the same rate as GroEL, while the other is bound

more loosely [11�]. Although the populations of the

unfolded states were too low to observe directly, the

authors postulated that interconversion with unfolded

states while bound occurs at very low rates [11�]. Even

more unexpectedly, recent reports have suggested that

rhodanase, a client not thought to engage in folding while

bound to GroEL [12], can indeed fold to near
www.sciencedirect.com
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completion while attached to the chaperone surface [13�],
with rhodanase’s folding potentially regulated through

competition between folding interactions and interac-

tions with the chaperone surface [14].

Shortly after discovering that barnase could fold while

bound to GroEL, Fersht and colleagues began studying

the Escherichia coli chaperone SecB. In addition to its well-

known roles in membrane translocation [15], SecB can

serve as a general chaperone in the cytosol [16,17]. These

investigators analyzed barnase folding in the presence of

SecB and found that, like with GroEL, barnase could fold

while bound, albeit at a slower rate (Figure 1b) [18].

Subsequent studies showed that maltose binding protein

(MBP) can also fold while bound to SecB (Figure 1b),

although the immature form of the protein (preMBP)

cannot [19,20]. Like GroEL, the contrasting behavior of

different clients with SecB suggests that the mechanism

of folding while bound to the chaperone is not the same

with every protein.

Folding while bound to Spy
Spy is a periplasmic chaperone recently discovered to aid

folding in the E. coli periplasm [21]. The permeable

nature of the outer membrane of the periplasm has severe

consequences for the protein-folding environment, as

small molecules are free to enter and leave the periplasm

at will. As a result, periplasmic proteins are regularly

confronted with an array of chemical folding stresses.

Furthermore, ATP is not found in the periplasm, meaning

that any periplasmic chaperones necessarily operate with-

out ATP. Spy has been shown to protect cells from

tannins by acting as a molecular chaperone [21] and is

able to help proteins fold independent of ATP [21,22].

Recently, we investigated how Spy facilitates protein

folding without employing a regulated client release

mechanism, such as ATP-driven conformational changes.

In these studies, we examined the effects of Spy on

the folding pathway of the protein-folding model Im7

[23–25]. Our goal was to determine if Im7 release is

necessary for complete folding or if Spy can allow proteins

to fold while bound, as observed previously for GroEL

and SecB. To learn how Spy binding affects the folding

pathway of Im7, we first determined the binding affinity

and kinetic rate constants for Spy binding to the individ-

ual folding states of Im7, namely, the unfolded, interme-

diate, and native states. For these experiments, we used

mutants of Im7 that trap the protein either in the un-

folded or intermediate state but are still soluble, thereby

avoiding protein aggregation that would interfere with our

measurements. Using isothermal titration calorimetry

(ITC), we found that Spy binds to all three folding states

of Im7 in a 1:1 stoichiometric complex with micromolar

affinities, with the native state binding with the weakest

affinity [26�]. This observation was surprising given that

chaperones are generally thought to exhibit low affinity to
www.sciencedirect.com 
natively folded proteins due to the lack of exposed

hydrophobic surface [27]. We then investigated the

kinetics of complex formation between Spy and the

three folding states by monitoring the tryptophan fluo-

rescence of Im7. A fluorescence change was observed for

all three variants of Im7 when mixed with Spy. These

results confirmed our equilibrium ITC titrations demon-

strating that Spy binds to all three states and allowed us to

calculate the binding and release rate constants for all

three states of Im7 [26�]. Spy binding to all three folding

states suggested that Im7 folding may occur while con-

tinuously bound to Spy.

To test this hypothesis, we measured the refolding rate

constants of urea-denatured wild-type Im7 in the pres-

ence and absence of Spy. Although Im7 folding slowed

down when mixed with increasing concentrations of Spy,

it was not completely inhibited. A global fit analysis to

determine the simplest kinetic model revealed that Spy

does indeed allow Im7 to fully fold into its native state

while remaining bound to the surface of the chaperone

(Figure 1c) [26�]. The kinetic model also suggested that

Spy binding does not alter the folding pathway of Im7;

as in the absence of Spy, Im7 folds through the obligatory

intermediate state while bound to Spy. Folding in the

protective environment of the chaperone, however,

occurs with a kinetic penalty, as folding is slowed down

roughly 30-fold [26�]. Spy assists in the folding of client

proteins without the need for an external factor that

regulates client release because the lower affinity to

the native state stems from an increased off rate that

triggers preferential release from the native state [28].

Could folding while bound be a common
chaperone mechanism?
The finding that Spy allows Im7 to fold while bound

echoes the observations with GroEL and SecB. The

discovery of a third chaperone to use this mechanism

suggests that it could be more widely used than previ-

ously thought. It also raises related questions: Why might

a chaperone employ this strategy, what properties allow

proteins to fold while bound to chaperones, and how

many chaperones use this mechanism?

In our analysis of the Spy mechanism, we proposed that

the reason folding while bound could work in the absence

of ATP is that the client was able to fold while loosely

bound [29,30]. Given that the periplasm lacks ATP, such

a mechanism could serve a primitive folding function.

Notably, the physiological argument for Spy and the

cytosolic chaperones shares many features. Folding while

bound to GroEL and SecB was observed for proteins that

can thermodynamically drive their own folding. Although

these proteins may not require chaperones to fold under

normal conditions, the introduction of stress changes the

situation. Under at least oxidative protein folding stress,

the cytosolic level of ATP drops considerably [31,32],
Current Opinion in Structural Biology 2018, 48:1–5
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which presumably prevents ATP-dependent chaperones

from actively helping proteins refold via ATP-dependent

mechanisms [32]. It is under these conditions that the

ATP-independent chaperones are traditionally thought

to hold aggregation-prone folding intermediates in par-

tially folded states to be transferred to the ATP-depen-

dent chaperones when stress ceases. The examples cited

here, however, suggest an additional component: the

folding of the proteins ATP-independently while bound

to the chaperone. In the same fashion that Spy can allow

proteins to fold during stress in the periplasm, the GroEL

cavity could provide a semi-isolated environment for

proteins to fold during stress without the threat of aggre-

gation. Smaller proteins could conceivably take advan-

tage of this mechanism, remaining mostly folded and

bound until the stress ends. With the cessation of stress,

ATP binding can help to release clients, as previously

demonstrated [1]. Such a mechanism could prime the cell

for fast protein reactivation after stress.

It was commonly thought that proteins must be released

from chaperones in order to fold, raising the question as to

how folding can occur if the protein is continuously

bound. We and others have been able to derive principles

for how this process works for Spy based on follow-up

studies on Spy and Im7. Crystallography, NMR spectros-

copy, and biochemical experiments revealed that Im7

binds to Spy in a highly dynamic fashion [33–35]. Spy

binds to the unfolded ensemble of Im7 primarily through

hydrophobic interactions, but as Im7 folds, the hydropho-

bic interactions are replaced with electrostatic contacts

elsewhere on Spy’s surface [33–35]. These electrostatic

contacts enable Im7 to fold while staying in contact with

Spy, with only a small decrease in folding speed. Con-

ceivably, a similar mechanism could apply for barnase

folding while bound to GroEL or SecB, as at neutral pH,

barnase is oppositely charged to the GroEL cavity and to

SecB and similarly exhibits a decreased folding rate.

However, the mechanism of SH3 folding while bound

to GroEL is probably different, as GroEL catalyzes the

conformational change in SH3 as opposed to slowing it

down. The nature of these interactions therefore remains

an interesting area of future study.

The observation of protein folding while bound to Spy,

SecB, and GroEL leads one to wonder why this phenome-

non has not been observed with other chaperones. Notably,

thestudies described here all use folding models that do not

aggregate, allowing in-depth bulk equilibrium and kinetics

measurements. Similar analyses using comparable clients

have only been performed on a few chaperones. One such

study on trigger factor, using alpha-lactalbumin as the

protein client, stopped short of employing high enough

protein concentrations to test whether folding occurs while

bound to the chaperone [36]. New single molecule tech-

niques have recently opened up the possibility of measur-

ing this property with other chaperones and clients [37].
Current Opinion in Structural Biology 2018, 48:1–5 
Optical tweezers experiments found that trigger factor and

DnaK bind to multiple different protein folding states, the

prerequisite for folding while bound [38,39]. It has even

been proposed that folding while bound could occur on

Hsp70, given the large number of dynamic conformations

assumed by SH3 while bound [40]. How many chaperones

and clients exhibit this mechanism remains to be deter-

mined. Even chaperones such as CCT/Tric and Hsp90

feature surface heterogeneity reminiscent of Spy [41,42],

and thus could potentially also use a similar mechanism.

Conclusions
Recent investigations have reopened the possibility that

folding while bound to chaperones is a physiologically

important mechanism. Spy, GroEL, and SecB provide

three such examples, but other chaperones could con-

ceivably use a similar mechanism. This simple mecha-

nism could be evolutionarily ancient, with regulation

added later by ATP hydrolysis and cofactors. Based on

studies with GroEL, the ability to fold while bound likely

depends on the properties of the client as well as the

chaperone. With Spy, the properties of the chaperone-

client complex that favor this mechanism include favor-

able electrostatic surfaces to allow flexible binding to

folding intermediates and the native state, and hydropho-

bic surfaces to recognize unfolded substrates.
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