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Amyloid formation is a misfolding process that has been linked to age-

related diseases, including Alzheimer’s and Huntington’s. Understanding

how cellular factors affect this process in vivo is vital in realizing the dream

of controlling this insidious process that robs so many people of their

humanity. SERF (small EDRK-rich factor) was initially isolated as a fac-

tor that accelerated polyglutamine amyloid formation in a C. elegans

model. SERF knockouts inhibit amyloid formation of a number of pro-

teins that include huntingtin, a-synuclein and b-amyloid which are associ-

ated with Huntington’s, Parkinson’s and Alzheimer’s disease, respectively,

and purified SERF protein speeds their amyloid formation in vitro. SERF

proteins are highly conserved, highly charged and conformationally

dynamic proteins that form a fuzzy complex with amyloid precursors. They

appear to act by specifically accelerating the primary step of amyloid nucle-

ation. Brain-specific SERF knockout mice, though viable, appear to be

more prone to deposition of amyloids, and show modified fibril morphol-

ogy. Whole-body knockouts are perinatally lethal due to an apparently

unrelated developmental issue. Recently, it was found that SERF binds

RNA and is localized to nucleic acid-rich membraneless compartments.

SERF-related sequences are commonly found fused to zinc finger

sequences. These results point towards a nucleic acid-binding function.

How this function relates to their ability to accelerate amyloid formation is

currently obscure. In this review, we discuss the possible biological func-

tions of SERF family proteins in the context of their structural fuzziness,

modulation of amyloid pathway, nucleic acid binding and their fusion to

folded proteins.

Introduction

The principle of homology transfer states that proteins

showing recognizable sequence similarity very often

have closely related functions. This is of tremendous

practical value in biology because, once the function

of one member of a family is well characterized, this

function can be reasonably extrapolated to other

homologues throughout evolution. However, there are

a surprising number of protein families and protein

domains where no function has yet been clearly deter-

mined for any one member [1,2]. For many of these

proteins, text mining, machine learning, and bioinfor-

matic analysis provides some clues about how these

proteins are regulated, and how they interact with

other biomacromolecules. However, establishing their
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definitive role in the cell generally awaits experimental

analysis [3–14]. The 4F5 family of proteins in the pro-

tein families database [15] is one particularly intriguing

example. This family is broadly conserved, being

found in essentially all eukaryotic organisms

sequenced, its members are tiny proteins generally less

than < 10 kDa in size, at least partially disordered and

rich in charged residues with pI values > 10. One

name for this family is SERF which stands for small

ERDK-rich factor. Since the in vivo function of this

family is still unclear, we will continue using this

descriptive terminology until the families’ function(s)

are clearly established. An important hint of a role for

the 4F5 family of proteins first identified to be linked

to spinal muscular atrophy [16] came with the observa-

tions that C. elegans mutants in a member of this fam-

ily form many fewer foci in a polyglutamine disease

model and suppress amyloid proteotoxicity [17]. The

protein was thus termed MOAG-4 (Modifier of

aggregation-4) [17–23]. Subsequent work using the

human and yeast homologues showed that the protein

in vitro effectively accelerated b-amyloid and a-
Synuclein aggregation [18,23,24]. These processes are

respectively associated with Alzheimer’s and Parkin-

son’s disease, devastating age-related neurodegenera-

tive diseases that affect millions worldwide [25].

Understanding how host factors affect these diseases

might provide important clues toward their eventual

treatment. Recently, it has been found that SERF pro-

teins bind to RNA in vitro and localize to RNA-rich

membrane-less compartments such as nucleoli in vivo

[20]. The residues involved in RNA binding appear

similar to those involved in accelerating amyloid for-

mation, suggesting that the two functions may be

linked, but the nature of this link remains mysterious

[20]. Intriguingly, even though SERF family members

are among some of the tiniest proteins known, often

< 80 amino acids in total length, this protein appears

to be is split up into at least two domains, a highly

conserved at least partially disordered N-terminal

domain that contain the sequences implicated in RNA

binding and amyloid acceleration and a more helical,

less conserved C-terminal domain. This N-terminal

domain is independently found in a number of other

proteins, generally fused onto the N-terminus of the

protein although fusion to C-terminus or insertion into

the middle of some proteins is also observed. The very

short length of this domain (~ 30 residues) would seem

to preclude a catalytic function, perhaps suggesting

instead a function involved in binding or localization.

RNA binding appears to be in at least some cases suf-

ficient for localization of a protein to the nucleolus,

plasma membrane, nucleus, and cytoplasm [26,27].

One simple hypothesis is that these sequences are

involved in the localization to RNA-rich compart-

ments such as the nucleolus.

Classification of SERF family proteins
(4F5)

The SERF family is annotated in the Pfam database

under the name 4F5, and the protein family database

(PF04419) is large, consisting of ~ 3000 proteins which

are present in ~ 1300 eukaryotic species. Extensive

sequence data has currently been obtained for about

the same number of eukaryotes, so it appears that

SERF family members exist in the vast majority of

eukaryotic species. SERF-related proteins are classified

under at least over 40 different architectures. The most

common architecture (Group-1) in this family of pro-

teins (~ 60%, > 1700 proteins) has N-terminal domain

of about ~ 35 residues that is shared by all 4F5 family

members making it the signature N-SERF domain,

fused to a second less conserved C terminal domain

commonly ~ 25–45 amino acids in length (Fig. 1).

Only a few SERF proteins including human SERF,

yeast SERF and C. elegans MOAG-4 that belong to

group-1 (Fig. 1) have been functionally characterized

to date [17,18,20]. The remaining members of this

group and all other groups of SERF-related proteins

are almost completely uncharacterized. To date, only

two SERF family protein structures are reported. The

NMR model structure of the first SERF-like protein

identified, namely the C. elegans MOAG-4 from

group-1, shows a short helical central region (residues

45–70) flanked by disordered N- (residues 1–44) and

C- (residues 70–82) terminal regions (Fig. 2) [21]. The

N-terminal region is highly dynamic and characterized

by a transiently populated a-helix, this region is

known to mediate amyloid interaction and RNA bind-

ing. SERF binding partners reported to date such as

a-synuclein and a 21-mer RNA oligo have been shown

to form fuzzy complexes that apparently do not

greatly alter the dynamics and conformational state

that the N-SERF domain has on its own [20,21]. More

work is needed to determine the range of physiological

binding partners to SERF. The second major popula-

tion of SERF-related proteins is comprised of the N-

terminal SERF domain (N-SERF) connected to two

different types of zinc-binding domains, to make up

groups-2 and 3. Despite possessing two domains, the

proteins found in these subgroups are generally no big-

ger than SERF proteins of group-1 with an average

size of ~ 70 residues in length. Group-2 contains > 700

proteins with an N-SERF domain connected to a

highly conserved family of metazoan zinc-binding [28]
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proteins (zf-met2) mostly from plants with a variable

number of cysteine and histidine residues involved in

zinc coordination. These proteins are mostly unchar-

acterized with the exception of At2g23090 from Ara-

bidopsis whose NMR structure (PDB ID: 1WVK)

was solved as part of a structural genomics effort,

which shows it to be largely unstructured with a

short helical region spanning residues 62–71 (Fig. 2,

group-2). The third class of SERF-related proteins

(Group-3) which contains > 370 proteins are charac-

terized by a N-SERF domain fused to a Cys2His2
type zinc finger [29]. This class of zinc fingers are

best known when present in other proteins for their

roles in making DNA-binding proteins sequence-

specific, but this type of zinc finger can also have a

variety of other functions such as RNA binding or in

mediating protein–protein interactions [30–35]. The

SERF containing group-3 is very unusual within the

Cys2His2 zinc finger containing proteins in that it just

has a single zinc finger. The vast majority of proteins

that contain Cys2His2 zinc fingers have multiple

copies of these fingers to improve specificity or affin-

ity. The proteins in group-3 are mostly derived from

higher vertebrates including humans. The N-SERF

domain is also found in rare instances fused to a

variety of enzymes and other proteins in a variety of

positions, N-terminus, C-terminus or within the mid-

dle of proteins which range in size from ~ 200–2000

amino acids. As illustrated in Fig. 1, a conserved N-

SERF domain has been shown to be linked to dienelace-

tone hydrolase, an enzyme known to degrade haloaro-

matic compounds [36]. Four ribonucleotide reductase

enzymes are fused to a C-terminally located SERF

domain. In addition to this, several well-studied

enzymes, e.g., peptidylprolyl isomerase, dioxygenase,

ATPase GET3, glycerol-3-phosphate dehydrogenase,

ribonucleoside-diphosphate reductase, a-1,4-N-

acetylglucosaminyltransferase, glycogen synthase

kinase-3 and glucose-6-phosphate 1-epimerase contain

SERF domains. SERF fusions are present in a limited

number of instances within each of these protein fami-

lies. Since most family members lack SERF-related

domains, this suggests that these insertions have

occurred recently in evolution and that the SERF

domain fusion is unlikely to be absolutely essential

for these enzyme’s activities. The role of these SERF

domains in modulating these protein’s functions

remains to be explored; one intriguing possibility given

the known RNA binding activity of the SERF domain

is that these fusions are being used by the cell to localize

these various proteins adjacent to an RNA or within an

RNA-rich compartment. Another possibility, given the

known ability of SERF to modulate amyloid formation,

is that these domains play a similar role in modulating

the oligomerization status of the proteins to which they

are linked to.

Fig. 1. An overview of SERF family

proteins. The illustration shows six major

classes of SERF and SERF-domain linked

4F5 family proteins (Pfam: PF04419). The

4F5 family includes 37 additional groups

with distinct domain organization containing

either 1 or 2 proteins and are not shown in

the illustration. Readers are referred to

check the Pfam database (PF04419) to

retrieve information about these low

abundance SERF domains containing

proteins.
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SERF domain is highly charged

SERF family proteins, as reflected by their name

(small EDRK-rich factor), are highly enriched in

charged amino acids with an average pI > 10. As

illustrated in Fig. 2A, our bioinformatic analysis that

includes SERF motif sequences from all the subfami-

lies of SERF shown in Fig. 1 showed that the SERF

domain has a high charge distribution. For the pur-

poses of visualization of the variability of EDRK %

Fig. 2. Sequence logos of SERF and pup conserved motifs. The illustrated sequence logos are derived from 37 SERF and 23 pup motifs.

The total charge distribution (EDRK%) for these motifs derived from a large number of SERF (2935) and pup (1301) proteins known to date

are compared in the left bottom with the Y axis showing the number of proteins. The NMR model structure ensembles of C. elegans

MOAG-4 (BMRB entry: 27058) is shown bottom right). The dynamic N-terminal SERF and more folded C-terminal a-helical domains are

shown in blue-cyan and red-yellow, respectively.
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within a protein family we compared SERF family

members to a prokaryotic ubiquitin-like protein (Pup)

[37,38] used because it has a molecular size roughly

similar to that of the SERF domain and like SERF is

known to be at least partially disordered. SERF motif

derived from > 2900 proteins shows an average 29.3%

of EDRK amino acids which is similar to that of pro-

tein motif derived from ~ 1300 Pup proteins (Pfam:

PF05639) that showed an average 33.2% of EDRK.

Pup proteins were previously known to show a high

percentage of charged residues and are intrinsically dis-

ordered [39] (Fig. 2). More specifically, amino acid

decomposition in SERF motif yielded 4.2% glutamic

acid, 3% aspartic acid, 7.5% arginine and 14.4% lysine

making it particularly lysine rich, in comparison to the

pup domain which shows an average of 11.2% glutamic

acid, 13.7% aspartic acid, 4.2% arginine and 4.2%

lysine. The high percentage of charged residues in

SERF, in particular lysine, correlates to ribosomal

proteins comprising of higher % of arginine and

lysine residues (10–11%) as compared to non-

ribosomal soluble proteins that on average have 4.7

and 5.9%, arginine and lysine residues, respectively,

as calculated from over 500 species [40]. Importantly,

SERF-related proteins have a higher percentage of

positively charged amino acids as compared to acidic

amino acids, this is also a characteristic feature for

ribosomal proteins, DNA and RNA-binding proteins,

and zinc-finger proteins, in particular those with a

helix–loop–helix structural topology [41]. These posi-

tively charged residues are often involved in binding

to negatively charged phosphates in RNA, as a result,

RNA binding proteins have an average occurrence of

6.1 and 6.5 for lysine and arginine, respectively.

Whereas all other amino acids in RNA binding pro-

tein interfaces are found at an average occurrence of

< 4 [42]. Lysine and arginine are involved in the

protein-RNA binding interfaces, contributing an aver-

age of ~ 26% to this interface. This high occurrence

of lysine and arginine in SERF is consistent with the

recent observation that human SERF1a interacts with

RNA [20]. In general, non-ribosomal and soluble pro-

teins have equivalent percentages (around 5%) of

basic (Arg or Lys) and acidic (Asp or Glu) amino

acids. SERF is particularly lysine rich. This is intrigu-

ing, as it has been shown that lysine-RNA interac-

tions help drive liquid–liquid phase transitions [43]

and as discussed below, SERF appears to localize to

the nucleolus, an RNA rich liquid–liquid phase com-

partment. The distribution of these charged residues

in SERF proteins is relatively uniform across the full

length of the protein.

Physiological role of SERF: a tale of
two stories

SERF accelerates amyloid aggregation and

induce proteotoxicity

Misfolded proteins have several possible fates within a cell,

being degraded by proteases or becoming part of an aggre-

gate, an amyloid or a liquid–liquid phase transition com-

partment. It is still not very clear what determines these

fates, and specifically what drives some misfolded proteins

to self-assemble to form insoluble protein assemblies

called amyloids [44,45]. Over a hundred proteins with

intrinsic amyloid-forming propensities have been identi-

fied. These proteins in vivo tend to form highly ordered b-
sheet protein fibres that comprise amyloid deposits as the

end product [46,47]. As the amyloid formation process has

been tightly linked a number of age-related diseases such

as Alzheimer’s and Huntington’s diseases [48–52], it is of
great interest to determine how this pathway is controlled

in the cell, driven by the hope of eventually being able to

modulate amyloid formation in order to alleviate the dev-

astating effects of these diseases. Evidence suggests that

the amyloid assembly pathway in the cell is modulated by

several biomacromolecules including proteins and nucleic

acids and smaller substances such as metals, metabolites,

lipids, and synthetic molecules including nanoparticles

[53–62]. Understanding the underlying mechanism of

amyloid formation and how this molecular process hap-

pens in the crowded cellular environment is not covered

here but is the subject of several recent reviews

[52,53,63,64].

Proteins that interact with or affect the polymeriza-

tion of the Alzheimer’s disease-associated amyloid-

precursor proteins Ab-40 or Ab-42 include apolipopro-

tein E, scrapie prion protein (PrPSc), p75 neurotrophin

receptor (p75NTR), metabotropic glutamate receptors

(mGluR5), immunoglobin receptors (FccRIIb and

PirB), scavenger receptors (SCARA-1, SCARB-2,

MARCO, RAGE, and CD36), toll-like receptors

(TLR2 and TLR4), G-protein coupled receptors

(FPR2 and CMKLR1), proteolytic enzymes (IDE,

NEP, ECE1, ECE2, MMP2 and MMP9) and heat

shock proteins such as Hsp60, Hsp70, Hsp90, in addi-

tion to the SERF-related proteins (SERF1, SERF2,

and MOAG-4) which are the focus of this review [65–
72]. These macromolecules appear to regulate amyloid

deposition using different pathways that include prote-

olysis, transport, induction of apoptosis, alteration in

cellular localization, endocytosis, and in the case of

SERF, acceleration of amyloid aggregation. CRAM-1

a C. elegans protein that may be distantly related to
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SERF2 ortholog [19], small molecules [73,74], and

polyamines or amine derivatives [75–77] which like

SERF are highly positively charged have been also

shown to accelerate amyloid formation. Evidence is

accumulating that amyloids themselves are not likely

the toxic species but instead small oligomers that occur

along the pathway to amyloid [78,79]. One attractive

hypothesis, that has yet to be tested, is that by rushing

amyloid-prone proteins through the initial stages of

aggregation, SERF acts to reduce the concentration of

these toxic species.

The SERF ortholog MOAG-4 was initially identified

in C. elegans by its ability to regulate the amyloid

aggregation of a polyglutamine (polyQ) protein con-

struct that contains a 40-glutamine (Q40)-rich polypep-

tide fused to the yellow fluorescent protein (YFP) [17].

Point mutations, genetic deletion and RNAi silencing

of MOAG-4 are reported to suppress polyQ aggrega-

tion both in terms of the number of bright yellow foci

formed and in the reduction of the amount of SDS-

resistant amyloids present in lysates (Fig. 3) [17]. In

an Alzheimer’s model that expresses b-amyloid, the

MOAG-4 deletion was shown to substantially reduce

the population (> 40%) of paralysed worms (Fig. 3B)

[17]. Decline in motility was reported in a Parkinson’s

worm model expressing a-Synuclein and an Amy-

otrophic Lateral Sclerosis (ALS) model expressing a

mutant superoxide dismutase [80]. The deletion of

MOAG-4 significantly reduced the toxicity of a-
Synuclein, but not in worms expressing mutant SOD.

These pioneering C. elegans studies have been

extended to humans and yeast. Human neuroblastoma

(A)

(B)

(C) (D)

Fig. 3. SERF modulates amyloid aggregation and toxicity. (A) MOAG-4 in C. elegans is shown to induce the formation of protein amyloids

(red dots) in an amyloid disease model. Point mutations or a deletion of the gene for MOAG-4 (SERF) suppresses amyloid formation [17].

(B) MOAG-4 mutant strains reduce the proteotoxicity induced by overexpression of polyQ in C. elegans and SERF1a and SERF2 in human

neuroblastoma cells [17]. (C) SERF modulates b-amyloid aggregation kinetics in a fluorescence assay. When present in substoichiometric

quantities, SERF accelerates amyloid aggregation; however, when mixed with a high, likely non-physiological concentration of yeast SERF,

b-amyloid aggregation is inhibited [24]. (D) Mechanistic studies disclosed SERF forms a fuzzy complex with amyloid proteins and accelerate

their aggregation by acting on the primary nucleation step in the aggregation pathway.
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cells overexpressing human SERF1a or SERF2 were

identified to significantly increase the polyQ (Q74)

aggregation and Q74-induced cell death; on the con-

trary, RNAi silencing rescues the toxic phenotypes

through suppressing the Q74 aggregation (Fig. 3B)

[17].

Possible anti-aggregation and protective roles for

SERF

In contrast to SERF’s reported role in accelerating

amyloid aggregation, a recent study has reported a

protective role vis-�a-vis protein aggregation. Human

SERF2 protein, referred by these workers as Hero7,

along with other five proteins are shown to remain sol-

uble after high-temperature treatment and were thus

termed heat-resistant obscure (Hero) proteins [81].

Very different from the polyQ amyloid acceleration

effect shown for the C. elegans, SERF homologue

MOAG-4, GFP fused to SERF2/Hero7 was shown to

suppress TAR DNA-binding protein 43 (TDP-43)

aggregation in vitro and also suppress the toxicity in

tissue culture cells that express TDP43, a protein

involved in ALS and frontotemporal dementia. Moni-

toring Drosophila eye pigment is considered to be a

model system for neurodegenerative diseases [81].

TDP43 aggregation is linked to eye degeneration in

Drosophila, but co-expression with SERF2/Hero7 sup-

presses this degeneration arguing for a possible anti-

aggregation behaviour for SERF, when it is present in

high amounts [24]. Though this latter result that is

consistent with the anti-aggregation behaviour of yeast

SERF on Ab in vitro when it is present in high

amounts (Fig. 3C), it is still unclear if SERF reduces

or enhances proteotoxicity in vivo or if it does so in a

client selective fashion. In addition, the abundance of

SERF proteins varies significantly from organism to

organism and even cell line to cell line (https://www.

pax-db.org/) [24]. There can be several copies of

SERF-related proteins within one organism, humans

have SERF1a, SERF2 and ZNF706 for instance, but

in addition each of these genes can encode multiple

isoforms human SERF1a has two major isoforms and

SERF2 has four. These complications limit our current

understanding of SERF-related protein’s normal and

pathological functions.

Underlying mechanism of SERF-induced amyloid

aggregation

The mechanism of action of SERF proteins in driving

amyloid fibrillation has been studied independently by

two groups using different amyloid and SERF systems.

Falsone et al. [18] reported Human SERF1a protein

acts in vitro to accelerate the kinetics of aggregation of

an array of amyloid-forming proteins including a-
Synuclein, Htt, b-amyloid, and PrP. Structurally,

SERF1a was reported to be at least partially disor-

dered and dynamic as evidenced from circular dichro-

ism and NMR measurements. Fluorescence

experiments (Fig. 3C) using the amyloid-specific dye

(Thioflavin-T) revealed that a-Synuclein fibres are gen-

erated faster and in greater amounts in the presence of

an equimolar amount of SERF1a than in its absence,

aggregation of non-amyloidogenic proteins such as

actin, insulin and citric synthase was not affected by

SERF1a [18].

Charge generally plays an important role in amyloid

formation [79,82,83]. For example, neutralization of

amyloidogenic proteins by various means including

mutation, chemical agents and interfering biomolecules

accelerates fibrillation [82–85]. SERF is a highly

charged protein, so it is not surprising to observe its

electrostatically driven interaction with amyloidogenic

proteins [21,22]. Pras et al. [22], using a peptide array-

based screening approach, found that peptides binding

to SERF were enriched in the acidic residues (aspartic

acid and glutamic acid) and non-SERF binding pep-

tide fragments were enriched in the basic amino acids

arginine and lysine. A triple mutation in SERF2 that

neutralized K16, K17 and K23 substantially reduced

its binding to the peptide arrays. The highly charged

SERF1a is hypothesized to directly interact with the

C-terminal acidic region of a-Synuclein, partially

unfolding it and allowing it to self-associate [18].

Structural studies identified the existence of a similar

binding interface between the disordered C-terminus of

a-Synuclein and a transiently populated a-helix present

in the N-terminal 22 residues of C. elegans MOAG-4

[21]. Abolishment of SERF1a and a-Synuclein interac-

tion is seen when the basic amino acids in SERF1a,

i.e., K13/K16/K17 were simultaneously mutated to the

acidic residue glutamic acid, implicating a role of

charge in driving SERF1a and a-Synuclein interaction.

A role of charge–charge interaction in driving in vivo

amyloid aggregation by SERF has been demonstrated

by showing that SERF-driven protein aggregation was

reduced in lysine mutants in SERF2 and MOAG-4

[22].

The aggregation pathway, kinetics and mechanism

of SERF action were further studied by Meinen et al.

[24]. Yeast SERF was tested against two well-studied

human amyloid proteins a-Synuclein and b-amyloid.

This study shows that SERF primarily influenced the

aggregation pathway of amyloid formation by acceler-

ating primary nucleation (Fig. 3D) [24]. Native mass-
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spectrometry revealed that SERF acts on aggregation

primarily by interacting with monomeric a-Synuclein
populations either maintaining or increasing the degree

of disorder in a-Synuclein. SERF is shown to bind the

N- and C-terminus of b-amyloid or a-Synuclein,
respectively, that are characterized by negative charge

residues. A fuzzy complex state of SERF1a with a-
Synuclein was also proposed by Merle et al [23]. with

no significant alteration in the degree of a-Synuclein
disorder occurring upon complexion. Human SERF1

and a-Synuclein were verified to interact in human

neuroblastoma cells by tracking their colocalization

post transfection.

SERF: a nucleic-acid binding protein

Although the pathology-associated function of SERF-

linked species may well be related to its ability to facil-

itate amyloid formation, if SERF is important for

neural-specific amyloid formation, one might expect

brain-specific SERF knockouts to exhibit differences

in amyloid formation within neural tissues when amy-

loid prone proteins are expressed there. A mouse

SERF knockout is reported to alter intracellular Ab
accumulation and is shown to have a higher plaque

deposition when relative to a wild-type mouse [86].

Although minor differences in amyloid’s dye-binding

characteristics have been observed, change in Ab pro-

duction, or the Ab levels or processing of the amyloid

precursor protein have not been observed [86]. Whole-

body SERF knockouts in C57BL/6 N background

mice are perinatally lethal and show developmental

defects including behavioural and neurological deficits

in mice implying that SERF does play an important

role in development; however, the connection of these

observations to SERF’s role in amyloid formation and

pathology of neurodegenerative diseases is still unclear

[87]. What then is the normal physiological function of

SERF or the N terminal SERF domains that are

found fused to a variety of other proteins, predomi-

nately zinc-binding domains? One clue comes out of a

recent report that SERF binds to a 21-mer RNA with

relatively low affinity (Kd ~ 5 lM measured at 20 mM

NaCl) but fails to interact with a DNA molecule of

the same sequence or polyanions like heparin [20].

Other RNA molecules such as tRNA and yeast total

RNA were found to bind to SERF1a slightly more

tightly with affinities of around Kd ~ 1–2 lM. In com-

parison, site-specific RNA binding proteins such as

helicases, heterogeneous nuclear ribonucleoproteins

(hnRNP), eIF4, TDP-43, FUS and ribonucleoprotein

(RNP1 and RNP2) tend to interact much more tightly,

with affinities in the low nM range [88–90]. The physio-

logical significance or specificity of this SERF RNA

binding is unclear at this time. Interestingly, eGFP-

directed pulldowns using nuclei from SERF1a-eGFP

expressing cells are highly enriched in RNA-binding

proteins including proteins involved in ribosomal syn-

thesis and RNA splicing, DNA/RNA helicases,

mRNA splicing factors, mRNA processing factors,

translation initial factors, and ribosomal proteins [91–
102]. It seems unlikely that the tiny SERF protein is

able to specifically interact directly with all these dif-

ferent proteins; it is more likely that SERF simply

Fig. 4. Human SERF1a binding to RNA may

promote nucleolar localization, RNA

transportation and RNA-granule formation in

non-pathological conditions [20]. SERF1a is

shown to localize in nucleus and more

diffusely in cytoplasm and is postulated to

assist in RNA transport to nucleolus [20].

Under stress conditions SERF1a is

postulated to exit nucleus and exert its

pathological, amyloid-related function.

Introduction of N-terminal lysine mutations

is shown to abolish SERF’s RNA binding

and nucleolar localization function similar to

the effects these mutations have on SERF’s

ability to bind amyloid proteins [22].
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binds to the RNAs that are bound to these proteins.

SERF1a binding to RNA drives the formation of

phase-separated condensate or liquid droplets in vitro,

a property shared by a variety of other at least par-

tially disordered proteins, and colocalizes with RNA-

rich compartments in vivo such as the nucleolus, and

nucleus [26] which provides some evidence that the

RNA interactions observed in vitro may have physio-

logical significance (Fig. 4). SERF1a has been pro-

posed to transport RNA to the liquid-like nucleolus

(Fig. 4). Intriguingly, Lys17, a highly conserved lysine

that is required for SERF1a to facilitate amyloid for-

mation, when mutated to glutamic acid also strongly

affects SERF’s ability to interact with RNA [20], pro-

viding preliminary evidence that the two functions of

SERF might be linked. Both a-Synuclein and RNA

are shown to bind the same interface of SERF1 at

similar binding affinities. Is thus unclear under what

circumstances that SERF would interact with amyloid

precursors which are presumably less abundant than

RNA species. It has been proposed that though the

pathological function of SERF may be to facilitate

amyloid formation, the normal function of SERF may

have more to do with its ability to interact with and

possibly transport RNA [20]. This hypothesis is based

mainly on affinity measurements in vitro and in vivo

colocalization studies but both the pathological and

normal roles of this class of tiny well-conserved pro-

teins remain to be established.

Concluding remarks

SERF or 4F5 are a family of well-conserved tiny,

highly charged and at least partially disordered pro-

teins that are so far relatively poorly uncharacterized.

Though initially characterized as being involved in

accelerating amyloid formation, their normal in vivo

role which may involve RNA binding, remains

unclear. Independent of their actual in vivo function

the biophysical amenability of this tiny class of pro-

teins makes them an attractive model system to answer

several fundamental biological questions concerning

the role of protein charge and disorder in nucleic acid

and amyloidogenic protein binding, protein solubiliza-

tion, subcellular and nucleolar localization, and phase

separation.
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