Identity-by-descent filtering of exome sequence data for disease–gene identification in autosomal recessive disorders

Christian Rödelsperger1,2,3,†, Peter Krawitz1,2,3,†, Sebastian Bauer2,†, Jochen Hecht1,2,3, Abigail W. Bigham4, Michael Bamshad4, Birgit Jonske de Condor1, Michal R. Schweiger3 and Peter N. Robinson1,2,3,*

1Institute for Medical and Human Genetics, 2Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 3Max Planck Institute for Molecular Genetics, Ihnesiaße 73, 14195 Berlin, Germany and 4Department of Pediatrics, University of Washington, Seattle, WA 98195, USA

Associate Editor: Jeffrey Barrett

ABSTRACT

Motivation: Next-generation sequencing and exome-capture technologies are currently revolutionizing the way geneticists screen for disease-causing mutations in rare Mendelian disorders. However, the identification of causal mutations is challenging due to the sheer number of variants that are identified in individual exomes. Although databases such as dbSNP or HapMap can be used to reduce the plethora of candidate genes by filtering out common variants, the remaining set of genes still remains on the order of dozens.

Results: Our algorithm uses a non-homogeneous hidden Markov model that employs local recombination rates to identify chromosomal regions that are identical by descent (IBD=2) in children of consanguineous or non-consanguineous parents solely based on genotype data of siblings derived from high-throughput sequencing platforms. Using simulated and real exome sequence data, we show that our algorithm is able to reduce the search space for the causative disease gene to a fifth or a tenth of the entire exome.

Contact: peter.robinson@charite.de

Received on October 9, 2010; revised on December 13, 2010; accepted on January 11, 2011

1 INTRODUCTION

The identification of genes underlying Mendelian disorders for the past several decades has mainly proceeded by means of positional cloning to identify chromosomal linkage intervals followed by the sequencing of candidate genes (Collins, 1995). Efforts at disease-gene identification involving linkage analysis or association studies usually result in a genomic interval of 0.5–10 cM containing up to 300 genes (Botstein and Risch, 2003). Although computational methods can be used to prioritize candidate genes (Köhler et al., 2008), sequencing large numbers of candidate genes remains a time-consuming and expensive task, and it is often not possible to identify the correct disease gene by inspection of the list of genes within the interval. Recently, whole-exome sequencing, i.e. the targeted capture of protein coding exons followed by massively parallel, ‘next-generation’ sequencing (NGS), has been demonstrated as an effective approach to identify genes underlying Mendelian disorders using a small number of affected individuals (Biesecker, 2010).

Sequenced individuals typically have on the order of five to ten thousand variant calls representing either non-synonymous substitutions in protein coding sequences, alterations of the canonical splice-site dinucleotides or small indels (NS/SS/I) (Gilissen et al., 2010; Ng et al., 2009; Rios et al., 2010). Even after filtering out common variants using data from dbSNP, the HapMap project and related resources such as the 1000 Genomes project, the number of potentially disease-causing NS/SS/I variants can remain high if the exome of a single patient is considered in isolation. Many disease-causing mutations were completely unsuspected on the basis of previous knowledge (Altshuler et al., 2008), and software tools that aim at predicting the damaging effect of non-synonymous variants (Adzhubei et al., 2010; Kumar et al., 2009; Schwarz et al., 2010; Sunyaev et al., 2001) are currently unable to reliably distinguish between disease-causing mutations and other variants.

Groups who have performed disease-gene identification projects by exome sequencing (Choi et al., 2009; Hoeschen et al., 2010; Ng et al., 2009, 2010b) have developed analysis strategies based upon searching for potentially damaging rare variants found in the same gene in sets of multiple unrelated patients affected by the same Mendelian disorder. Although this strategy has been applied successfully in sequencing projects with two affected individuals (Gilissen et al., 2010; Lalonde et al., 2010) and occasionally even with a single affected individual (Pierce et al., 2010; Rios et al., 2010), in many cases multiple candidate genes remain after applying computational filters based on rarity or presence of a mutation in multiple affected patients (Hoeschen et al., 2010; Ng et al., 2009, 2010a, b). This means that additional analysis of multiple candidate genes or other procedures would often be needed to identify the disease gene following exome sequencing of single families with a Mendelian disorder.

We will refer to the above-described procedure for searching for a disease gene by exome sequencing in multiple unrelated patients as...
We will derive a posterior probability that indicates how likely the candidate mutations in exome sequencing projects comprising more than one affected sibling and additional to identify Mendelian disease positions that showed a conflict in IBD = 2 classification that would otherwise have been lost by mere intersection filtering.

2 METHODS

In autosomal recessive disorders, all affected children share two haplotypes that are identical by descent (IBD = 2). We model the exome sequencing results using a hidden Markov model (HMM), in which the meiotic process yielding individual genomes is statistically modeled as a Markov process. The goal of HMMs is to predict the most likely sequence of hidden states that best explain the observed data (Fig. 1A). Here, we use an HMM to predict the most likely sequence of IBD = 2 and IBD ≠ 2 states in chromosomal segments.

The goal of HMMs is to predict the most likely sequence of IBD = 2 and IBD ≠ 2 states in chromosomal segments.
on the basis of the observed exome sequences of two or more persons affected with a Mendelian disease. We note that the algorithm described here is an enhanced version of the algorithm recently used by our group to identify the disease gene in HPMR (Krawitz et al., 2010). For simplicity, we will describe the algorithm in terms of the affected siblings of unrelated parents but note that the algorithm is applicable to more complex pedigrees in which multiple affected relatives share the same two disease haplotypes, as well as to pedigrees of consanguineous unions in which affected parents share two haplotypes that are identical by descent.

2.1 Structure of the HMM model

We model the exome sequencing results using an HMM that can transition the Boolean random variables probabilities that are calculated for each variant call position on each from an inhomogeneous Markov process with position-dependent transition and on sex. In other words, the inheritance vectors arise during meiosis

\[\begin{align*}
\text{IBD} &= 2, \quad \text{IBD} \neq 2 \\
\end{align*} \]

observing genotypes at chromosomal position to observe identity by state (IBS), and our observations of the IBS status observable. Even in the absence of sequencing errors, it is only possible X_t \] determined by local probabilities described by T dn

many applications in linkage analysis including the Lander–Green algorithm (Lander and Green, 1987). As there are four possible combinations for each sib, the probability for the maternal coordinates of the inheritance vectors is IBD = 2 in

\[P(t \in D) = \left(\frac{1}{3} \right)^{t-1} \]

and

\[\frac{N}{D} \text{nd + dd} = 1 \]

The probability that the paternal coordinates of the inheritance vectors is IBD in n siblings at two randomly chosen positions is a function of the recombination rates \(\theta \)

\[P(\theta = \theta_t) = (1 - \theta_t)^2 + \theta_t^2 = (1 - \theta_t)^2 \]

This equation effectively averages the maternal and paternal recombination rates, so that T represents a sex-averaged transition matrix. With the identities mn + nd = 1 and dd + nd = 1 and Equations (4) and (5) the remaining transition rates nd, dd and nd are thus:

\[
\begin{align*}
\text{nd} &= 1 - \text{dd} \\
\text{mn} &= 1 - \frac{D}{N} \\
\text{dd} &= \frac{D}{N} \\
\end{align*}
\]

The recombination rates and the corresponding transition probability matrices for any two randomly chosen positions were interpolated from the deCODE recombination rate data (Kong et al., 2002) for hg18 as downloaded from the UCSC Genome Browser (Karolchik et al., 2009).
2.3 Emission rates with integrated genotyping errors

In autosomal recessive disorders, the disease gene must be located in an chromosomal region that is IBD = 2 in all affected siblings. However, as already mentioned, we are not able to measure IBD = 2 directly, but only whether the siblings were observed to have the same diplodiploid genotypes at a chromosomal region. If the observed genotypes differ from one another (not IBS*), denoted ~IBS*. On the one hand, it is possible that all affected siblings share the same sequence at a random chromosomal locus by chance. On the other hand, it is also possible that sequencing or calling errors obscure the true IBS~IBS status.

The emission probability for the hidden state IBD = 2 refers to the probabilities that we observe IBS* or ~IBS* at a locus that is IBD = 2. We will refer to the probability of a false genotype call at a single variant position as ε. Harismendy et al. (2009) estimated the variant accuracy of the three main NGS platforms to be on the order of 95% at high sequencing coverage, whereby variant accuracy was defined to be the proportion of ABI-Sanger validated sequence variants that are correctly called as homozogous or heterozygous variants on the basis of NGS reads alignments. Therefore, we take the variant calling error rate to be on the order of ε = 0.05. The probability that one actually calls a locus as identical by state, IBS*, in n siblings is thus approximately (1 − ε)ⁿ. Additionally, there is a small probability of multiple sequencing errors leading to genotype calls that are erroneous but still consistent with IBS*. For instance, if the true genotype is A/C in all n siblings, n or more sequence errors could cause the genotypes to be observed as A/G. The total probability of such events was estimated from our simulated datasets and is small enough that it can be neglected (ε < 10⁻⁵).

The probability that an IBD=2 genetic locus is IBS* depends on the variability of the genomic region in its specific population context. Harismendy et al. (2009) and were defined as IBS* for all variant positions that differed from the haploid reference sequence. In our context, we are thus interested in the probability that a called diplodiploid genotype of a chromosomal position that is IBD = 2 or IBD≠2 differs from the haplotype of the reference exome sequence and is IBS* in n siblings. We sampled these emission probabilities on our simulated exome datasets for n = 2 and n = 3 siblings.

2.4 Simulation of exome sequencing data

Genotype data of 30 HapMap trios of Central European descent was used to construct diplodiploid genomes of parental origin. For each such individual, the sex-specific meioses were simulated in the following way: the recombination rate between any two neighboring chromosomal positions that differed from the reference sequence was interpolated from the sex-specific physical map of the human genome (Matise et al., 2007). A haploid chromosome set of a gamete was simulated from the diplodiploid parental genome according to these recombination frequencies. Two such haploid chromosomal sets of a male and female gamete yielded the diplodiploid chromosomal set of each child. In total, 25,000 families consisting of n = 2, and n = 3 siblings were simulated. Variant calls in all siblings were restricted to exome CCDS coordinates (Pruitt et al., 2009) and were defined as genotypes differing from the haploid reference sequence hg18. Genotype calling errors were simulated by randomly changing the genotype call at any variant position with probability ε. Additionally, assuming a sequencing accuracy (number of concordant calls between ABI Sanger and an NGS platform) of 0.999 over the entire exome (Harismendy et al., 2009), false-positive variants were randomly distributed over the entire exome with a probability of 0.001 per nucleotide.

2.5 Classifying IBD = 2 regions

We denote the vector of the observed IBS* status for each called position as y = (y₁, ..., yₚ) and x = (x₁, ..., xₚ) is the vector describing the corresponding IBD = 2 and IBD≠2 states. ε can be estimated using the Viterbi algorithm adapted to a inhomogeneous Markov model (Durbin et al., 1998; Viterbi, 1967), which yields a maximum a posteriori estimate of the most likely path of hidden states:

\[x^* = \arg \max_x P(X = x | Y = y) \]

Viterbi’s algorithm delivers a single configuration of the states that jointly describe the observation best by classifying each position as either IBD = 2 or IBD≠2, but it does not provide a confidence of that classification. We therefore also report the marginal posterior probability for each chromosomal position t to be IBD = 2, that is \(P(X_t = 1 | Y_t = y) \). This probability can be calculated using the Forward/Backward algorithm (Durbin et al., 1998). The logarithmic ratios of the marginal probabilities of being IBD = 2 versus IBD≠2 are well suited for graphical representation: lodₜ = \(\log P(X_t = 1 | Y_t = y) / P(X_t = 0 | Y_t = y) \) (See Fig. 2C).

The full procedure has been implemented in a freely available R program that requires a minimal amount of memory and running time on a standard desktop computer. The program code as well as online tutorial can be found on our web site.

2.6 Whole-exome enrichment and sequencing

Genomic DNA was enriched for the target region of all human Consensus CDS (CCDS) exons (Pruitt et al., 2009) with Agilent’s SureSelect Human All Exon Kit and subsequently sequenced on a SOLiD version 3 sequencing platform with 50bp reads (family A and B) and on a Illumina Genome Analyzer II with 100bp reads (family C). The raw data of ~5 Gb per exome was mapped to the haploid human reference sequence hg18 and variants were called using the platform’s standard software pipelines.

3 RESULTS

The algorithm presented here infers the locations of IBD = 2 chromosomal segments from the exome sequences of siblings affected by an autosomal recessive hereditary disease without requiring sequence data from the parents. The disease gene must be located in such an IBD = 2 region.

3.1 Distribution of IBD = 2 regions over the exome

To evaluate the performance of our algorithm, exome data were simulated for families of two and three siblings based on 30 HapMap trios. In reference-guided resequencing, only variants that differ from the haploid reference sequence are called. In our simulation, only those chromosomal positions that show heterozygous or homozogous variants with respect to the haploid reference sequence are potential variant alleles in a child of those parents. We restricted our analysis to the 38 Mb of the exonic regions of the human genome as defined by CCDS (Pruitt et al., 2009). The mean number of such varying positions was in the order of 20 thousand per individual corresponding to roughly one variant position in every 1000 bp. The proportion of the genome that is IBD = 2 in two and three siblings is shown in Figure 2A. The mean fraction of IBD = 2 is 1/4 for n = 2 and 1/16 for n = 3 (Table 1), which is in agreement with the expected values, according to \(\left(\frac{1}{2} \right) ^{1/2} \). Thus, identification of IBD = 2 regions reduces the exomic search space exponentially in the number of siblings.

Also, the mean number of continuous IBD = 2 intervals decreases with the number of analyzed siblings. The distribution of IBD = 2 intervals is shown in Figure 2B for n = 2 and n = 3. The expected mean number of IBD = 2 intervals for n siblings can be derived as follows: the total sex-averaged map length of the human genome is 3790 Mbp (Matise et al., 2007). This translates to an expected number of roughly 38 recombinations per meiosis. Given the length
Exome filtering

Fig. 2. (A and B) Distribution of the IBD = 2 ratio and the number of IBD = 2 intervals. Exome datasets were simulated for 25,000 families consisting of $n = 2$ and $n = 3$ siblings using HapMap variant frequency data (International HapMap Consortium, 2007). (A) The mean proportion of the genome that is IBD = 2 is $\mu = 1/4$ for $n = 2$ and $\mu = 1/16$ for $n = 3$. (B) The mean number of intervals that are IBD = 2 is 38 in two and 14 in three siblings. (C) Robustness of IBD = 2 classification. The in silico exomes were simulated with a sequencing accuracy of 0.999 and a variant calling error rate of $\varepsilon = 0.05$. This yielded emission probabilities $e_{11} = 0.77$ and $e_{01} = 0.28$. Using these emission probabilities as HMM parameters in the IBD = 2 classifier, the simulated 3 sib exome data could be classified with a false negative rate of $fnr = 0.016$ and a false positive rate of $fpr = 0.095$ (triangle). Decreasing the emission probabilities increases sensitivity but lowers specificity. The default parameters for the classification of real exome datasets of three siblings, the emission probabilities were set to $e_{11} = 0.75$ and $e_{01} = 0.26$, to increase sensitivity above 99% for the expected error rates (filled circle). (D) Posterior probabilities of IBD = 2 classification. The logarithmic ratio of the posterior probabilities of being IBD = 2 versus IBD ≠ 2 are plotted for all classified variant positions on chromosome 1. A disease-causing mutation (red star) was identified in a IBD = 2 region of high posterior probability (Krawitz et al., 2010).

of the human genome, all recombination events may be assumed to occur at different positions in different meioses. We may thus expect that when comparing $n \geq 2$ diploid genomes, we will encounter $2n$ 38 transitions between chromosomal segments with differing inheritance vectors among the n siblings. The expected number of IBD = 2 intervals in n siblings is thus $38 \cdot 2n \left(\frac{1}{4}\right)^{n-1}$, which is in perfect agreement with our simulations (Fig. 2B).

3.2 Evaluation of classifying simulated datasets

Genotype calling was simulated by adding sequencing and calling errors at frequencies representative of NGS data. The binary input vector of IBS*/¬IBS* observations was generated on these simulated observation datasets and classified into IBD = 2 or not using our algorithm. The rates of false negative and false positive classification were analyzed depending on different sets of emission probabilities: $e_{01} \in [0.22, 0.33], e_{11} \in [0.70, 0.80]$. Using the mean emission probabilities from the simulated datasets of three siblings, $e_{01} = 0.28$ and $e_{11} = 0.77$ yielded classification error rates of $fnr = 0.016$ and $fpr = 0.095$ (triangle in Fig. 2C). The emission probabilities are a function of the error rates of the actual sequence data, and increasing error rates will decrease the probability of observing IBS* sequences for both IBD = 2 and IBD ≠ 2 states. The error rates of false positive and false negative classification in turn depend on the emission probabilities. Lowering e_{01} and e_{11} will increase the number of chromosomal positions that are falsely classified as IBD = 2, but on the other hand, it will decrease the number of chromosomal positions that are falsely not identified.
3.3 Classification of real NGS exome datasets

We first successfully used our IBD = 2 classifying algorithm to confine the exome search space in a non-consanguineous family of three siblings affected by HPMR (Krawitz et al., 2010). In this case, about a fifth of the exome was classified IBD = 2 (family A in Fig. 3), reducing the number of genes affected by protein changing mutations that were called in all three siblings and that established a candidate set under an autosomal recessive disease model from 14 to 2. The disease-causing mutation mapped to a region on chromosome 1 with a high posterior IBD = 2 probability as depicted in Figure 2D.

To test the robustness of our IBD = 2 classifier, we subsequently analyzed the exome datasets of two families of different population backgrounds that were sequenced on two different NGS platforms (Fig. 3). Family B is of Turkish ethnicity and family C is of Syrian ethnicity. In both families, a higher number of total variant (about 30 thousand each) was called, which is probably due to their population backgrounds. The haplotype reference sequence has a bias toward an European population background (International Human Genome Sequencing Consortium, 2004) and consequently variants that represent the major allele in the Syrian or Turkish population may be called as polymorphisms with respect to hg18. Regardless of the higher number of total variants called, the fraction of the IBD = 2 classified exome was 0.10 for family B and 0.07 for family C (Fig. 3) as expected from our simulations.

3.4 False positive variant calls and false positive IBD = 2 classifications

It is important to realize that current exome-capture and NGS technologies are not able to provide adequate and error-free coverage of the entire exome. Mutations in poorly covered genes can be missed by current analysis strategies if no or an insufficient number of mutant reads are sequenced. In projects in which the causative gene cannot be identified by exome sequencing, manual inspection or Sanger sequencing of poorly covered genes that are located in IBD = 2 regions and are thought to be good candidates may be a reasonable strategy.

Genes that have divergent calls for the affected sibs would be excluded from further analysis by the intersection strategy described in the Section 1. However, variants that are observed as ¬IBS but are located in IBD = 2 regions are likely to reflect a sequencing error (or rarely a de novo mutation in one of the sibs). Alternatively, the IBD = 2 classification could be false. To test this, we examined rare

Table 1. IBD = 2 classification of simulated datasets

<table>
<thead>
<tr>
<th></th>
<th>n = 2</th>
<th>n = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Percentage</td>
</tr>
<tr>
<td>Variant sites</td>
<td>21 150 (+1414) 100</td>
<td>22 034 (+1687) 100</td>
</tr>
<tr>
<td>IBS*</td>
<td>6615 (+867) 31</td>
<td>6842 (+735) 31</td>
</tr>
<tr>
<td>True IBD = 2</td>
<td>5260 (+553) 25</td>
<td>1494 (+457) 6.5</td>
</tr>
<tr>
<td>Classified IBD = 2</td>
<td>7754 (+1332) 36</td>
<td>2198 (+683) 10</td>
</tr>
</tbody>
</table>

The mean number (± 1SD) of variants called on an CCDS exome of European ethnicity as expected from HapMap data is in the order of 20K. The fraction of exome positions that are expected to show identical genotypes IBS* is 0.31. The mean fraction of the exome that is IBD = 2 is 1/4 in 2 sibs and 1/6 in 3 sibs. With a false negative rate of \(fnr < 0.01 \) about a third of the exome is classified IBD = 2 for 2 sibs and about a tenth for 3 sibs. Chromosomal positions classified as IBD = 2 but that are not IBS* are either misclassifications or are ¬IBS due to calling errors. Therefore, besides reducing the search space, IBD = 2 classification can help identify calling errors.
variants (not in dbSNP) that were observed to be ¬IBS but located within chromosomal regions classified as IBD = 2. There were 254 such variants in family A, 220 in family B and 53 in family C (Fig. 3). Each variant thus represents a conflict between the IBS* observation and the IBD = 2 classification. We picked 29 of these calls at random and validated their genotypes by ABI Sanger sequencing. Of total, 27 of these positions were validated as IBS*, indicating false NGS calls, and 2 were validated as ¬IBS*, indicating false positive IBD = 2 classification. The rate of false IBD = 2 classifications is thus in the expected false positive range for the parameters chosen for the analysis. Although most false NGS calls were found to be wild-type genotypes in the Sanger sequences, we also identified two positions as heterozygous in all samples, thus representing a candidate mutation that would have been missed under simple intersection filtering. Besides being a powerful filtering approach, IBD = 2 classification is thus also an effective approach to identify false NGS calls.

4 DISCUSSION

The analysis of chromosomal regions that are identical by descent is a fundamental tool in linkage analysis of pedigree data and in population genetics studies such as genome-wide association studies (Browning and Browning, 2010). In this work, we have presented a method for detection of IBD = 2 regions in the exome sequences of two or more related individuals affected with an autosomal recessive disease. In contrast to homozygosity mapping approaches designed for the analysis of children of consanguineous matings (Lander and Botstein, 1987), our procedure was developed to work for consanguineous or non-consanguineous families. With the recent advent of exome and genome sequencing for medical diagnostics, there is a pressing need for computational procedures that make maximum use of the information provided by the sequences for the rapid and correct identification of medically relevant mutations. Recent results have shown that even in populations such as Europeans that are well represented in dbSNP and HapMap, very high numbers of novel SNPs still remain to be found (Roach et al., 2010). This is likely to be even more the case in other population groups, and this will be an important issue given that many families affected by rare recessive syndromes come from small populations for which only scarce variational data are available.

The main drawback of filtering approaches that rely on a computational prediction of pathogenicity, as well as filtering approaches that focus on sets of variants that intersect in all analyzed samples of affected individuals (Ng et al., 2009, 2010b), is the possibility of false negative results. Not all disease-associated mutations are predicted to be pathogenic by current algorithms (Raymond et al., 2009), and not all disease-causing mutations are called to the correct genotype in all samples (Roach et al., 2010). The benefit of error-robust IBD = 2 classification is thus 2-fold: on the one hand, it is an effective tool for reducing the genomic search space, and on the other hand, it is an effective means for identifying sequencing errors.

The posterior probability computed by our algorithm additionally provides an estimator of how likely the classification is to be correct. The interpretation of these values is difficult. It has to be noted, that error probabilities, as well as IBD = 2 classification probabilities are often of a conditional nature. The constraint of being a rare variant increases the error probability tremendously. That is, a

variant call at a dbSNP130 position is much more likely to be a correct one, compared with a call at a non-dbSNP position. The same holds true for IBD = 2 classification errors. A limitation of our method is the fact that regions of high linkage disequilibrium in a population (Browning and Browning, 2010) are more likely to be falsely classified as an IBD = 2 region. In future work, we plan on analyzing how homozygosity runs as well as population-specific linkage disequilibria may be incorporated to further reduce error rates in IBD = 2 classification.

Funding: Bundesministerium für Bildung und Forschung (BMBF, project number 0313911), NHGRI (SR01HL094976), NHGRI (SR2HG004749), NHGRI (R2CHG005908), NICHD (R01HD048985).

Conflict of Interest: none declared.

REFERENCES

Cambridge, UK.

Cambridge University Press, Cambridge, UK.

Ng,S.B. et al. (2010b) Exome sequencing identifies the cause of a mendelian disorder Nat. Genet., 42, 30–35.