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Abstract

Genomic imprinting is an epigenetic mechanism that results in allele-specific expression (ASE) based on the parent of origin. It is known to
play a role in the prenatal and postnatal allocation of maternal resources in mammals. ASE detected by whole transcriptome RNA-seq
(wht-RNAseq) has been widely used to analyze imprinted genes using reciprocal crosses in mice to generate large numbers of informative
SNPs. Studies in humans are more challenging due to the paucity of SNPs and the poor preservation of RNA in term placentas and other
tissues. Targeted RNA-seq (tar-RNAseq) can potentially mitigate these challenges by focusing sequencing resources on the regions of
interest in the transcriptome. Here, we compared tar-RNAseq and wht-RNAseq in a study of ASE in known imprinted genes in placental tis-
sue collected from a healthy human cohort in Mali, West Africa. As expected, tar-RNAseq substantially improved the coverage of SNPs.
Compared to wht-RNAseq, tar-RNAseq produced on average four times more SNPs in twice as many genes per sample and read depth at
the SNPs increased fourfold. In previous research on humans, discordant ASE values for SNPs of the same gene have limited the ability to
accurately quantify ASE. We show that tar-RNAseq reduces this limitation as it unexpectedly increased the concordance of ASE between
SNPs of the same gene, even in cases of degraded RNA. Studies aimed at discovering associations between individual variation in ASE
and phenotypes in mammals and flowering plants will benefit from the improved power and accuracy of tar-RNAseq.
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Introduction
Genomic imprinting is an epigenetic phenomenon that results
in allele-specific expression (ASE) based on parent of origin.
Many imprinted genes are found in the nutritive tissue of
placental and marsupial mammals as well as flowering plants
(Tucci et al. 2019; Batista and Köhler 2020). Under the kinship
hypothesis, genomic imprinting evolved due to a conflict of
interest between the genes an offspring inherited from its
mother versus its father over the number of resources to be
allocated to the current offspring (Moore and Haig 1991). One
consequence of imprinting is that, for specific genomic regions,
the paternal and maternal genomes are not equivalent.
Evidence that both are required for normal development
derives from a series of mouse studies in the 1980s that
generated gynogenotes or androgenotes. In uniparental
disomies (UPD), nonequivalency was limited to certain
genomic regions that later were identified as clusters of
imprinted genes (Tucci et al. 2019). In humans, about 100
imprinted genes have been identified (Babak et al. 2015; Baran
et al. 2015). The highest proportion of imprinted genes were

expressed in embryonic, extra-embryonic and brain tissues
(Babak et al. 2015), and impacted neurological development,
placentation, and fetal growth (Peters 2014). Regulation of
imprinting is governed by imprinting control regions (ICRs)
through epigenetic mechanisms involving DNA methylation,
lncRNAs, histone modifications, and high-order chromatin
organization (Farhadova et al. 2019; Thamban et al. 2020).

High throughput sequencing technologies including RNA-seq
and DNA methylation sequencing have been widely used to study
genomic imprinting (Li and Li 2019). Transcriptome wide ASE is
determined by combining quantification of whole transcriptome
RNA-seq (wht-RNAseq) reads with identification of heterozygous
SNPs in DNA (Wang and Clark 2014). Animal studies gain
additional power from reciprocal cross breeding of closely related
strains, which produces higher SNP densities and phased
reference genomes that pinpoint the parent of origin of each
allele at every SNP. These crosses permit imprinting to be
distinguished from sequence dependent allelic expression bias
(Wang et al. 2013, 2019; Babak et al. 2015; Chen et al. 2016). In
humans, fewer SNPs are present than in crossbred animal
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models due to lower genetic diversity; nonetheless RNA-seq has
been successfully employed in many human tissues (Metsalu
et al. 2014; Hamada et al. 2016; Mozaffari et al. 2018; Zink et al.
2018; Jadhav et al. 2019; Pilvar et al. 2019). Frequently, the parent’s
genotype is not available in human studies and ASE is deter-
mined without the parent of origin of the bias (Babak et al. 2015;
Baran et al. 2015; Gulyás-Kovács et al. 2018).

To quantify ASE from RNA-seq, best practice protocols have
been proposed to accommodate several technical factors (Castel
et al. 2015). For example, appropriate alignment methods should
be used to reduce the tendency for mapping bias to favor the ref-
erence alleles (Stevenson et al. 2013; Van De Geijn et al. 2015). A
few studies showed that the accuracy of ASE quantified from
RNA-seq was especially limited when the read depth on the mea-
sured SNPs was insufficient (Fontanillas et al. 2010; Heap et al.
2010; Nothnagel et al. 2011), which could lead to low power to pre-
dict imprinting and poor agreement of ASE between the SNPs
from the same genes (Zou et al. 2019) and even from the same
exons (DeVeale et al. 2012).

The consensus is that most imprinted genes in humans and
mice have been identified with these genome-wide approaches
(Babak et al. 2015; Baran et al., 2015; Zink et al. 2018). However, the
well-documented population variability in imprinting and poten-
tial phenotypic effects are poorly understood (Zink et al. 2018;
Vincenz et al. 2020). Thus, there is a need to quantify ASE with
high precision in a population setting in a cost-efficient manner.
In a previous study, we used wht-RNAseq to measure ASE in 91
known imprinted genes in human term placentas collected from
a cohort in Mali. We showed that departures from mono-allelic
RNA expression were prevalent in many imprinted genes in this
cohort. The number of reads we obtained from imprinted genes
was limited because many highly expressed genes in placenta
are not imprinted and constituted a large fraction of the total
reads (Vincenz et al. 2020).

To overcome this limitation, we employed a tar-RNAseq ap-
proach to focus sequencing resources on the genes of interest.
We enriched RNA against a targeting panel designed to cover ex-
onic regions of 520 genes and quantified ASE on the informative
SNPs in this panel. We hypothesized that this tar-RNAseq dataset
could substantially increase the coverage of SNPs and genes of
interest and improve the accuracy of ASE determination, com-
pared to our previously published wht-RNAseq dataset. In order
to test this hypothesis, we performed the same ASE analysis and
compared the results for genes common to both datasets. For 75
genes, reported in the literature to be imprinted, we had at least
one well-covered heterozygous SNP in both our tar-RNAseq and
wht-RNAseq datasets. In support of our hypothesis, we show that
tar-RNAseq covered many more informative SNPs and greatly
improved the SNP read depth, which allowed us to measure ASE
at more sites in more genes. We also obtained two results that
were not expected by the deeper sequencing of a targeted ap-
proach. First, tar-RNAseq produced much higher concordance of
ASE between the SNPs from the same genes resulting in im-
proved quantification of the gene-level expression bias. Second,
tar-RNAseq in combination with rRNA depletion permitted effi-
cient ASE determination from degraded RNA whereas higher
RNA integrity was required for wht-RNAseq. These improve-
ments have enabled us to quantify the inter-individual variability
of ASE in our cohort with high resolution and accuracy, which
will be critical for querying associations between genomic im-
printing and growth phenotypes. Our results provide perfor-
mance metrics for this approach on samples collected in the

field, which can be applied to design ASE studies in other popula-
tions or species.

Materials and methods
IRB
Informed consent or assent was obtained from participants
depending on whether they were adults or children. Institutional
Review Boards (IRB) approval was obtained from the University of
Michigan IRBMED (HUM00043670) and from La Faculté de
Médecine de Pharmacie et d’Odontostomatologie (FMPOS) de
Bamako in Mali (No2016/68/CD/FMPOS).

Capture design
Sample collection, nucleic acid purification, and wht-RNAseq
were described previously (Vincenz et al. 2020). The capture re-
gion for tar-RNAseq included exonic regions for all genes with
reports in the literature indicating imprinted expression or allelic
methylation. The criteria for inclusion were nonstringent to avoid
the exclusion of imprinted genes at the cost of including some
nonimprinted genes. Furthermore, the targeted genes included
genes relevant to diseases that are of interest in this cohort (n ¼
67), and genes with consistent high placental expression in the
wht-RNAseq dataset (n ¼ 71, Supplementary Table S1). ERCC
spike-in controls were also targeted except for nine transcripts
that spanned the expression range. A genetic variation identified
in the cohort was taken into account by including 100 bp captur-
ing oligonucleotides containing the alternate allele for all SNPs
spaced more than 50 bp apart (n ¼ 4634). The targeting regions
were evaluated by the NimbleDesign Software and oligonucleoti-
des covering 2,797,406 bases were synthesized using the Roche
SeqCap RNA Developer platform (Supplementary .bed file).

Genotyping
Genotyping of F2 umbilical cord tissues (n ¼ 227) and F1 saliva
samples (n ¼ 189) was performed with targeted DNA sequencing
(Roche: SeqCap EZ Choice). The region genotyped for the tar-
RNAseq samples overlapped the region of the wht-RNAseq sam-
ples (1.4 Mb) and included more genes for a total of 3.9 Mb. The
analysis presented here is limited to the 75 genes that had
RNAseq data in both datasets. This subset of genes mapped to
0.58 Mb and 0.48 Mb of the regions genotyped in the tar-RNAseq
and the wht-RNAseq samples, respectively. Library preparation
and hybridization captures were performed at the University of
Michigan Advanced Genomics Core following the manufacturer’s
protocols.

Tar-RNAseq Library preparation and sequencing
The University of Michigan Advanced Genomics Core prepared
KAPA RNA HyperPrep Kit (Roche KK8540) libraries or KAPA RNA
HyperPrep with RiboErase Kit (Roche KK8560) libraries from
1000 ng, DNaseI digested, placental total RNA using conditions
adapted to each sample’s RNA quality. Initially, only samples
with poorly defined rRNA bands on Agilent traces (RIN < 2.5)
were depleted of rRNA with RiboErase prior to fragmentation.
Later, samples with intermediate RNA (RIN < 6.0) were also proc-
essed with RiboErase as the cost was not prohibitive.
Fragmentation conditions were established based on each sam-
ple’s Agilent Bioanalyzer DV200 quality metric which reflects the
percentage of RNA fragments above 200 nucleotides: DV200 < 55
at 65�C for 1 minute; 55>DV200 < 70 at 65�C for 4 minutes; DV200

> 70 and RIN < 3.8 at 85�C for 4 minutes; DV200 > 70 and
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RIN > 3.8 94�C for 4 minutes. ERCC exogenous RNA controls
(ThermoFisher Scientific 4456739) were included in all library
preparations according to the manufacturer’s guidelines. Six
indexed cDNA libraries were pooled for each capture reaction to-
taling 1 mg of cDNA. In cases where Kapa RNA HyperPrep plus
RiboErase libraries were multiplexed with Kapa RNA HyperPrep
(nonrRNA-depleted) libraries, the amount of the rRNA-depleted
library was adjusted to10-fold less than nondepleted RNA librar-
ies in these mixtures. Libraries were sequenced on an Illumina
NovaSeq (S4). RNAs with RIN � 3.8 and DV200 � 70 were generally
selected for KAPA RNA Prep Plus RiboErase library preparations.
In total, 236 RNA samples from 227 F2 individuals were se-
quenced.

Pyrosequencing
Allelic expression of select heterozygous SNPs was validated by
pyrosequencing. cDNA synthesis by RT was performed immedi-
ately after DNaseI digestion of placental RNA with the
ProtoScriptVR II First Strand cDNA Synthesis Kit (E6560, New
England Biolabs) and random hexamer primers. Qiagen PyroMark
Assay Design 2.0 software was used to design pyrosequencing pri-
mers and amplicons were generated with PyroMark PCR Kit
(978705, Qiagen) and sequenced using a PyroMark Q96 MD work-
station. Nineteen SNPs were pyrosequenced in 3 placentas. The
Pearson correlation coefficient for major allele frequency be-
tween RNAseq and pyrosequencing was 0.98 (P ¼ 9.6 � 10�19).

DNA sequencing analysis
Illumina adapter contamination and read ends with base quality
<20 were removed using Trimmomatic (Bolger et al. 2014). Reads
shorter than 36 nt after trimming were discarded. Trimmed reads
were aligned to hg38 reference genome using BWA (Li and Durbin
2009). Read deduping and base quality score recalibration were
performed using MarkDuplicates and BaseRecalibrator, respec-
tively, from GATK (DePristo et al. 2011; Van der Auwera et al.
2013). SNPs and short INDELs were called using HaplotypeCaller,
GenomicsDBImport, and GenotypeGVCFs from GATK. Resulting
variants underwent GATK-recommended hard-filtering for SNPs
and INDELs separately. Furthermore, we applied a series of filters
in order to remove less-confident genotypes that included the fol-
lowing: (1) variants with genotyping quality <20 or total read
depth <20; (2) variants falling in the regions with 100mer-align-
ability score <1 using the Umap multi-read mappability track
(Karimzadeh et al. et al. 2018); (3) variants falling in the ENCODE
Blacklist regions (Amemiya et al. 2019) or the genomic SuperDups
regions (Bailey et al. 2002); (4) variants with known alternate allele
mapping bias identified in a previous study (Panousis et al. 2014;
Castel et al. 2015); (5) variants that had more than one alternate al-
lele; (6) heterozygous SNPs whose reference allele frequency was
<0.2 or >0.8; (7) homozygous SNPs whose reference allele fre-
quency was >0.05; (8) homozygous reference sites whose reference
allele frequency was <0.95; (9) SNPs where >5% of reads supported
an allele that was neither reference nor alternate; (10) SNPs exhibit-
ing excess heterozygosity (GATK-calculated metrics ExcessHet
>54.69); and (11) SNPs having a nearby INDEL within 150 bp.
PhaseByTransmission in GATK was used to phase the variants in a
subset of the samples (45%) where both parents were genotyped.
The phased variants were filtered by requiring the transmission
probability score to be no lower than 20, and then combined with
the variants phased by HaplotypeCaller. Eight F2 samples were ex-
cluded from the final phasing results due to excessive Mendelian
violations indicative of nonpaternity or tube error.

RNA sequencing analysis
Previously published wht-RNAseq data (Vincenz et al. 2020) was
used with the allelic read counts recalculated using deduped
alignments, and the same workflow was also used for the analy-
sis of the tar-RNAseq data. Illumina adapter contamination and
read ends with base quality <20 were removed using
Trimmomatic. Reads shorter than 36 nt after trimming were dis-
carded. HISAT2 (Kim et al. 2015) was used to first build a new ref-
erence for each individual to incorporate the genomic variants
identified from the corresponding DNA sample, and second to
align the paired trimmed reads onto this reference with splice
sites from GENCODE GTF (Harrow et al. 2012). Alignments were
filtered and deduped using WASP (Van De Geijn et al. 2015) to re-
duce biases. Properly paired alignments with the highest map-
ping quality were selected as confident alignments and used for
downstream analyses.

StringTie (Pertea et al. 2016) was used to quantify the relative
expression at the transcript level. Alignments were split into
sense-strand and antisense-strand alignments. ASEReadCounter
from GATK was used to calculate allele-specific RNA read depth
in both strands at each heterozygous SNP of the paired DNA sam-
ple. SNPs were annotated with the coordinates of the exons to
which they mapped and overlapping exons in the same gene
were merged into one interval. SNPs covered by at least 10 reads
and mapped to unique genes and transcripts expressed at >0.1
TPM in a placental reference RNA-seq dataset were retained
(Majewska et al. 2017). The SNP level imprinting codes were gen-
erated after considering all genes affected by the SNP using VEP,
Variant Effect Predictor (McLaren et al. 2016). Targeted enrich-
ment was measured as one minus the off-target aligned base ra-
tio computed by CollectHsMetrics in GATK. Maternal
contamination was assessed and removed as previously de-
scribed (Vincenz et al. 2020).

For the comparison between tar-RNAseq and wht-RNAseq,
we only used the SNPs in the genes that carried at least one
SNP in at least one sample in both datasets and only paternally
expressed (PEGs), maternally expressed (MEGs), and complexly
expressed (CEGs) genes were considered, which limited the
comparison to 75 genes (Supplementary Table S1, column D).
SNP-level Pat-Freq was calculated as the ratio of the paternal
allele read count to the total read count. For gene-level Pat-
Freq, we summed the paternal allele read counts and total read
counts from all the SNPs of the gene and calculated their ratio.
To determine the ASE correlations between SNPs at the gene or
exon level, Pearson correlation coefficients were calculated
across all pairwise combinations of SNPs mapping to the same
gene or exon.

RNAseq library preparation cost evaluation
A comparison between the cost of wht-RNAseq and tar-RNAseq
(Supplementary Table S3) on a per sample basis was made to
weigh increases in sequencing depth and coverage against costs
of adding a target capture step to the library preparation method.
Library preparation service costs reflect pricing as of May 7, 2020
at the University of Michigan Advanced Genomics Core. All other
reagents reflect pricing at the time of purchase. The custom
Roche SeqCap Target Enrichment System employed for tar-
RNAseq has been discontinued but similar products are currently
offered by multiple suppliers (e.g., agilent.com, arborbiosci.com,
illumina.com, idtdna.com, qiagen.com, thermofisher.com, twist-
bioscience.com).
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Data availability
The data for the wht-RNAseq study are registered in dbGap as
“Placental Transcriptome and Stunting.” The wht-RNAseq data
and the corresponding genotypes obtained through targeted
sequencing, the FASTQ files with the sequences from RNAseq,
and the SNP level file with the allele-specific counts were depos-
ited in dbGaP as phs001782.v1.p1. The person level nonmolecular
data are available at the same site. The analogous data for
the tar-RNAseq will be made available through dbGaP once the
manuscript has been accepted.

Supplementary material is available at figshare: https://doi.org/
10.25387/g3.12251810.

Results
Congruent ASE values from targeted RNA-seq
and whole transcriptome RNA-seq
We compared allelic count distributions in tar-RNAseq and wht-
RNAseq datasets for a set of 75 genes that have been reported to
be imprinted in the literature and that contained at least one SNP
in both datasets. The SNPs in these datasets were derived from
227 and 40 term placentas in tar-RNAseq and wht-RNAseq, re-
spectively. For both datasets, exonic SNPs were identified by
DNA-seq of umbilical cord tissue. The total size of the regions
genotyped for the tar-RNAseq samples was 3.9 Mb yielding 3647
exonic SNPs, and for the wht-RNAseq samples was 1.4 Mb yield-
ing 2517 exonic SNPs that mapped to the 75 genes of interest
(Materials and Methods). SNPs were annotated as in our earlier
study (Vincenz et al. 2020) as PEGs or MEGs based on the parental
bias reported in the literature, and as CEGs, for genes with com-
plex imprinting patterns or conflicting literature data.

To verify the parent of origin for the expression bias, we
phased the SNPs in the subset of samples for which parental gen-
otypes were known and calculated paternal allele frequency (Pat-
Freq) (Figure 1A). By combining transmission- and read-based
phasing, we were able to phase on average 265 and 68 SNPs per
sample in 110 and 28 samples from tar-RNAseq and wht-
RNAseq, respectively. In both datasets, the distributions of Pat-
Freq in all three categories agreed with the previously reported
imprinting directions (Figure 1A). The interquartile range of Pat-
Freq in CEGs was smaller for tar-RNAseq than for wht-RNAseq.
To determine allelic bias for all data, phased and unphased, we

calculated ASE as j0.5 – (Reference reads/Total reads)j (Figure 1B)
(Castel et al. 2015). Both tar-RNAseq and wht-RNAseq data
showed the strongest allelic bias for PEGs, reduced allelic bias for
MEGs, and close to biallelic expression for many CEGs. The ASE
distribution in the tar-RNAseq data exhibited more biallelic ex-
pression in all groups (Figure 1B).

The agreement between datasets is further illustrated by the
correlation of gene-level Pat-Freq between tar-RNAseq and wht-
RNAseq data for the placenta that was assayed both ways (Figure
2). The mean Pearson correlation coefficient was 0.95 overall,
0.90 for PEGs, 1.00 for MEGs, and 0.58 for CEGs. Thus, the correla-
tion between the two datasets for gene-level Pat-Freq was strong.

RNA preparations from the same samples were processed
with or without RiboErase to assess the reproducibility of ASE
estimates with our workflows. The correlation of Ref-Freq be-
tween the samples in a pair was high (0.96, P < 2 � 10�303, n ¼ 2)
(Supplementary Figure S4). Thus, similar to the well-documented
high reproducibility of whole Exome targeting (Cherukuri et al.
2015), tar-RNAseq delivers repeatable ASE estimates and toler-
ates the inclusion of RiboErase. Furthermore, validation of a sub-
set of 19 SNPs in 3 samples revealed high correlation of Ref-Freq
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between ASE determined by pyrosequencing and tar-RNAseq (r ¼
0.98, P < 1 � 10�18), similar to what is observed using wht-
RNAseq in high RIN samples in mice (0.91, P < 1 � 10�16) (Perez
et al., 2015).

Targeted RNA-seq improved SNP coverage
Even though ASE measurements between the two datasets were
congruent, we obtained substantial improvement in SNP cover-
age from tar-RNAseq compared to wht-RNAseq. After removing
the SNPs that had fewer than 10 total read counts, wht-RNAseq
was able to cover only 79 (or 20%) of the SNPs, on average, across
the samples, while tar-RNAseq covered up to 337 (or 80%) of the
SNPs (Figure 3A) in the 75 genes that were common between the
two datasets. We observed the same pattern when analyzing all
SNPs in each dataset (Supplementary Figure S1). The improve-
ment in coverage was achieved for tar-RNAseq with a mean of
only 80 � 106 reads per sample (SD 52 � 106)—far less than the
mean number of reads per sample of 269 � 106 for wht-RNAseq
(SD 110 � 106). Stated in terms of the number of total SNPs cov-
ered per billion bases sequenced, tar-RNAseq produced 54 SNPs/
109 bases while wht-RNAseq delivered only 2 SNPs/109 bases.
This improved use of sequencing resources was expected from
the enrichment of the RNA fragments of interest. In our tar-
RNAseq dataset, the percentage of bases that aligned to the tar-
geted region was 85%, on average, indicative of successful enrich-
ment (Materials and Methods). In principle, increasing
sequencing depth could overcome the coverage deficits of wht-

RNAseq. We calculate that the per sample cost would increase
35-fold, which for most projects is prohibitive especially in the
context of a population study.

While both datasets had at least one SNP in the 75 genes ana-
lyzed here, each gene had informative SNPs in more samples in
tar-RNAseq than in wht-RNAseq. Specifically, after quality filtra-
tion, 24 genes per sample had at least one SNP in wht-RNAseq
with each gene carrying, on average, 3 SNPs; these values in-
creased to 55 genes with 6 SNPs per gene in tar-RNAseq (Figure 3,
B and C). In addition, the average total read count for the final
SNPs in tar-RNAseq was four times higher than in wht-RNAseq
(Figure 3D). In sum, more informative SNPs were obtained by tar-
RNAseq than wht-RNAseq, which allowed us to measure the in-
ter-individual variability of ASE in more genes.

Arguably, the comparison could be confounded by the fact
that different samples were analyzed between our tar-RNAseq
and wht-RNAseq datasets as only one individual was sequenced
by both technologies. However, it is unlikely that the difference
in the samples between the two datasets was responsible for the
large difference in the SNP coverage described above. Three sam-
ple-level QC metrics that could contribute to SNP coverage are
number of genotyped SNPs, RIN, and maternal contamination.
We show that RIN and maternal contamination did not differ sig-
nificantly between the two datasets (Supplementary Table S2).
We show that the choice of sequencing approach is more impor-
tant than the number of genotyped SNPs through linear regres-
sions in which the dependent variables were five different

●●

●

●

●

●

●

0

100

200

300

400

C
ou

nt
s 

of
 S

N
P

s 
pe

r 
sa

m
pl

e

A

●●

●

●

●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●

●●

●●

●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●●●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●●●●●●●●

●

●●

0

5

10

15

20

C
ou

nt
s 

of
 S

N
P

s 
pe

r 
ge

ne

B

●●

●●
●

●

●

0

20

40

60

C
ou

nt
s 

of
 g

en
es

 w
ith

 a
t l

ea
st

 o
ne

 S
N

P C

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●●●●
●

●
●

●
●●●
●

●

●

●

●
●

●

●

●●

●

●
●●●
●
●
●
●●

●
●

●

●

●●
●
●●●

●

●

●

●

●●
●

●
●
●
●

●

●

●
●

●
●

●

●●
●●

●

●

●

●

●
●●

●
●
●●
●●
●

●

●●

●

●●●

●

●

●
●
●●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●●

●●
●●

●

●

●

●●

●

●

●

●
●

●

●
●●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●●
●

●
●
●

●●

●

●

●
●

●
●●
●
●
●

●

●

●

●

●

●

4

8

12

16

R
ea

d 
co

un
ts

 a
t S

N
P

s 
(lo

g2
)

D

  wht−RNAseq       tar−RNAseq      

Figure 3 Comparison of SNP coverage between wht-RNAseq and tar-RNAseq. The violin plots show the distributions of (A) the counts of SNPs per
sample, (B) the counts of SNPs per gene, (C) the counts of genes with at least one SNP, and (D) the read counts at SNPs. Orange and green colors denote
wht-RNAseq and tar-RNAseq, respectively.

W. Wu et al. | 5

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab176#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab176#supplementary-data


measures relevant to SNP coverage and the independent varia-
bles were tar-RNAseq (vs wht-RNAseq) and counts of genotyped
exonic hetSNPs per sample (Supplementary Figure S3). Tar-
RNAseq yielded a huge improvement in SNP coverage relative to
wht-RNAseq at all observed numbers of genotyped SNPs.
Moreover, even in the samples that had about 500 hetSNPs using
wht-RNAseq, the SNP coverage was lower than in the samples
that had about 300 hetSNPs using tar-RNAseq (Supplementary
Figure S3). The mean number of genotyped SNPs was 418 for tar-
RNAseq and 386 for wht-RNAseq, but evidently this difference
could not underlie the improvement in SNP coverage using tar-
RNAseq. In sum, our findings are not sensitive to the difference
in the samples used in the two sequencing approaches.

Targeted RNA-seq improved concordance of ASE
from the same genes
Low SNP read coverage can limit the concordance of ASE between
the SNPs from the same gene (Zou et al. 2019). To determine the
relationship between read coverage and concordance of ASE in
our data, we calculated Pearson correlation coefficients for the
pairwise combinations of SNPs mapping to the same gene in each
sample. The mean correlation coefficient was 0.54 for wht-
RNAseq and 0.90 for tar-RNAseq. At every read depth threshold,
including the highest, the concordance was always much stron-
ger in tar-RNAseq than in wht-RNAseq data (Figure 4). The con-
cordance of the SNPs from the same exon showed the same
pattern (Supplementary Figure S2). In wht-RNAseq, deduping im-
proved SNP concordance but not to the level observed with
deduped tar-RNAseq. Thus, hybridization capture improved this
variable well beyond what would be expected from the increase
in sequencing depth alone.

Targeted RNA-seq in combination with rRNA
depletion permitted assessment of ASE even in
degraded samples
RNA degradation contributed to the reduced SNP coverage in the
wht-RNAseq samples and inefficient rRNA removal is a factor
known to interfere with the complexity of sequencing libraries
(Stark et al. 2019). In tar-RNAseq, ribosomal RNA should, in prin-
ciple, have been removed by the hybridization reaction. However,
we were able to rescue samples having low RIN by using rRNA de-
pletion to improve SNP coverage in tar-RNAseq. Thus, we ob-
served a strong positive correlation between RIN and SNP
coverage fraction in the wht-RNAseq but not in the tar-RNAseq
data (Figure 5). The combination of tar-RNAseq and rRNA deple-
tion routinely produced high SNP coverage in samples with sub-
stantial RNA degradation (DV200 �50%).

Targeted RNA-seq improved the measurement of
relative expression
Although the focus of our efforts was on ASE and not relative ex-
pression (Perez et al. 2015), we compared the performance of the
two approaches with particular regard to degraded samples. As
expected, compared with wht-RNAseq, tar-RNAseq yielded
higher TPM values as the genes of interest constituted a larger
fraction of the total sequenced transcripts (Supplementary Figure
S5). Expression measurements were more consistent for low RIN
samples from tar-RNAseq than for wht-RNAseq (Supplementary
Figures S5A and S6B). Below a RIN of 3, many genes were
expressed at TPM close to 0 in the wht-RNAseq dataset—visible
as a transition in the heat maps of gene expression versus RIN
(Supplementary Figure S5, A and B). No such transition was seen
for the tar-RNAseq heat map and the relative expression of

highly or lowly expressed genes was not influenced by RNA integ-
rity. These observations indicate that tar-RNAseq produced more
reliable measurements of expression and was less affected by
sample quality.

Discussion
ASE analysis has been performed on a variety of wht-RNAseq
datasets including simulated sequences (Raghupathy et al. 2018),
RNA from cells cultured in vitro (Lappalainen et al. 2013 2013;
Gutierrez-Arcelus et al. 2013), and RNA from inbred mice (Perez
et al. 2015). In humans, ASE analysis of RNA from many tissues
was performed as part of the GTEx project (Babak et al. 2015;
Baran et al. 2015) (https://gtexportal.org/home/). Placentas were
not included in GTEx, but human placental tissue has been ana-
lyzed by other groups using wht-RNAseq and analyzed for ASE
(Hamada et al. 2016; Hanna et al. 2016; Pilvar et al. 2019). The goal
of these studies in regard to ASE was to identify imprinted genes
through a transcriptome wide approach and to categorize them
by imprinting status. The ENCODE study aimed to go beyond cat-
egorization and pursued a more quantitative approach that
entailed calculation of the significance values for the parent of
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origin effect for individual SNPs (Zink et al. 2018). In contrast with
the foregoing studies, our goal was to generate quantitative
gene-level ASE estimates with high precision and accuracy. Such
estimates are required for investigation of the functional signifi-
cance of inter-individual variation in ASE (Vincenz et al., 2020).

Toward that end, we compared allelic count distributions in
tar-RNAseq and wht-RNAseq datasets for a set of 75 genes that
had been reported in the literature to be imprinted and that had
at least one SNP in both datasets. We found that the two methods
produced similar allelic expression biases. However, wht-RNAseq
was able to cover only 20% of the SNPs, on average, across the
samples, whereas tar-RNAseq covered 80% of the SNPs, with
improvements in SNP coverage of 27-fold per billion bases se-
quenced. In humans, the paucity of SNPs makes it imperative to
cover all the SNPs in the genes of interest. Using tar-RNAseq, we
were able to obtain sufficient coverage at four times as many
SNPs in twice as many genes in a sample, on average. Moreover,
the mean number of SNPs per gene doubled, and the mean read
depth per SNP increased fourfold, without increasing library
preparation costs, making tar-RNAseq more cost effective
(Supplementary Table S3). A complete dataset would have suffi-
cient reads at every SNP in every person, which is a goal that was
more closely achieved by tar-RNA seq than by wht-RNAseq.
Having a richer dataset will enable us to determine the interindi-
vidual variation in ASE for more genes across more individuals,
so that we can better query the association between genomic im-
printing and growth phenotypes in our cohort study.

Maternal contamination is a potential confounder unique to
placental tissue and is a limiting factor in molecular analyses
(Konwar et al. 2019). The degree of contamination can be directly
determined from the RNAseq data by quantitating nonfetal
alleles (Hamada et al. 2016). The greater SNP sequencing coverage
and depth of SNPs in tar-RNAseq enabled us to quantify maternal
contamination for each gene in each placenta with greater
sensitivity.

Importantly, targeted RNA-seq had some additional nonanti-
cipated benefits. Gene-level ASE estimates are imprecise due to
poor concordance of SNP-level ASE over a gene. Some

discordance between the SNPs can be due to differing imprinting
status between the transcript variants from the same gene (Perez
et al. 2015), but poorly identified technical variables also contrib-
ute (Babak et al. 2015; Baran et al. 2015). It is known that selecting
SNPs with higher sequencing coverage leads to improved concor-
dance (Zou et al. 2019), which we also saw in wht-RNAseq.
Removing PCR duplicates further improved concordance but not
nearly to the levels achieved by tar-RNAseq. In contrast with rel-
ative expression analyses, ASE is only based on the read count
ratio between the alleles and removing read duplicates reduces
the technical noise. The greatly improved concordance of SNPs
strongly argues in favor of using tar-RNAseq for applications that
require accurate gene-level ASE estimates. In future efforts, it
might be possible to gain additional power for SNPs with low read
depth by using unique molecular indices (UMI) (Islam et al. 2014)
in conjunction with tar-RNAseq as there are reports that PCR
duplicates can affect ASE quantification in such circumstances
(Castel et al. 2015).

Degraded RNA is found in many human samples, including
term placentas, post-mortem samples of stomach and kidney,
and formalin-fixed paraffin-embedded (FFPE) samples (Walker
et al. 2016; Zhang et al. 2017; Konwar et al. 2019) (https://gtexpor
tal.org/home/). We were successful in combining random primed
library preparation with rRNA depletion to generate libraries
from degraded RNA for tar-RNAseq. Little to no loss of coverage
was observed with degraded RNA from most samples, and we sal-
vaged samples with DV200 as low as 50%. The critical role for effi-
cient rRNA depletion in preparing libraries from degraded RNA is
well known (Stark et al. 2019) and is in part due to the inability to
target the poly(A) tail in degraded samples. The hybridization re-
action with the capturing oligos should, in principle, be sufficient
to remove rRNA. However, our results show that in degraded
samples, removal of rRNA prior to library preparation improved
SNP coverage. Improved data quality has previously been
reported for gene expression analysis in FFPE samples with RNA-
seq and rRNA depletion (Zhao et al. 2014) or when capturing the
whole exome (Pennock et al. 2019). However, to our knowledge,
our study is the first to report the unexpected synergy between
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rRNA depletion and tar-RNAseq. It was also more efficient and
cost effective to focus on a targeted region of only 4 Mb instead
of the human exome of 64 Mb (the total length of Roche
SeqCap EZ Exome Probes). Tar-RNAseq also improved relative
expression estimates for degraded samples. Importantly, we
document that cost savings is only one of the advantages of
tar-RNAseq and other synergies may become the predominant
motive to use this technology as sequencing costs continue
to fall.

A strength of our study is that the placenta samples were
collected from healthy women who were of similar ages and
belonged to the same cohort and ethnicity, using a standard-
ized protocol. Moreover, we compared the same 75 genes using
both wht-RNAseq and tar-RNAseq. A limitation of our study is
that only one sample was sequenced using both methods.
However, we examined three parameters that could poten-
tially differ between samples and influence data yield
(RIN, maternal contamination, number of genotyped SNPs)
and showed that our conclusion about the superiority of tar-
RNAseq was not sensitive to any of these parameters. We also
note that library preparation reagents for wht-RNAseq libraries
and tar-RNAseq libraries were from different manufacturers.
Although we did not try to estimate ASE in relation to the
cellular composition of the fetal compartment of the placenta,
a recent single cell study showed that placental samples col-
lected using a protocol similar to ours were mostly comprised
of trophoblast and syncytiotrophoblast cells of the fetus
(Yuan et al. 2020).

In conclusion, we compared tar-RNAseq and wht-RNAseq in a
study of ASE in 75 known imprinted genes in placental tissue col-
lected from a healthy human cohort. Tar-RNAseq covered more
SNPs of interest and at greater depth. In previous research on
humans, discordant ASE values for SNPs of the same gene have
limited the ability to accurately quantify ASE. We show that Tar-
RNAseq improved the reliability of ASE detection by greatly in-
creasing the concordance of ASE measurement between the SNPs
from the same gene. In combination with rRNA depletion, tar-
RNAseq performed well even in cases of degraded RNA. The
advantages of tar-RNAseq go beyond the savings on sequencing
costs alone and include higher accuracy in ASE estimates in sam-
ples with varying RNA quality, as is typical for field collections.
Targeted sequencing will benefit the study of associations be-
tween individual variation in ASE and phenotypes in humans or
in other species where growth phenotypes are of interest, such as
domesticated animals. The data we presented here originated
from field samples and provide metrics to inform the design of
such projects.
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