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Stress-energy tensor in soluble models of spherically symmetric charged black hole evaporation
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We study the decay of a near-extremal black hole in Ad®lated to the near-horizon region of
(3+1)-dimensional Reissner-Nordstnospacetime, following Fabbri, Navarro, and Navarro-Salas. Back re-
action is included in a semiclassical approximation. Calculations of the stress-energy tensor of matter coupled
to the physical spacetime for an affine null observer demonstrate that the black hole evaporation proceeds
smoothly and the near-extremal black hole evolves back to an extremal ground state, until this approximation
breaks down.
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[. INTRODUCTION which have exact conformal field theory descriptions. At
least at weak string coupling, it can be verified that the decay
The fate of near-extremal black holes during quantumback to the extremal state is regular.
evaporation has been of much interest because they presentTo investigate this issue, we study the behavior of the
an excellent laboratory for investigating the information stress-energy tensor for a freely falling observer during the
paradox. These black holes possess a stable ground sta@aporation process. We calculate this and other observables
name|y the extremal black hole, and are able to avoid Somf:pr an extremal black hole after a shock perturbation of mass
of the problems which plague uncharged black holes durindg sent in. In particular, we look for signs of instability and
evaporation. For example, in the well-studied linear dilatonenergy buildup behind the inner and outer horizons. We will
black hole model of Callan, Giddings, Harvey and Uuse the semiclassical approximation and verify its validity
Strominger(CGHS [1], as the black hole evaporates away, close to the end point of evaporation, where it breaks down
the outer horizon encounters a naked singuldéiflyCharged ~ according to the criterion of4]. In this paper, we utilize a
black holes, on the other hand, possess a double horizgnodel set forth by Fabbri, Navarro, and Navarro-Salas
structure, with an inner and outer apparent horizon. In thé5—7l. B
extremal limit, where the black hole mass approaches the The Reissner-Nordstno black hole line element is
black hole charge in the appropriate units, the distance be- .
tween the horizons is zero and they rest at some finite value 21°’m 1797} 21°’m  12g? )
1- P +r_2 dto+| 1— ; +r—2 dr

of the radius(the extremal radiys The singularity at the ds’= -
center of the black hole thus lies safely behind the horizons,

and there is no risk of encountering a naked singularity, even +r2dQ? 1)
at the end point of evaporation. This fact, as well as their

frequent appearance in string theory, makes them particularly (r=r)r-ro)

appealing for investigation. =— —————dv?+2drdv +r?d0?, 2

Jacobson has suggested that the semiclassical evolution of r

near-extremal black holes may break down while still far . )

from extremality[3]. Using adiabatic arguments, JacobsonVith ro=1’m=1\I’m*~qg? Setting ¢=r?41* and |
claims that in-falling photons created at the outer apparent VGn, We can conformally rescale the metric lijs?
horizon during Hawking evaporation will unavoidably fall =\¢ds* and describe its two-dimensional reduction using
through the inner horizon as well. If the photons encounter dhe following action:

large buildup of energy behind the inner horizon then the
inner horizon is unstable and the semiclassical approxima-
tion is invalid. Otherwise, the photons will eventually pile up
behind the outer horizon, causing it to become unstable. In
either scenario, the semiclassical approximation may breawhere V(¢)=(4¢) Y?—q?(4¢) *2 The extremal black
down long before one would expect based on thermodyhole radius corresponds to wh&f{¢) =0 [8], giving ¢,

s f d2xyg[Ré+12V()], 3

namic and/or statistical mechanics argumenis =(?/4. A trapped surface, in a metric of the form
String theory, on the other hand, suggests that the evapo-
ration should proceed in a smooth way, with the excited ds?=g,,dx“dx"+ ¢*dQ?, 4

black hole returning to its ground state. In particular, ex-
tremal black holes with Ramond-Ramond charge in type licorresponds to when the two-spherexatx ™ is decreasing
string theories are described by configurations of D-branesn both null directions:d. ¢<0. Asymptotically, in these
solutions,d_¢<<0 andd, ¢>0. Therefore an apparent ho-
rizon, which is the outer boundary of a trapped region, oc-
*Email address: diba@het.brown.edu curs atd, ¢=0.
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The action above, E(3), can also be derived from the

Reissner-Nordstra action considered if@] and[10]

S= f d?x\—g[e 2¢R+2e 2%(V ¢)2+ 2— 2q%e?¢],
(5)

which, in the conformal gauged&=—e?*dx*dx"), is
equal to

S= J d’x[40,0_pe 2?—40, po_pe 2P +e?r

—qZe?*20], ©)

By letting p— p+ ¢/2, which amounts to a conformally res-

caling of the metric byds’=e?ds?, we can rewrite this as
S=f d?x[49, 0_pe ?¢+e?re?—qg%e?e3?], (7)
or

s f d2xg[Re 24+ V( )], ®

with V(¢)=2e?—2qg%e*®. Now redefininge 2? as ¢ the
action can be expressed as

5= [ @ /=giR+ V(o)) ©

with V() =2/¢'?—2q%/ ¢°*? andp=r2. This is equivalent
to Eq. (10) with 12=1/4 andq? rescaled to 82.
Returning to Eg.(3), performing an expansion o

arounddy to first order = ¢0+<~;5) in the action yields an
effective near-extremal action

S= f d2x\/— g[Rp+4\2]. (10)

We must keep that approximation in mind when making

statements derived from this action.
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(r—rg)?—2IrpAm

- 5 dv?+2ldrdo (19
Mo
S5r2 21Am
rS )
2 2Am d
=—(%——)du2+2|—¢dv, (17)
q q \/E

which leads to

2

ds?= Jpds?= — ( 2%—Im5(v)) dv?+21d dv,
q
(18

where mg(v) is the shock mass perturbing the black hole
written as a function of the null coordinate (and equal to
zero forv<wy).

So far, we have been describing an “eternal” black hole.
In order to study the Hawking radiation of these black holes,
we must add dynamical matter fields to the action. Here, this
is done by addingN minimally coupled scalar fields and
studying the largeN limit where the one-loop quantum cor-
rection adequately describes the effect of the Hawking radia-
tion. This may not correspond to the most physically accu-
rate way of describing the matter fields, but it is the most
calculationally simpl€11,12. For this coupling of the mat-
ter fields, the effect of the back reaction on the spacetime
geometry can be semiclassically included by adding a
Liouville-Polyakov term[13].

1 N
R?p+4>\2?;5——21 |Vfi|2}

I=fd2x\/—_g

When a shock mass is added to the black hole mass &Vorking in the conformal gauge where

v=uvg, I~ in the metric(1) becomes modified

ro=1°m+12Am=1\1?(m+Am)°—q? (12)

~1?m=11?2m?+21°mAm—¢?, (12

to lowest order inAm. In the extremal case whan=q/l,
we get

r.==lg=12y2mAm. (13)
Letting ro=1q, this translates into

(r—rO—I\/2roAm)(r—r0+I\/2roAm)d )
- v

2
)

ds’=

+2ldrdv (14

N7 N7
- 2 _ -1 _ 2 _ 2
%6 d°xy—gRO R+§127T dx—og\“.
(19
ds?=—e?dx"dx", (20)
the equations of motion become
20.0_p+\%e*=0, (21)
9.0_p+N\%e% ?/)+(§—1)& =0 (22)
A 127 '
d,0_f=0, (23

~ ~ N7
—203¢+40.p0-d=Th .~ 15-[(92p)°

—p+t(x)]. (24
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¢ can always be shifted to absorb the 1 term, so without s
loss of generality¢ is set equal to 1. The entire right-hand fi(x):; [aju;(x)+ajuf ()1, (32)
side of the final equation represents the fialassical plus
quantum matter stress-energy tensor. The functigngx™), where
are determined by the boundary conditions and depend on

the vacuum choice. Under coordinate transformations, they

transform according to uj(x) = 2 ek*  K'=o, (33
mTw
~\ 2
dx o~ 1. form a complete orthonormal set. The vacuum stiig, is
(&) KOO =) =5 {x.x}, 29 then defined such that

where{x,x} is the Schwarzian derivative defined by 8;{0)=0, V j. (34)

If we wish to work with a conformally related spacetime
9, () =0Q%(X) 7, , (39

The non-tensor transformation of the functiorts,(x*),  the scalar fields transform according to

arises as a direct consequence of the non-local nature of the

Liopville—Pongkov term [1,11]. Amqng the ot_her terms fi(x):Q(an)IZE [a,u:(x)+alu* (X)]. (36)
which appear in Eq24), Tfii , Which is the classical part of ] 1 I

the total stress energy, transforms as a tensarp)2— (9?: P, _ _ i

on the other hand, transforms according to the SchwarziaOW the vacuum state associated with the modes defined by
transformation equatiof25). We can see this by letting"  E9: (34) is known as the conformal vacuum.

f 253t 0, f — 39°xfo2f
{f.x3= 20, f o, f

(26)

S+ In two dimensions, it is possible to express the stress en-
o ergy of a spaceﬂme conformally related to flat spacetime,
dx* ds?’=dudv, by ds°=C(u,v)dudv [14]:
e?rdx*dx” =e? ——dx*dx", (27) , P § §
dx (TL(@)=(=9) "T.(n)+6,—(1/48m)RS, (37)
ie. where
_ 1 [dx* Ouu= — (hl112m)CY255C 12 (38)
p—>p=p+§|og = (28
dx 0,,= — (h112m)CY252C 112 (39)
Pluggingp in, we can confirm that 0= 06, (40)

ax\> - y o~ - 1 for each scalar field. Thesé terms give the Schwarzian
ax) [@p) = ap]=1(0xp)" = dxp]+ 5iX.x}, (29 derivatives of a functiom(u) when one makes the substitu-
tion C(u,v)=2ah/du. If the state used in evaluating the ex-
so that with the addition of the, (x*) the entire right-hand Pectation value in flat spacetime is a vacuum state, then the
side of the stress-energy equations transforms as a tens¥j@te appearing in the curved spacetime expectation value is
under a change of coordinate. As can be seen, this is aldgferred to as a conformal vacuum.
consistent with how the left-hand side transforms. The com- It is also possible to relate the stress-energy tensors de-
plete matter stress-energy tensor, which we denote simply bjned in different flat spacetimesjys’=dudv and ds?

Tis, =dudv [15,14. Following[15], consider a general metric
N7 ds’=C(u,v)dudv, (41)
Tti:Tfit_ ?[(&tp)z—ﬂip-l-tt(xi)]
™ with
9327 ~ _
u! = ul .. _l
transforms simply as a tensor under coordinate transforma- v *du dv
tions for a given vacuum choice.
It is useful to define the vacuum in flat spacetime where
ds?= 7, dx“dx", (31) v=pB(v) (43)
The scalar fieldsf;, can be decomposed into u:,B(U—ZRO). (44
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Using Eq.(37), the stress-energy tensor with respect to theThys the outgoing flux in the null coordinatecan be cal-

conformal vacuum is given by

Tuw=—Fu(C) (45)
T,,=—F,(C), (46)
whereF denotes the function
Fi(y)=(12m) "y sy 12 (47)
For Eq.(42) in u,v coordinates
Taw=—FgA)+Fi(B) B=BU-2R) (49
To=—F(A+F(B)  B=B(v). (49)

However, since the first term on the right-hand side is
equivalent to the stress energy with respect to the conformal

culated, since it is known that,,= 0 before the shock mass
is introduced. Therefore

NA — N#
TEZE{U,U}Z

Am, 55
24713 9

which is a constant Hawking flux of radiation. We have not
yet considered the effects of the back reaction, which will be
done in a subsequent section. However, this preliminary ex-
amination demonstrates that we have indeed an evaporating
black hole.

II. SOLUTIONS

The general solution to the stated equations of motion can
be written in terms of four chiral functiong..(x*), and
+(x™) [16,17] with

B STESS & , . ALd_A_
vacuum ofA(u,v)duduv, this relation allows us to relate the d2=— I+ ;0 SdxTdx (56)
stress-energy tensors expressed with respect to two different 1+ A A )
vacua. It can be summarized as 2
du)? —  _ Nh  — and
du - 1/d,a, J_a_\ N> A,a_+A_a,
P= 2o TiAa T2 T % 67
Note that the last term on the right of E§0) corresponds to AR 1+ —A A
the transformation of the stress-energy tensor when the con- 2
formal factor |s_du/du. That is to say, if we define the constrained by
vacuum state with respect to the positive energy modes de-
composed irds’=dudv and transform to a conformally re- ,(d+ay aiAJr dia,
lated spacetimeds’=dudv =(du/du)dudv, we obtain Eq. o AL 9.A, 9+ I A, =Tey (58)
(50).
Let us see now what happens when we express$IBjjin g a \ A 9_a.
null coordinates. The coordinate transformatian=uv 92 A | T A J_ A =T__. (59

+1g%/$ puts the metric into the form

2

ds’= —Z%dudv (51)
q
for v<vg, and
. 2 _
dsz=—(2—3—IAm)dudv (52
q
for v>v, with
u: +\/2|q3 tanh \/ 2 b (53)
u= ——arctan —a .
0 Am 1g3Am
Now we can see the relation betweerand u:
B [21g° —
u=v+ mcotan —3(u—v) (54)

The first case initially studied by Fabbri, Navarro, and
Navarro-Sala$5] consists of a shock massm, sent into the
extremal black hole,
2~2
d52=—(i;—lAm®(v—vo)
q

dv?+2ld¢dv. (60)

The gauge choice oh, =x" and A_=—2\%x", with \?
=1"2q 3 yields

2|2q3
e o
2|2 3
dSZZ—(_—q_'_)ZdX+dX. (62
X —X

This gauge fixe$(d. p)?— % p] in the constraint equations
to be identically zero everywhere. Thus,(x™) represents
the only quantum part of the stress-energy tensor. That is,
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AdS boundary

shock wave

FIG. 1. Kruskal diagram for
the static classical solution of the
+ near-extremal RN black hole. The
AdS, boundary is seen ak~
=x"*. r, represents the outer ho-
rizon, while r_, the inner hori-
zon, lies atx®—w. ry, the ex-
tremal radius, does not meet with
r,. except at the AdS boundary,
which represents timelike infinity.

N7 [21° [2lg°
= f _— + — + —_— t— *
T..=T.. 127Tti(x ). (63 v=Xo + \ 1y arctan Am(x Xg )

An important consequence of this result is that the quanturThese solutions break down as we approach-x"~4lq

nature of the solutions Only manifests itself in the boundarysince the Sma”’(‘l’s approximations then becomes invalid.
conditions. The same solutions are obtained C|aSSica||y if thq’here is also a coordinate Singu'arity in the metric that oc-

flux sent into the black hole coincides with the quantumcyrs whenx™ =x". Equation(68) represents the vacuum of
boundary conditions. This will be discussed in more detailthe solutions. The extremal radiis=0, occurs ax~ —x*

later on. The gauge choice itself corresponds to Asj3ace- . L~
time, with the AdS boundary occurring at the coordinate sin-— > In the region pelow the AdS bpundany, <x7, ¢
gularity x_=x*. The metric(60) can be brought into the <0. That is, this region corresponds in fact to the area be-
gauge-fixed form by setting hind the extremal black hole radius. The double-horizon

structure manifests itself when we solve =0, giving a

. (70

a,=-lg3 (64)  horizon atx” —x"—=*o0. Sox” >x" andx~<x"* corre-
spond to two different coordinate patches of the solutions,
a_=0 (650  with x“<x™ corresponding to an area that actually lies be-
hind x~—x*=. In analyzing these results, we study the
for v<wvg. Requiring continuity ab=uvg, for v>vg area above the AdS boundary, >x".

Equation(69) represents the classical solution shown in
Fig. 1. Let us first consider this case: the extremal radius,
$=0, occurs atX" —xg)(x~ —xg)=21q%Am. The appar-
ent horizons,d, =0, are given byx*:xgi\/ZIqS/Am.

) 3 0 5.4 The AdS boundary represents spatial infinity, i.e., the region
a_=1"g"Am-—=—1°q°Am. (67) infinitely far away from the black hole where the radial vari-
X able ¢ becomes infinitely large, with the black hole itself
lying abovex™ >x*. We can see then that. moves further
out from the center of the black hole for larger values of the
3 shock mass\m, as expected._ can be understood to be at
b= . ou=x" (68 X —®.Ig andr , never meefthe apparent meeting point is
x~—x* actually at infinity, as one would expect without Hawking
evaporation due to quantum effects.
and forv>vg We now wish to consider the semiclassical solutions. The
key to solving these is picking the appropriate boundary con-
e ditions in a given vacuum state. The boundary condition is
1= — (X" =Xg) (X" —Xq) determined by the behavior of the stress-energy flux at re-
P=19° g (69)  gions far outside of the black hole, where statements can be
made about the expected flux. This amounts to making an

1
a+=—§Amx§(x+—x5’)—Iq3, (66)

+

Thus we have fov<v,
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appropriate choice for.(x~), as it represents the quantum Using this form ofé in the Eq.(30) we see thal __ will be
part of the stress-energy tensar, .. (recall that the confor-  zero everywhere in the solutions. Therefore, we realize now

mal term involvingp derivatives is zero in this gauge that we are confined to boundary conditions that give
Fabbri, Navarro, and Navarro-Salas choose vacuum cor- (x~)=0.
formal to spacetime As long asv =v(x"), then, the vacuum choice used cor-

responds to zero quantum flux in the spacetime of (Ed),
) B o, dv which, while not of imperative physical interest, allows us to
ds’=—e*dvdx = —e p_dx+ dx*dx”, (71 solve the equations of motion with relative ease:

with v(x™) given by Eq.(70). That is, the mode decompo- t-(x7)=0, (78)

sitions discussed beginning with E@2) are with respect to

the flat spacetimedvdx™. This vacuum choice is not well
explained in[5-7]. It is stated there that since in E(p1),
before the shock mass is introduced, the stress energy is zero,
then this represents the natural vacuum choice. However, a 21g3Am
problem arises because whiléx ") is from Eq.(70), after = 3ot o2 2
the shock massv(>vy), in order for (21g7= (X" =xg)"Am)

t(x")= %{U1X+}

(79

~5 Again, there is no outgoing fluxi _ _, being emitted from
ds?= —<2¢——|Am®(v—vo))dvdu, (720 the black hole in thex" direction. The evaporation of the
q® black hole proceeds simply through the negative flux enter-
ing the black hole. This means that in a sense the evaporation
to be put into the form(20), u will also be a non-trivial  of the black hole is built into the solutions from the boundary
function ofx™. In fact, it is given by conditions. As mentioned before, the classical solutions
would have yielded the same result, given the same negative

21g° Am ingoing flux. The contribution of Eq(79) to the stress-
U=vo+ mcotan rqs(x —vg) |. (73 energy tensor is
3
Regardless, in arriving at Eq71), the vacuum choice of T++=—& 2lg°Am ' (80)
[5-7], necessarily requires=x". Therefore, the choice of 127 12193 — (x T — x4 )?Am]?

Eqg. (71) as vacuum space is not consistent with Exi).
In general, choosing=u(x") is a rather restrictive con- which does in fact correspond to a negative flux of energy

dition on these solutions. This can be seen by closer inspegnat increases as" —xg —21g%/Am,
tion: let us require thab =v(x"), i.e. dv/dx"=f(x"), or
more conveniently,

aiaJr: - Et+(x+)

dv lq® -
dx*  F(x*)’ 7 _ N 21g°Am -
. . . 12m [2193~ (x* —xg)?Am]*’
To bring the metrid60) to the form(62) it is also necessary
to require that o 2.3
6d_a_+6x dZa_+(x )9 a_
~ F(x") =0 (82
I-p=———7, 75 '
e (79

can be integrated to solve far, anda_ by requiring con-
which means tinuity of ¢ atx+=x§ , and by putting Eq(60) in the form
(20). The general solutions to E(B1) are
F(x")

+

b= +G(x). (76)

. 1 N7%
X~ —X a+=—EAm)(J(x+—x§)—lq3+7P(X+), (83

Plugging this into the equation of motion fgr then leads to

G(x")=F'(x")/2, so that X&
(=F0) a_=12g3Am——12g%Am, (84)
N
-~ Fx")  F'(xM)
~ + . 7
¢ x~—x* 2 7 with
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AdS boundary

shock wave
s “solution
breakdown

2|q3_(x+ x5)2

P(x+)=( X)) _A :
48 21g3

48 Am

Am
xarctan&{ (xt=x3)\/ —) .
2lg°

(85
The resulting solution foeb is
Am(XxT—x§ ) (X~ —Xg)
~ 213 Nz P(x*
X~ —X T x —x*
N P’ (x* 86
+ 5 PIXT). (86)

Let us take a moment to carefully examifRgéx™) and its
properties. We may take note that arctafhfecomes loga-
rithmically divergent ax— 1. However, &2— 1)arctanhk)
—0 asx— 1 remains finite. ThereforB(x") becomes inde-
terminate forx*—xg=2Iq%Am and P’(x"), which is

logarithmically divergent, enlarges. Sineg represents the

radial coordinate, and it depends directly Bh(x "), we can
interpretx*—xg—n/Zqu/Am as spatially being infinitely

far from the black hole. It is not possible to evolve the solu-

PHYSICAL REVIEW D 65 024018

FIG. 2. Kruskal diagram for
semiclassical solution of the near-
extremal RN black hole. The
AdS, boundary is again seen at
x~=x". r, andr_, which are
given by d, ¢=0 evolve to meet
at rg (¢g), the extremal radius.
Close to this point, the semiclassi-
cal approximation breaks down.
In addition, the solutions become
indeterminate  as  x"—x§
—\210%7Am. The size of the
shock massAm determines the
degree to which the outer horizon
moves out fromx™ =oo,

If we consider the extremal black hole as the limit of a near-
extremal black hole, it has a double horizon which becomes
spatially separated with the introduction of a shock mass. A
larger shock mass corresponds to a bigger separation of
andr _ . However, as the black hole evaporates, the two ap-
parent horizons should eventually approach each other and
return to the extremal limit. The classical solution of the
equations of motior{69) is recovered by taking the limft
—0. These solutions do not demonstrate any outgoing flux,
as a result of the imposed condition tiat_=0. All evapo-
ration manifests itself in a negative ingoing fliix , <0. We
should also keep in mind that E@O) is conformally related
to the dimensional reduction of the physical metfg, so it
is necessary to make further calculations to understand what
is really happening.

Note that there are approximations that have been made
which need to be reexamined. Bringing the met66) into
the conformal gauge forrtR0) necessarily requires that

200_da v(xT)+e*<1 (87)

and
&2 +172 i +
—2—+l1Am|[d, v(x")]2+219, pa v(x") <1,
q
(88)

Putting solutions forg, Eq. (86), into Eq. (87) yields the
constraint that

tions beyond this point. However, when the inner and outer

horizon meet again at the extremal radius, at the end point of
black hole evaporation, the semiclassical approximation has
already broken down. This happens before we reach the di-

vergence ofP’(x").

41293k P(x™)

(X~ —=xM(x"—x§)?Am—21g3] )

(89

In the semiclassical solution, the inner and outer horizorplus a more complicated constraint that we omit due to space

come together and meet at the extremalr, radius (see

and aesthetic considerations. We must monitor the quantities

Fig. 2), consistent with our picture of black hole evaporation.on the left-hand side of the above equations to ensure that
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our approximations are valid in the regions of interest. This dx-  d(2p—Llog ) dx-

has been done for all ensuing discussion. 2 -0 9
— - =—=0, (97
dx”~ dx”~ ax™

lll. THE PHYSICAL METRIC which is then solved to give
The analysis has thus far been incomplete because the o 20
stress-energy tensor considered does not correspond to an dx =Ce P 99)
observer living in 3+1 dimensions. One of our new contri- dx— N

butions is to study components of the stress energy measured
by an observer freely falling in the (B1)-dimensional whereC is a constant of integration which we can set equal
spacetime. This physical metrits® is related to the metric to 1. Using the conformal factor arising from E&O) in the

studied in the previous secticis? (20) by the conformal relation(37) gives

factor, \/¢: (g (9 )2 1 2 ¢ .\ 9.pdsch

T, 254
++ "5, 8 ¢2 _2 ¢ ¢ + &er

1 . e’
d?=—ds’=— —dx"dx". (90)

Vo Vo

To construct a stress energy tensor that couples to this metric
(90) we must add extra matter fields to the actid®) that
couple in a covariant way. This addition will not alter the where againt..(x*) are determined by the boundary condi-
previous equations of motion as long as the number of othelions  (i.e., vacuum choige Part of this tensor,
matter fieldsN is large. Nﬁ/lZ’iT[r?ip—((hp)z—tt], is the source term on the right-

It is relevant to consider what happens to a freely fallinghand side of the equations of motion. This is because the
observer coming in from far outside of the black hole. Sincematter fields couple to/—g=e?’/2, and hence the above
it is difficult to analytically describe the geodesic for an af- terms contribute to the back reaction. The stress energy
finely parametrized freely falling observer, we consider theabove is not a source for the back reaction, but is what an
next best thing: a null in-falling observer. The Christoffel observer traveling through the physical spacetime would
symbols for the physical metri@®0) are measure.

In the affinely parametrized coordinates, the stress energy

—2(0+p)2—2t+(x+)), (99

N 1 is
F++:2‘9+P_§¢9+|09¢1 (9D
- dx*\?
1 Tio= = Tes (100
- _ _ dx—
I'-_=2d_p E(?,Iogcﬁ. (92
h 3(d.0)2 132¢ d.pd
From the geodesic equation fer, we get :ﬂ%(é( d;f) o) ¢¢+ +p¢+¢+2(?ip
e
d?x~ ) 1 | dx~ dx*_0 93
a2 T\20-pm 50100 =0, (93 —2(&+p)2—2t+(xi)), (101)

with a similar equation fok*. We consider the case where

. , . ~_ whereT is used to denote the stress-energy tensor with re-
is an affinely parametrized null geodesic such that

spect tox”. We consider the behavior in the weak back-
reaction regime, whemd#/(24wq%) <1, where the adiabatic

2 i
ds?=— e_p d; d; =0. (94)  approximation should be valid. Far outside of the black hole,
\/E dx™ dx~ closer to the AdS boundary, whef— ¢¢> ¢,— ¢ (using ¢y,
to denote the radius at the horizofi, $=0), while still
This has solutions for fixed ", leaving within the validity of the near-horizon approximationp (
- — ¢$o<<1) the flux in and out will have a more physically
XT=XT(X7). (95 intuitive interpretation. We hope that since the contoursof
) we consider are very close to the AdS boundary, they repre-
Using sent sufficiently well the behavior that occurs at “infinity,”
without actually leaving the near-horizon region of our cal-
gp dx~  dp dx* dp 96 culations[18]. For example, consider the contour depicted in
e de oxt EJF@ (96) Fig. 3. Here,¢p> ¢, yet it is small enough to be consistent

with the previous approximationg/$,<1. We are inter-
and the fact that we are working with a null geodesic, Eq.ested in the behavior of the physical stress energies, as seen
(93) reduces to by an affine observer along the inner and outer horizon, in
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«*° N . +
9740 99760 99780 99800%
60000
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40000 °
FIG. 5. T, , the stress energy of an affine null observer in
20000 physical spacetimels’= —(e?’/\/¢)dx*dx", evaluated at points
along the inner horizon, up to the point at which the two horizons
0 meet againT, . decreases very quickly witk~, as the inner ho-
0 20000 40000 60000 80000 100000 rizon moves on a nearly null-like trajectoryl=1;q=100,Am

FIG. 3. The outer horizon is shown as it recedes to meet the -0002N# =25, ho = 2500}

inner horizon atg,. Also shown is the contour for fixed radivs  difference will represent the net flux going through a surface
=100, near the AdS boundary, for which subsequent plots wergf constant¢. The net flux going through a surface of fixed
made [ =1,0=100;Am=.0002N% = 25m; ¢po=2500] radius is positive and vanishes away with time. The integral
of this quantity along the contour would give us the
order to test the stability of the evaporating black hole. FigsArnowitt-Deser-Misner(ADM) mass, defined at spatial in-
4-6 illustrate the values of the stress energy along thesknity outside of a black hole. The indication then is that the
contours. We note from these that the stress energy varieshock mass evaporates away, returning the black hole to its
smoothly throughout the evaporation process. The stress esxtremal state. We observe that the differential black hole
ergy tensors for an affinely parametrized observer evaluatedDM mass increases for a bit, before decreasing down close
at each point along the fixed radial contour are shown irto zero. The temporary rise in mass before dying down may
Figs. 7 and 8. In each case, the flux approaches zero as the consistent with observations pg]. Nevertheless, the im-
black hole evaporates, which is consistent with the evaporggortant quantity is its integral.
tion of a near-extremal black hole, which should cease as the We can also consider the Bondi mass. This is generally
black hole returns to its extremal state. In order to makedefined at future null infinityx™ —oe, giving m(x~). The
physical sense of the quantities, it may be useful to look aAdS boundary of these solutions makes it difficult to use this
the differenceT__—T, ., Fig. 9. This is where we can definition. However, as discussed[in,19,20, becausel _

have a reasonable interpretation of what is going on, as thié chosen everywhere to be zero, it is possible to define a
Bondi massn(x*) for all x~ with

T++ T__
+ -7
20000 40000 600 50 10400% 5-10 »_.\_‘&‘\
-0.025 ; .,
4-10" .
-0.05 7 .,
K ~,
o -7 .
-0.075 3-10
< ~.,
I 2-107"
I
-0.125} ¢ ",
; 1-107 ",
-0.15}s ",

20000 40000 60000 80000 100003

FIG. 4. T, ., the stress energy of an affine null observer in _
physical spacetimels’= —(e%’/\/¢)dx* dx~, evaluated at points FIG. 6. T__, the stress energy of an affine null observer in
along the outer horizon, up to the point at which the two horizonsPhysical spacetimels?= —(e?’/\/¢)dx*dx", evaluated at points
meet again. Notably, the evolution of the stress is smooth. In thiglong the outer horizon, up to the point at which the two horizons
vacuum choiceT , , increases quickly with increasing . There- ~ meet again. The behavior df__ reflects the Hawking radiation
fore, as the outer horizon recedes to meet the inner horizon, there {gaving the black hole and reaching zero as the black hole returns to
a large increase in the stress energy toward the end of the evapomaxtremality. Along the inner horizoril __ is essentially zerof!
tion. [1=1,0=100;Am=.0002N% = 257; ¢po= 2500 =1,0=100;Am=.0002N% = 257; ¢po= 2500
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Tt T_-T,,
20000 40000 60000 8000 308 0.00002
-2.5-107° 0.0000175
-5-107° 0.000015
-7.5-107° 0.0000125
-0.00001 o o000n
-0.0000125 A
-0.000015 o
-0.0000175 oo '
-0.00002

20000 40000 60000 80000 100008

FIG. 7. 7’++, the stress energy of an affine null observer in _ _
physical spacetimeds®= —(e*/\/¢)dx*dx", shown at points  FIG.9. T —T.., the stregs energy of an affine null ob§erver
along the fixed radiugh=100. T, . is negative, a remnant of the in physical spacetimels’= —(e?//$)dx"dx", shown at points
boundary conditions which demonstrates that negative flux gets se@ong the fixed radiugh=100. This quantity is related to the dif-
in to reduce the black hole mass. This flux goes to zero as the bladerential ADM mass of the black hole. The area under the curve

hole returns to extremality. [ =1,=2100;Am=.0002N# corresponds to the finite shock mass of the black hdle:1,q
= 257; o= 2500] =100;Am=.0002N% = 254; o= 2500]

B solutions. A calculation of this mass using the above derived
mg(X™)=mg— 2l J' dxe 2P9_¢T,,. (102  values yields to first order iz

We want to verify thatd_ms=0. By applying the partial " NA  [Am L o4y [Am
derivative with respect ta”~ to the above we obtain Ms(x7)=Am-= 127 21q° arctantp (x*=xo ) 2198/

J_me(x") = —2|f dx"e 2T, . [—2d_pd_db+d>P], (105
(103 A plot of mg(x™) (Fig. 10 shows that evaporation occurs
slowly until close to the meeting of the horizons, at which
point the mass significantly drops. The mass evaporates to
zero at the same value &f" where the outer apparent hori-
zon recedes back to the extremal radius. That is to say, when
a,ms(x+)=lf dx+e—2p-r++(-|-f _ &t,(x‘) _ ms(X{ ) =0, ro(X;{)=r(x{'). The overshooting of the zero-
o point suggests that the evaporation does not end once extre-
(104 mality is reached. However, the semiclassical description of

black hole radiation is applicable only as long as
The bracketed term, then, must be constrained to zero for the

where we used the fact that T, , =0. Further manipula-
tion, using the equations of motion, gives

mass formula to be valid, which is indeed the case for these JT
T —||<|T], (106
dmg
T--
0.0002
4-1077 0.00018
0.00016
3-1077
0.00014
-7
2-10 0.00012
1-1077 0.0001
20000 40000 60000 80000 100000

20000 40000 60000 80000 100006
FIG. 10. The Bondi mass, evaluated for the conformally res-
FIG. 8. T__, the stress energy of an affine null observer in caled spacetimels’= —e?dx"dx", does not indicate significant
physical spacetimeds’= —(e*/\/¢)dx"dx~, shown at points evaporation until close to the very end of black hole evaporation.
along the fixed radiugb=100. This positive outward flux goes to This plot overshoots the zero mass point when the semiclassical
zero as the black hole returns to extremalijty=1,0=100;Am approximation breaks down at the end point of evaporatjon.
=.0002N% = 257; pg= 2500 ] =1,0=100;Am=.0002N?% = 757; o= 2500)
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whereT is the black hole temperature. The temperature fluc- F
tuations must remain small compared to the temperature it- 1q
self[4]. This means that our solutions no longer describe the
evolution of the black hole once it has returned to its ex-

tremal state. We can only trust our results upnig(x™)

=0, when the outer horizon, and the inner horizom _

meet again at.

IV. DYNAMICAL BOUNDARY SOLUTIONS

+
X

The other case considered by Fabbri, Navarro, and
Navarro-Sala$6,7] involves a questionable choice of bound-  FIG. 11. A plot of the behavior of the functioR(x*) which
ary conditions. Here, instead of sending in a shock mass angbproaches zero with increasing. F=0 signals the end point of
observing the evolution of the black hole, the shock mass igvaporation, which occurs at the AdS boundary=x", represent-
permitted “quantum corrections” and allowed to behave dy-ing timelike infinity.
namically. That ismg(v), the shock mass, is now allowed to
vary with v, instead of being expressed simply by the F'(xg)=0. (111
AmO (v —vg) function. In this case, the solutions fgrcan-
not be found analytically. As stated before, it is required thalIt follows further from Eq.(109) that
v=v(x"), or more conveniently, we chooséx") to be of F(x3)=—Am. (112
the form(74). Repeating the results followin@4), and once 0
again gauge fixing so that Eq.(61) still holds, we see that |t is now possible to numerically solve fér(x "), using Eq.

(109 and the boundary conditiorid10—(112). Typical be-

~ ~ N# : n g
_2(92+¢+4(9+p(9+¢: _Fm(x+):-|-f++_ Et+(X+)' havior for F(x™) can be seen in Fig. 11. We set
(107) 7
I, N +112 -~ +\ —
From the Schwarzian derivative we have ( qu +IAm> [d+0(X7)]"+21d, ¢pd,v(x7)=0,

1
t(x")= §{U’X+}: which is required in order to eliminate off-diagonal compo-
(108 nents in Eq.(20), when making the coordinate transforma-

tions. This allows us to solve for

1(3 F/(X+)2 —F//(X+)

(113
212 F(x")? F(x*))'

Thus - N N
F'o(xT)—2F(x")F'(x
| o mgxty = FLODZZFOOR0D
T, =Amd(X" —Xq) 2lq
N7 | 1[F/(x") 2 F"(x*) Using Eq.(109 this can be rewritten as
=—F"(x"+=—|= - .
24m |2\ F(x") | F(x") T
mg(x™)= F2(xT)F"(x). 11
Continuity of ¢ requires that In a less straightforward manner, we could have also used
. 3 Egs.(75) and(61) to evaluate the mass based on the previous
F(xo)=19% (110 definition (102,
F X+ F/// X+
ﬁ+ms(x*)=—L3() (116)
Ig
F X+ Fr/l X+ +F X+ F// X+ _F X+ F// X+
_ FOOF X))+ FOXT)F (X)) —F(X)F"(x™) (117
Iq®
24mF (x*)2F"(x*
_ [ ZAmEOCYE )) (118
N#lg3
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FIG. 12. T, ., the stress energy of an affine null observer in 20000 40000 60000 80000 100000%

physical spacetimels?=—e?’/\/[¢dx dx~, evaluated at points _ _ _
along the fixed radiugh=100. Again, the flux is negative, indicat- FIG. 13.T__, the stre552 energy+of an affine null observer in
ing that negative mass is being sent in as a result of the boundarig}ﬂ'ys'caI spacetimals’= —e”//¢dx"dx, evaluated at points
conditions. This flux goes to zero as the black hole evaporatiolong the fixed radiugh=100. This outward positive flux goes to
draws to an end.l = 1,q= 100;Am=.0002N% = 757; o= 2500] zero as the black hole returns to extremality=1,0=100,Am
=.0002N% = 757; ¢po= 2500]
arriving at Eq.(114). We can see now that
finity outside. The previous boundary condition, however,
+ N7 mg(x") was more natural, since the diminishing mass was arrived at,
J+Mg(X") == 5~ F(x*) (119 ather than put in by hand. Nonetheless, it may be argued
that the difference between these two boundary conditions is
Multiplying by dx*/dv minute. In both cases, the same general phenomena is occur-
ring; T__=0 andT, ;<0 bring about the evolution of the
N7 black hole.
> 47T|q3ms(v)’ (120 _The stress-energy tensor can agai_n be calculated for the
affinely null coordinates. We proceed in the same manner as

so that before, evaluatingl, . and T__ for the physical metric
- - 3 (90). We see from the stress-energy tensats, , in Fig. 12
mg(v)=Aame N2AMI=vdl99@ (y —vg). (121 that there is indeed a negative flux of energy entering the

black hole. In order to bring about exponential decay of the

Using a complementary method, it is also possible to def'”%hock mass, it was necessary to send in negative mass to
instead a late time Bondi mag21,22, which behaves as ~ .
bring it down. T__, (Fig. 13 behaves also as expected.

There is a flux of energy being emitted from the black hole
mg(U). (1220  which approaches zero as the black hole evaporates away.

The differential ADM mass, as represented Dy_—T. .

&va(U): -

dmg(u)=— ———
ums(U) 247';'|q3

We can now use the fact that the four-dimensional stress-

energy tensor can be related back to the rate of change of th T-—~Ter
mass[? 23] .0000175
0.000015
(4) N7 0.0000125

T, =d,mg(v)=Amd(v—vo)— 3Ms(v)O(v—vo), '
24! 0.00001
(123

7.5-10°°

to see that there is a negative flux of energy being sent in tc
reduce the black hole mag21]. Generally, however, it does
not make sense to allow the shock mass being sentinto var 2-5° 107
as a function ofx* for all values ofx~, including those
corresponding to very large distances away, where quantum
effects due to an “infinitely” far black hole ought to be neg-  FiG. 14. T__—7T, ., the stress energy of an affine null ob-
ligibly small. _Sincems(v) now behaves as shovyn abO\_/e, aSserver in physical spacetimgs®=—e?”/\/¢dx dx~, shown at
opposed to simplyns(v) =Am® (v —wvo), then this solution  4ints along the fixed radiug=100. This quantity is related to the
corresponds to sending in negative mass after the iditial  gifferential ADM mass of the black hole. The area under the curve
This is an artifact of the boundary condition requirementcorresponds to the finite shock mass of the black hole. The bound-
which forcesT __ =0 everywhere, so that basically the black ary conditions were chosen so that this quantity goes to zero mono-
hole evaporation occurs through flux being sent in from in-tonically. [| =1,=100;Am=.0002N# = 75; ¢po= 2500]

5~1o'6

20000 40000 60000 80000 100000%
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(Fig. 14 decays down to zero, as a result of the combinedbe better answered by working in an asymptotically
effect of the negative energy being sent in and the naturdflinkowskian spacetime. Most notably, we are troubled by

black hole emission. the apparent arbitrariness of the imposed boundary condi-
tions. It would be more natural to choose a vacuum in a
V. CONCLUSION spacetime that corresponds to what an observer infinitely far

. ) ) from the black hole might observe. In addition, the evapora-
We have considered toy models for semiclassical chargegy of the black hole in these solutions is inherently dictated

black hole evaporation with back reaction included. The caly priori by t. (x*). It would be more satisfying if quantum
culations of the physical stress-energy tensor of a freely fallaffects did not have to be predicated, but rather were natu-
ing observer allowed us to verify that an observer at a fixe¢a|ly manifested as the solutions evolved forward in time.
distance outside of the black hole perceives a fqu decayingore physically motivated boundary conditions render the
to zero, as the black hole evaporates away the injected shogyyations of motion less easily solvable, making it necessary
mass and returns to the extremal state. The affine stress ey solve a set of coupled partial differential equations instead
ergy also varies smoothly across the inner and outer apparegf the ordinary differential equations used here. This would
horizons, suggesting that there is no buildup of energy imaye to be done numerically. This work is currently being

places which would have undermined the validity of thecompleted25—-27. Preliminary results, however, seem to be
semiclassical solutions. Hence, while in these solutions thggnsistent with those presented hi2eg].

black hole evaporation is largely dictated by the negative

flux of energy entering the black hole, the vacuum choices

discussed do indeeq yigld a picture consi;tent with charged ACKNOWLEDGMENTS

black hole evaporation in string thedf®4] without encoun-

tering the singularities feared B§]. Nevertheless, there are  This research is supported in part by DOE grant DE-
some questions and difficulties of interpretation that wouldFE0291ER40688-Task A.

[1] C.G. Callan, S.B. Giddings, J.A. Harvey, and A. Strominger,[15] P.C.W. Davies, Proc. R. Soc. Lond#351, 129 (1976.

Phys. Rev. D45, 1005(1992. [16] A.T. Filippov, Mod. Phys. Lett. Al1, 1691 (1996.
[2] D.A. Lowe, Phys. Rev. Di7, 2446(1993. [17] J. Cruz, J.M. Izquierdo, D.J. Navarro, and J. Navarro-Salas,
[3] T. Jacobson, Phys. Rev. &Y, 4890(1998. Phys. Rev. D68, 044010(1998.
[4] J. Preskill, P. Schwarz, A. Shapere, S. Trivedi, and F. Wilczek{18] J. Cruz, A. Fabbri, D.J. Navarro, J. Navarro-Salas, and P. Na-
Mod. Phys. Lett. A6, 2353(1991). varro, Nucl. Phys. BProc. Supp). 88, 287 (2000).
[5] A. Fabbri, D.J. Navarro, and J. Navarro-Salas, Phys. Rev. Lettr19] R.B. Mann, Phys. Rev. &7, 4438(1993.
85, 2434(2000. [20] J. Cruz, A. Fabbri, and J. Navarro-Salas, Phys. Re\6(D

[6] A. Fabbri, D.J. Navarro, and J. Navarro-Salas, Phys. Rev. Lett. 107506(1999.

85, 2434(_2000' [21] A. Fabbri, D.J. Navarro, and J. Navarro-Salas, “Complemen-
7] gégl:;g%ri’ (2DOE])]) Navarro and J. Navarro-Salas, Nucl. Phys. tarity, Hayvking radiation and the information loss problem for
[8] T. Banks and M.. O'Loughlin, Phys. Rev. B8, 698 (1993 evaporating near-extremal black holes,” hep-th/0012017.

' ) T ' [22] A. Fabbri, D.J. Navarro, and J. Navarro-Salas, “A Planck-like

[9] S.P. Trivedi, Phys. Rev. @7, 4233(1993. ,
[10] A. Strominger and S.P. Trivedi, Phys. Rev4B, 5778(1993. problem for quantum charged black holes,” gr-qc/0105061.
' ' [23] P.C. Vaidya, Proc.-Indian Acad. Sci., Sect38, 264 (1956.

[11] R. Balbinot and A. Fabbri, Phys. Rev. £9, 044031(1999. -
[12] S.B. Giddings and A. Strominger, Phys. Rew48) 627(1992. [24] D.A..Lowe and M. O’Loughlin, Phys. Rev. B8, 3735(1993.
[13] A.M. Polyakov, Gauge Fields and StringgHarwood Aca- L2951 A. Bilal and C. Callan, Nucl. Phys3394, 73 (1993.

demic, Chur, Switzerland, 1987 [26] A. Strominger, “Les Houches lectures on black holes,”
[14] N.D. Birrell and P.C.W. DaviesQuantum Fields in Curved hep-th/9501071.

Space (Cambridge University Press, Cambridge, England,[27] L. Thorlacius, Nucl. Phys. BProc. Supp). 41, 245(1995.

1982. [28] K. Diba and D. A. Lowe(unpublishegl

024018-13



