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Stress-energy tensor in soluble models of spherically symmetric charged black hole evaporation
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We study the decay of a near-extremal black hole in AdS2, related to the near-horizon region of
(311)-dimensional Reissner-Nordstro¨m spacetime, following Fabbri, Navarro, and Navarro-Salas. Back re-
action is included in a semiclassical approximation. Calculations of the stress-energy tensor of matter coupled
to the physical spacetime for an affine null observer demonstrate that the black hole evaporation proceeds
smoothly and the near-extremal black hole evolves back to an extremal ground state, until this approximation
breaks down.
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I. INTRODUCTION

The fate of near-extremal black holes during quant
evaporation has been of much interest because they pre
an excellent laboratory for investigating the informati
paradox. These black holes possess a stable ground
namely the extremal black hole, and are able to avoid so
of the problems which plague uncharged black holes du
evaporation. For example, in the well-studied linear dila
black hole model of Callan, Giddings, Harvey an
Strominger~CGHS! @1#, as the black hole evaporates awa
the outer horizon encounters a naked singularity@2#. Charged
black holes, on the other hand, possess a double hor
structure, with an inner and outer apparent horizon. In
extremal limit, where the black hole mass approaches
black hole charge in the appropriate units, the distance
tween the horizons is zero and they rest at some finite v
of the radius~the extremal radius!. The singularity at the
center of the black hole thus lies safely behind the horizo
and there is no risk of encountering a naked singularity, e
at the end point of evaporation. This fact, as well as th
frequent appearance in string theory, makes them particu
appealing for investigation.

Jacobson has suggested that the semiclassical evoluti
near-extremal black holes may break down while still
from extremality @3#. Using adiabatic arguments, Jacobs
claims that in-falling photons created at the outer appa
horizon during Hawking evaporation will unavoidably fa
through the inner horizon as well. If the photons encounte
large buildup of energy behind the inner horizon then
inner horizon is unstable and the semiclassical approxi
tion is invalid. Otherwise, the photons will eventually pile u
behind the outer horizon, causing it to become unstable
either scenario, the semiclassical approximation may br
down long before one would expect based on thermo
namic and/or statistical mechanics arguments@4#.

String theory, on the other hand, suggests that the ev
ration should proceed in a smooth way, with the exci
black hole returning to its ground state. In particular, e
tremal black holes with Ramond-Ramond charge in type
string theories are described by configurations of D-bran
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which have exact conformal field theory descriptions.
least at weak string coupling, it can be verified that the de
back to the extremal state is regular.

To investigate this issue, we study the behavior of
stress-energy tensor for a freely falling observer during
evaporation process. We calculate this and other observa
for an extremal black hole after a shock perturbation of m
is sent in. In particular, we look for signs of instability an
energy buildup behind the inner and outer horizons. We w
use the semiclassical approximation and verify its valid
close to the end point of evaporation, where it breaks do
according to the criterion of@4#. In this paper, we utilize a
model set forth by Fabbri, Navarro, and Navarro-Sa
@5–7#.

The Reissner-Nordstro¨m black hole line element is

ds252S 12
2l 2m

r
1

l 2q2

r 2 D dt21S 12
2l 2m

r
1

l 2q2

r 2 D 21

dr2

1r 2dV2 ~1!

52
~r 2r 1!~r 2r 2!

r 2
dv212drdv1r 2dV2, ~2!

with r 65 l 2m6 lAl 2m22q2. Setting f5r 2/4l 2 and l

5AGN, we can conformally rescale the metric byds̃2

5Afds2 and describe its two-dimensional reduction usi
the following action:

S5E d2xA2g@Rf1 l 22V~f!#, ~3!

where V(f)5(4f)21/22q2(4f)23/2. The extremal black
hole radius corresponds to whenV(f0)50 @8#, giving f0
5q2/4. A trapped surface, in a metric of the form

ds25gmndxmdxn1f2dV2, ~4!

corresponds to when the two-sphere atx1,x2 is decreasing
in both null directions:]6f,0. Asymptotically, in these
solutions,]2f,0 and]1f.0. Therefore an apparent ho
rizon, which is the outer boundary of a trapped region,
curs at]1f50.
©2001 The American Physical Society18-1
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The action above, Eq.~3!, can also be derived from th
Reissner-Nordstro¨m action considered in@9# and @10#

S5E d2xA2g@e22fR12e22f~¹f!21222q2e2f#,

~5!

which, in the conformal gauge (ds252e2rdx1dx2), is
equal to

S5E d2x@4]1]2re22f24]1f]2fe22f1e2r

2q2e2r12f#. ~6!

By letting r→r1f/2, which amounts to a conformally res
caling of the metric byds̃25efds2, we can rewrite this as

S5E d2x@4]1]2re22f1e2ref2q2e2re3f#, ~7!

or

S5E d2xA2g@Re22f1V~f!#, ~8!

with V(f)52ef22q2e3f. Now redefininge22f as f the
action can be expressed as

S5E d2xA2g@Rf1V~f!#, ~9!

with V(f)52/f1/222q2/f3/2, andf5r 2. This is equivalent
to Eq. ~10! with l 251/4 andq2 rescaled to 2q2.

Returning to Eq.~3!, performing an expansion off
aroundf0 to first order (f5f01f̃) in the action yields an
effective near-extremal action

S5E d2xA2g@Rf̃14l2f̃#. ~10!

We must keep that approximation in mind when maki
statements derived from this action.

When a shock mass is added to the black hole mas
v5v0 , r 6 in the metric~1! becomes modified

r 65 l 2m1 l 2Dm6 lAl 2~m1Dm!22q2 ~11!

' l 2m6 lAl 2m212l 2mDm2q2, ~12!

to lowest order inDm. In the extremal case whenm5q/ l ,
we get

r 656 lq6 l 2A2mDm. ~13!

Letting r 05 lq, this translates into

ds252
~r 2r 02 lA2r 0Dm!~r 2r 01 lA2r 0Dm!

r 0
2

dv2

12ldrdv ~14!
02401
at

52
~r 2r 0!222lr 0Dm

r 0
2

dv212ldrdv ~15!

52S dr 2

r 0
2

2
2lDm

r 0
D dv212ldrdv ~16!

52S f̃2

q4
2

2Dm

q D dv212l
df

Af
dv, ~17!

which leads to

ds̃25Afds252S 2
f̃2

q3
2 lmS~v !D dv212ldf̃dv,

~18!

where mS(v) is the shock mass perturbing the black ho
written as a function of the null coordinatev ~and equal to
zero forv,v0).

So far, we have been describing an ‘‘eternal’’ black ho
In order to study the Hawking radiation of these black hol
we must add dynamical matter fields to the action. Here,
is done by addingN minimally coupled scalar fields an
studying the largeN limit where the one-loop quantum cor
rection adequately describes the effect of the Hawking ra
tion. This may not correspond to the most physically ac
rate way of describing the matter fields, but it is the mo
calculationally simple@11,12#. For this coupling of the mat-
ter fields, the effect of the back reaction on the spacet
geometry can be semiclassically included by adding
Liouville-Polyakov term@13#.

I 5E d2xA2gFRf̃14l2f̃2
1

2 (
i 51

N

u¹ f i u2G
2

N\

96pE d2xA2gRh21R1j
N\

12pE d2xA2gl2.

~19!

Working in the conformal gauge where

ds̃252e2rdx1dx2, ~20!

the equations of motion become

2]1]2r1l2e2r50, ~21!

]1]2f̃1l2e2rS f̃1~j21!
N\

12p D50, ~22!

]1]2 f i50, ~23!

22]6
2 f̃14]6r]6f̃5T66

f 2
N\

12p
@~]6r!2

2]6
2 r1t6~x6!#. ~24!
8-2
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STRESS-ENERGY TENSOR IN SOLUBLE MODELS OF . . . PHYSICAL REVIEW D 65 024018
f can always be shifted to absorb thej21 term, so without
loss of generality,j is set equal to 1. The entire right-han
side of the final equation represents the full~classical plus
quantum! matter stress-energy tensor. The functions,t6(x6),
are determined by the boundary conditions and depend
the vacuum choice. Under coordinate transformations, t
transform according to

S dx̃

dx
D 2

t x̃~ x̃!5tx~x!2
1

2
$x̃,x%, ~25!

where$x̃,x% is the Schwarzian derivative defined by

$ f ,x%5
2]x

3f ]xf 23]2x f]x
2f

2]xf ]xf
. ~26!

The non-tensor transformation of the functions,t6(x6),
arises as a direct consequence of the non-local nature o
Liouville-Polyakov term @1,11#. Among the other terms
which appear in Eq.~24!, T66

f , which is the classical part o
the total stress energy, transforms as a tensor. (]6r)22]6

2 r,
on the other hand, transforms according to the Schwar
transformation equation~25!. We can see this by lettingx1

→ x̃1,

e2rdx1dx25e2r
dx1

dx̃1
dx̃1dx2, ~27!

i.e.

r→ r̃5r1
1

2
logS dx1

dx̃1D . ~28!

Pluggingr̃ in, we can confirm that

S dx̃

dx
D 2

@~] x̃r̃ !22] x̃
2
r̃ #5@~]xr!22]x

2r#1
1

2
$x̃,x%, ~29!

so that with the addition of thet6(x6) the entire right-hand
side of the stress-energy equations transforms as a te
under a change of coordinate. As can be seen, this is
consistent with how the left-hand side transforms. The co
plete matter stress-energy tensor, which we denote simpl
T66 ,

T665T66
f 2

N\

12p
@~]6r!22]6

2 r1t6~x6!#

522]6
2 f̃14]6r]6f̃, ~30!

transforms simply as a tensor under coordinate transfor
tions for a given vacuum choice.

It is useful to define the vacuum in flat spacetime

ds25hmndxmdxn. ~31!

The scalar fields,f i , can be decomposed into
02401
on
y

the

n

sor
so
-

by

a-

f i~x!5(
j

@ajuj~x!1aj
†uj* ~x!#, ~32!

where

uj~x!5
1

A4pv
eik•x, k05v, ~33!

form a complete orthonormal set. The vacuum state,u0&, is
then defined such that

aj u0&50, ; j . ~34!

If we wish to work with a conformally related spacetime

gmn~x!5V2~x!hmn , ~35!

the scalar fields transform according to

f i~x!5V (22n)/2(
j

@ajuj~x!1aj
†uj* ~x!#. ~36!

Now the vacuum state associated with the modes define
Eq. ~34! is known as the conformal vacuum.

In two dimensions, it is possible to express the stress
ergy of a spacetime conformally related to flat spacetim
ds25dudv, by ds̄25C(u,v)dudv @14#:

^Tm
n ~g!&5~2g!21/2^Tm

n ~h!&1um
n 2~1/48p!Rdm

n ~37!

where

uuu52~\/12p!C1/2]u
2C21/2 ~38!

uvv52~\/12p!C1/2]v
2C21/2 ~39!

uuv5uvu ~40!

for each scalar field. Theseu terms give the Schwarzian
derivatives of a functionh(u) when one makes the substitu
tion C(u,v)5]h/]u. If the state used in evaluating the e
pectation value in flat spacetime is a vacuum state, then
state appearing in the curved spacetime expectation valu
referred to as a conformal vacuum.

It is also possible to relate the stress-energy tensors
fined in different flat spacetimes,ds̄25dūdv and ds2

5dudv @15,14#. Following @15#, consider a general metric

ds25C~u,v !dudv, ~41!

with

C~u,v !5A~ ū,v̄ !
dū

du

dv̄
dv

, ~42!

where

v5b~ v̄ ! ~43!

u5b~ ū22R0!. ~44!
8-3
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KAMRAN DIBA AND DAVID A. LOWE PHYSICAL REVIEW D 65 024018
Using Eq.~37!, the stress-energy tensor with respect to
conformal vacuum is given by

Tuu52Fu~C! ~45!

Tvv52Fv~C!, ~46!

whereF denotes the function

Fx~y![~12p!21y1/2]x
2y21/2. ~47!

For Eq.~42! in ū,v̄ coordinates

Tūū52Fū~A!1Fū~b8! b5b~ ū22R0! ~48!

Tv̄ v̄52F v̄~A!1F v̄~b8! b5b~ v̄ !. ~49!

However, since the first term on the right-hand side
equivalent to the stress energy with respect to the confor
vacuum ofA(ū,v̄)dūdv̄, this relation allows us to relate th
stress-energy tensors expressed with respect to two diffe
vacua. It can be summarized as

S du

dū
D 2

^0uTuuu0&5^0̄uTūūu0̄&2
N\

24p
$u,ū%. ~50!

Note that the last term on the right of Eq.~50! corresponds to
the transformation of the stress-energy tensor when the
formal factor is dū/du. That is to say, if we define the
vacuum state with respect to the positive energy modes
composed inds̄25dūdv and transform to a conformally re
lated spacetime,ds25dudv5(du/dū)dūdv, we obtain Eq.
~50!.

Let us see now what happens when we express Eq.~18! in
null coordinates. The coordinate transformationu5v
1 lq3/f̃ puts the metric into the form

ds̃2522
f̃2

q3
dudv ~51!

for v,v0, and

ds̃252S 2
f̃2

q3
2 lDmD dūdv ~52!

for v.v0 with

ū5v1A2lq3

Dm
arctanhSA 2

lq3Dm
f̃ D . ~53!

Now we can see the relation betweenū andu:

u5v1A2lq3

Dm
cotanhSADm

2lq3
~ ū2v !D . ~54!
02401
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Thus the outgoing flux in the null coordinateū can be cal-
culated, since it is known thatTuu50 before the shock mas
is introduced. Therefore

Tūū5
N\

24p
$ū,u%5

N\

24p lq3
Dm, ~55!

which is a constant Hawking flux of radiation. We have n
yet considered the effects of the back reaction, which will
done in a subsequent section. However, this preliminary
amination demonstrates that we have indeed an evapora
black hole.

II. SOLUTIONS

The general solution to the stated equations of motion
be written in terms of four chiral functions,A6(x6), and
a6(x6) @16,17# with

ds̃252
]1A1]2A2

S 11
l2

2
A1A2D 2 dx1dx2 ~56!

and

f̃52
1

2 S ]1a1

]1A1
1

]2a2

]2A2
D1

l2

2

A1a21A2a1

11
l2

2
A1A2

~57!

constrained by

]1
2 S ]1a1

]1A1
D2

]1
2 A1

]1A1
]1S ]1a1

]1A1
D5T11 ~58!

]2
2 S ]2a2

]2A2
D2

]2
2 A2

]2A2
]2S ]2a2

]2A2
D5T22 . ~59!

The first case initially studied by Fabbri, Navarro, a
Navarro-Salas@5# consists of a shock mass,Dm, sent into the
extremal black hole,

ds252S 2f̃2

q3
2 lDmQ~v2v0!D dv212ldfdv. ~60!

The gauge choice ofA15x1 and A2522/l2x2, with l2

5 l 22q23 yields

e2r5
2l 2q3

~x22x1!2
, ~61!

ds252
2l 2q3

~x22x1!2
dx1dx2. ~62!

This gauge fixes@(]6r)22]6
2 r# in the constraint equation

to be identically zero everywhere. Thus,t6(x6) represents
the only quantum part of the stress-energy tensor. That i
8-4



e
e

-

h
,

STRESS-ENERGY TENSOR IN SOLUBLE MODELS OF . . . PHYSICAL REVIEW D 65 024018
FIG. 1. Kruskal diagram for
the static classical solution of th
near-extremal RN black hole. Th
AdS2 boundary is seen atx2

5x1. r 1 represents the outer ho
rizon, while r 2 , the inner hori-
zon, lies atx1→`. r 0, the ex-
tremal radius, does not meet wit
r 1 except at the AdS boundary
which represents timelike infinity.
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T665T66
f 2

N\

12p
t6~x6!. ~63!

An important consequence of this result is that the quant
nature of the solutions only manifests itself in the bounda
conditions. The same solutions are obtained classically if
flux sent into the black hole coincides with the quantu
boundary conditions. This will be discussed in more det
later on. The gauge choice itself corresponds to AdS2 space-
time, with the AdS boundary occurring at the coordinate si
gularity x25x1. The metric~60! can be brought into the
gauge-fixed form by setting

a152 lq3 ~64!

a250 ~65!

for v,v0. Requiring continuity atv5v0, for v.v0

a152
1

2
Dmx0

1~x12x0
1!2 lq3, ~66!

a25 l 2q3Dm
x0

1

x2
2 l 2q3Dm. ~67!

Thus we have forv,v0

f̃5
lq3

x22x1
, v5x1, ~68!

and forv.v0

f̃5 lq3

12
Dm

2lq3
~x12x0

1!~x22x0
1!

x22x1
, ~69!
0240
m
ry
he

il

-

v5x0
11A2lq3

Dm
arctanhFA2lq3

Dm
~x12x0

1!G . ~70!

These solutions break down as we approachx22x1;4lq

since the smallf̃ approximations then becomes invali
There is also a coordinate singularity in the metric that
curs whenx25x1. Equation~68! represents the vacuum o
the solutions. The extremal radius,f̃50, occurs atx22x1

→`. In the region below the AdS boundary,x2,x1, f̃
,0. That is, this region corresponds in fact to the area
hind the extremal black hole radius. The double-horiz
structure manifests itself when we solve]1f̃50, giving a
horizon atx22x1→6`. So x2.x1 and x2,x1 corre-
spond to two different coordinate patches of the solutio
with x2,x1 corresponding to an area that actually lies b
hind x22x15`. In analyzing these results, we study th
area above the AdS boundary,x2.x1.

Equation~69! represents the classical solution shown
Fig. 1. Let us first consider this case: the extremal rad
f̃50, occurs at (x12x0

1)(x22x0
1)52lq3/Dm. The appar-

ent horizons,]1f50, are given byx25x0
16A2lq3/Dm.

The AdS boundary represents spatial infinity, i.e., the reg
infinitely far away from the black hole where the radial va
able f becomes infinitely large, with the black hole itse
lying abovex2.x1. We can see then thatr 1 moves further
out from the center of the black hole for larger values of
shock massDm, as expected.r 2 can be understood to be a
x2→`. r 0 andr 1 never meet~the apparent meeting point i
actually at infinity!, as one would expect without Hawkin
evaporation due to quantum effects.

We now wish to consider the semiclassical solutions. T
key to solving these is picking the appropriate boundary c
ditions in a given vacuum state. The boundary condition
determined by the behavior of the stress-energy flux at
gions far outside of the black hole, where statements can
made about the expected flux. This amounts to making
18-5
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KAMRAN DIBA AND DAVID A. LOWE PHYSICAL REVIEW D 65 024018
appropriate choice fort6(x6), as it represents the quantu
part of the stress-energy tensor,T11 ~recall that the confor-
mal term involvingr derivatives is zero in this gauge!.

Fabbri, Navarro, and Navarro-Salas choose vacuum c
formal to spacetime

ds252e2rdvdx252e2r
dv

dx1
dx1dx2, ~71!

with v(x1) given by Eq.~70!. That is, the mode decompo
sitions discussed beginning with Eq.~32! are with respect to
the flat spacetime,dvdx2. This vacuum choice is not wel
explained in@5–7#. It is stated there that since in Eq.~51!,
before the shock mass is introduced, the stress energy is
then this represents the natural vacuum choice. Howeve
problem arises because whilev(x1) is from Eq. ~70!, after
the shock mass (v.v0), in order for

ds252S 2
f̃2

q3
2 lDmQ~v2v0!D dvdu, ~72!

to be put into the form~20!, u will also be a non-trivial
function of x2. In fact, it is given by

u5v01A2lq3

Dm
cotanhSADm

2lq3
~x22v0!D . ~73!

Regardless, in arriving at Eq.~71!, the vacuum choice o
@5–7#, necessarily requiresu5x2. Therefore, the choice o
Eq. ~71! as vacuum space is not consistent with Eq.~51!.

In general, choosingv5v(x1) is a rather restrictive con
dition on these solutions. This can be seen by closer ins
tion: let us require thatv5v(x1), i.e. dv/dx15 f (x1), or
more conveniently,

dv

dx1
5

lq3

F~x1!
. ~74!

To bring the metric~60! to the form~62! it is also necessary
to require that

]2f̃52
F~x1!

~x22x1!2
, ~75!

which means

f̃5
F~x1!

x22x1
1G~x1!. ~76!

Plugging this into the equation of motion forf̃ then leads to
G(x1)5F8(x1)/2, so that

f̃5
F~x1!

x22x1
1

F8~x1!

2
. ~77!
02401
n-

ro,
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c-

Using this form off̃ in the Eq.~30! we see thatT22 will be
zero everywhere in the solutions. Therefore, we realize n
that we are confined to boundary conditions that g
t2(x2)50.

As long asv5v(x1), then, the vacuum choice used co
responds to zero quantum flux in the spacetime of Eq.~71!,
which, while not of imperative physical interest, allows us
solve the equations of motion with relative ease:

t2~x2!50, ~78!

t1~x1!5
1

2
$v,x1%

5
2lq3Dm

~2lq32~x12x0
1!2Dm!2

. ~79!

Again, there is no outgoing flux,T22 , being emitted from
the black hole in thex1 direction. The evaporation of the
black hole proceeds simply through the negative flux en
ing the black hole. This means that in a sense the evapora
of the black hole is built into the solutions from the bounda
conditions. As mentioned before, the classical solutio
would have yielded the same result, given the same nega
ingoing flux. The contribution of Eq.~79! to the stress-
energy tensor is

T1152
N\

12p

2lq3Dm

@2lq32~x12x0
1!2Dm#2

, ~80!

which does in fact correspond to a negative flux of ene
that increases asx12x0

1→A2lq3/Dm,

]1
3 a152

N\

12p
t1~x1!

52
N\

12p

2lq3Dm

@2lq32~x12x0
1!2Dm#2

, ~81!

6]2a216x2]2
2 a21~x2!2]2

3 a2

50, ~82!

can be integrated to solve fora1 anda2 by requiring con-
tinuity of f at x15x0

1 , and by putting Eq.~60! in the form
~20!. The general solutions to Eq.~81! are

a152
1

2
Dmx0

1~x12x0
1!2 lq31

N\

p
P~x1!, ~83!

a25 l 2q3Dm
x0

1

x2
2 l 2q3Dm, ~84!

with
8-6
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FIG. 2. Kruskal diagram for
semiclassical solution of the nea
extremal RN black hole. The
AdS2 boundary is again seen a
x25x1. r 1 and r 2 , which are
given by ]1f50 evolve to meet
at r 0 (f0), the extremal radius.
Close to this point, the semiclass
cal approximation breaks down
In addition, the solutions becom
indeterminate as x12x0

1

→A2lq3/Dm. The size of the
shock massDm determines the
degree to which the outer horizo
moves out fromx25`.
lu
te
t
h
d

o

n

ar-
es
. A
f
ap-
and
e

ux,

hat

ade

ace
ities
that
P~x1!5
~x12x0

1!

48
2

2lq3

Dm
2~x12x0

1!2

48A2lq3

Dm

3arctanhS ~x12x0
1!ADm

2lq3D . ~85!

The resulting solution forf̃ is

f̃5 lq3

12
Dm~x12x0

1!~x22x0
1!

2lq3

x22x1
1

N\

p

P~x1!

x22x1

1
N\

2p
P8~x1!. ~86!

Let us take a moment to carefully examineP(x1) and its
properties. We may take note that arctanh(x) becomes loga-
rithmically divergent asx→1. However, (x221)arctanh(x)
→0 asx→1 remains finite. ThereforeP(x1) becomes inde-
terminate forx12x0

1>A2lq3/Dm and P8(x1), which is
logarithmically divergent, enlarges. Sincef represents the
radial coordinate, and it depends directly onP8(x1), we can
interpret x12x0

1→A2lq3/Dm as spatially being infinitely
far from the black hole. It is not possible to evolve the so
tions beyond this point. However, when the inner and ou
horizon meet again at the extremal radius, at the end poin
black hole evaporation, the semiclassical approximation
already broken down. This happens before we reach the
vergence ofP8(x1).

In the semiclassical solution, the inner and outer horiz
come together and meet at the extremalr 5r 0 radius ~see
Fig. 2!, consistent with our picture of black hole evaporatio
02401
-
r
of
as
i-

n

.

If we consider the extremal black hole as the limit of a ne
extremal black hole, it has a double horizon which becom
spatially separated with the introduction of a shock mass
larger shock mass corresponds to a bigger separation or 1

andr 2 . However, as the black hole evaporates, the two
parent horizons should eventually approach each other
return to the extremal limit. The classical solution of th
equations of motion~69! is recovered by taking the limit\
→0. These solutions do not demonstrate any outgoing fl
as a result of the imposed condition thatT2250. All evapo-
ration manifests itself in a negative ingoing fluxT11,0. We
should also keep in mind that Eq.~20! is conformally related
to the dimensional reduction of the physical metric~1!, so it
is necessary to make further calculations to understand w
is really happening.

Note that there are approximations that have been m
which need to be reexamined. Bringing the metric~60! into
the conformal gauge form~20! necessarily requires that

2l ]2f̃]1v~x1!1e2r!1 ~87!

and

S 22
f̃2

q3
1 lDmD @]1v~x1!#212l ]1f̃]1v~x1!!1.

~88!

Putting solutions forf̃, Eq. ~86!, into Eq. ~87! yields the
constraint that

4l 2q3kP~x1!

~x22x1!2@~x12x0
1!2Dm22lq3#

!1 ~89!

plus a more complicated constraint that we omit due to sp
and aesthetic considerations. We must monitor the quant
on the left-hand side of the above equations to ensure
8-7
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our approximations are valid in the regions of interest. T
has been done for all ensuing discussion.

III. THE PHYSICAL METRIC

The analysis has thus far been incomplete because
stress-energy tensor considered does not correspond t
observer living in 311 dimensions. One of our new contr
butions is to study components of the stress energy meas
by an observer freely falling in the (311)-dimensional
spacetime. This physical metricds2 is related to the metric
studied in the previous sectionds̃2 ~20! by the conformal
factor,Af:

ds25
1

Af
ds̃252

e2r

Af
dx1dx2. ~90!

To construct a stress energy tensor that couples to this m
~90! we must add extra matter fields to the action~19! that
couple in a covariant way. This addition will not alter th
previous equations of motion as long as the number of o
matter fieldsN is large.

It is relevant to consider what happens to a freely falli
observer coming in from far outside of the black hole. Sin
it is difficult to analytically describe the geodesic for an a
finely parametrized freely falling observer, we consider
next best thing: a null in-falling observer. The Christoff
symbols for the physical metric~90! are

G11
1 52]1r2

1

2
]1logf, ~91!

G22
2 52]2r2

1

2
]2logf. ~92!

From the geodesic equation forx2, we get

d2x2

dt2
1S 2]2r2

1

2
]2logf Ddx2

dt

dx2

dt
50, ~93!

with a similar equation forx1. We consider the case wheret

is an affinely parametrized null geodesicx̃2 such that

ds252
e2r

Af

dx1

dx̃2

dx2

dx̃2
50. ~94!

This has solutions for fixedx1, leaving

x̃25 x̃2~x2!. ~95!

Using

]r

]x2

dx2

dx̃2
52

]r

]x1

dx1

dx̃2
1

dr

dx̃2
~96!

and the fact that we are working with a null geodesic, E
~93! reduces to
02401
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d2x2

dx̃22
1

d(2r2 1
2 logf)

dx̃2

dx2

dx̃2
50, ~97!

which is then solved to give

dx̃2

dx2
5C

e2r(x2)

Af
, ~98!

whereC is a constant of integration which we can set eq
to 1. Using the conformal factor arising from Eq.~90! in the
relation ~37! gives

T665
\

24S 3

8

~]6f!2

f2
2

1

2

]6
2 f

f
1

]1r]1f

f
12]1

2 r

22~]1r!222t6~x6!D , ~99!

where again,t6(x6) are determined by the boundary cond
tions ~i.e., vacuum choice!. Part of this tensor,
N\/12p@]1

2 r2(]1r)22t6#, is the source term on the right
hand side of the equations of motion. This is because
matter fields couple toA2g5e2r/2, and hence the abov
terms contribute to the back reaction. The stress ene
above is not a source for the back reaction, but is what
observer traveling through the physical spacetime wo
measure.

In the affinely parametrized coordinates, the stress ene
is

T̃665S dx6

dx̃6D 2

T66 ~100!

5
\

24

f

e4r S 3

8

~]6f!2

f2
2

1

2

]6
2 f

f
1

]1r]1f

f
12]1

2 r

22~]1r!222t6~x6!D , ~101!

where T̃ is used to denote the stress-energy tensor with
spect tox̃6. We consider the behavior in the weak bac
reaction regime, whereN\/(24pq2)!1, where the adiabatic
approximation should be valid. Far outside of the black ho
closer to the AdS boundary, whenf2f0@fh2f ~usingfh
to denote the radius at the horizon,]1f50), while still
within the validity of the near-horizon approximation (f
2f0!1) the flux in and out will have a more physicall
intuitive interpretation. We hope that since the contours of
we consider are very close to the AdS boundary, they rep
sent sufficiently well the behavior that occurs at ‘‘infinity,
without actually leaving the near-horizon region of our c
culations@18#. For example, consider the contour depicted
Fig. 3. Here,f.f0, yet it is small enough to be consiste
with the previous approximation,f̃/f0!1. We are inter-
ested in the behavior of the physical stress energies, as
by an affine observer along the inner and outer horizon
8-8
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order to test the stability of the evaporating black hole. Fi
4–6 illustrate the values of the stress energy along th
contours. We note from these that the stress energy va
smoothly throughout the evaporation process. The stress
ergy tensors for an affinely parametrized observer evalu
at each point along the fixed radial contour are shown
Figs. 7 and 8. In each case, the flux approaches zero a
black hole evaporates, which is consistent with the evap
tion of a near-extremal black hole, which should cease as
black hole returns to its extremal state. In order to ma
physical sense of the quantities, it may be useful to look
the differenceT̃222T̃11 , Fig. 9. This is where we can
have a reasonable interpretation of what is going on, as

FIG. 3. The outer horizon is shown as it recedes to meet

inner horizon atf0. Also shown is the contour for fixed radiusf̃
5100, near the AdS boundary, for which subsequent plots w
made.@ l 51,q5100;Dm5.0002;N\525p;f052500.#

FIG. 4. T̃11 , the stress energy of an affine null observer
physical spacetimeds252(e2r/Af)dx1dx2, evaluated at points
along the outer horizon, up to the point at which the two horizo
meet again. Notably, the evolution of the stress is smooth. In

vacuum choice,T̃11 increases quickly with increasingx2. There-
fore, as the outer horizon recedes to meet the inner horizon, the
a large increase in the stress energy toward the end of the eva
tion. @ l 51,q5100;Dm5.0002;N\525p;f052500.#
02401
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difference will represent the net flux going through a surfa
of constantf. The net flux going through a surface of fixe
radius is positive and vanishes away with time. The integ
of this quantity along the contour would give us th
Arnowitt-Deser-Misner~ADM ! mass, defined at spatial in
finity outside of a black hole. The indication then is that t
shock mass evaporates away, returning the black hole t
extremal state. We observe that the differential black h
ADM mass increases for a bit, before decreasing down cl
to zero. The temporary rise in mass before dying down m
be consistent with observations by@7#. Nevertheless, the im
portant quantity is its integral.

We can also consider the Bondi mass. This is gener
defined at future null infinityx1→`, giving m(x2). The
AdS boundary of these solutions makes it difficult to use t
definition. However, as discussed in@7,19,20#, becauseT22

is chosen everywhere to be zero, it is possible to defin
Bondi massm(x1) for all x2 with

e

re

s
is

is
ra-

FIG. 5. T̃11 , the stress energy of an affine null observer
physical spacetimeds252(e2r/Af)dx1dx2, evaluated at points
along the inner horizon, up to the point at which the two horizo

meet again.T̃11 decreases very quickly withx2, as the inner ho-
rizon moves on a nearly null-like trajectory.@ l 51;q5100;Dm
5.0002;N\525p;f052500.#

FIG. 6. T̃22 , the stress energy of an affine null observer
physical spacetimeds252(e2r/Af)dx1dx2, evaluated at points
along the outer horizon, up to the point at which the two horizo

meet again. The behavior ofT̃22 reflects the Hawking radiation
leaving the black hole and reaching zero as the black hole return

extremality. Along the inner horizon,T̃22 is essentially zero.@ l
51,q5100;Dm5.0002;N\525p;f052500.#
8-9
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mS~x1!5mS022l E dx1e22r]2f̃T11 . ~102!

We want to verify that]2mS50. By applying the partial
derivative with respect tox2 to the above we obtain

]2mS~x1!522l E dx1e22rT11@22]2r]2f̃1]2
2 f̃#,

~103!

where we used the fact that]2T1150. Further manipula-
tion, using the equations of motion, gives

]2mS~x1!5 l E dx1e22rT11S T22
f 2

N\

12p
t2~x2! D .

~104!

The bracketed term, then, must be constrained to zero fo
mass formula to be valid, which is indeed the case for th

FIG. 7. T̃11 , the stress energy of an affine null observer
physical spacetimeds252(e2r/Af)dx1dx2, shown at points

along the fixed radiusf̃5100. T̃11 is negative, a remnant of th
boundary conditions which demonstrates that negative flux gets
in to reduce the black hole mass. This flux goes to zero as the b
hole returns to extremality. @ l 51,q5100;Dm5.0002;N\
525p;f052500.#

FIG. 8. T̃22 , the stress energy of an affine null observer
physical spacetimeds252(e2r/Af)dx1dx2, shown at points

along the fixed radiusf̃5100. This positive outward flux goes t
zero as the black hole returns to extremality.@ l 51,q5100;Dm
5.0002;N\525p;f052500.#
02401
he
e

solutions. A calculation of this mass using the above deriv
values yields to first order inN\

mS~x1!5Dm2
N\

12p
ADm

2lq3
arctanhS ~x12x0

1!ADm

2lq3D .

~105!

A plot of mS(x1) ~Fig. 10! shows that evaporation occur
slowly until close to the meeting of the horizons, at whi
point the mass significantly drops. The mass evaporate
zero at the same value ofx1 where the outer apparent hor
zon recedes back to the extremal radius. That is to say, w
mS(xf

1)50, r 0(xf
1)5r 1(xf

1). The overshooting of the zero
point suggests that the evaporation does not end once e
mality is reached. However, the semiclassical description
black hole radiation is applicable only as long as

UTS ]T

]mS
D U!uTu, ~106!

nt
ck

FIG. 9. T̃222T̃11 , the stress energy of an affine null observ
in physical spacetimeds252(e2r/Af)dx1dx2, shown at points

along the fixed radiusf̃5100. This quantity is related to the dif
ferential ADM mass of the black hole. The area under the cu
corresponds to the finite shock mass of the black hole.@ l 51,q
5100;Dm5.0002;N\525p;f052500.#

FIG. 10. The Bondi mass, evaluated for the conformally r
caled spacetimeds252e2rdx1dx2, does not indicate significan
evaporation until close to the very end of black hole evaporati
This plot overshoots the zero mass point when the semiclas
approximation breaks down at the end point of evaporation.@ l
51,q5100;Dm5.0002;N\575p;f052500.#
8-10
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whereT is the black hole temperature. The temperature fl
tuations must remain small compared to the temperatur
self @4#. This means that our solutions no longer describe
evolution of the black hole once it has returned to its e
tremal state. We can only trust our results up tomS(x1)
50, when the outer horizonr 1 and the inner horizonr 2

meet again atr 0.

IV. DYNAMICAL BOUNDARY SOLUTIONS

The other case considered by Fabbri, Navarro,
Navarro-Salas@6,7# involves a questionable choice of boun
ary conditions. Here, instead of sending in a shock mass
observing the evolution of the black hole, the shock mas
permitted ‘‘quantum corrections’’ and allowed to behave d
namically. That is,mS(v), the shock mass, is now allowed
vary with v, instead of being expressed simply by t
DmQ(v2v0) function. In this case, the solutions forf̃ can-
not be found analytically. As stated before, it is required t
v5v(x1), or more conveniently, we choosev(x1) to be of
the form~74!. Repeating the results following~74!, and once
again gauge fixingr so that Eq.~61! still holds, we see tha

22]1
2 f̃14]1r]1f̃52F-~x1!5T11

f 2
N\

12p
t1~x1!.

~107!

From the Schwarzian derivative we have

t1~x1!5
1

2
$v,x1%5

1

2 S 1

2

F8~x1!2

F~x1!2
2

F9~x1!

F~x1!
D .

~108!

Thus

T11
f 5Dmd~x12x0

1!

52F-~x1!1
N\

24p F1

2 S F8~x1!

F~x1!
D 2

2
F9~x1!

F~x1!
G .

~109!

Continuity of f̃ requires that

F~x0
1!5 lq3, ~110!
02401
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F8~x0
1!50. ~111!

It follows further from Eq.~109! that

F9~x0
1!52Dm. ~112!

It is now possible to numerically solve forF(x1), using Eq.
~109! and the boundary conditions~110!–~112!. Typical be-
havior for F(x1) can be seen in Fig. 11. We set

S 22
f̃2

q3
1 lDmD @]1v~x1!#212l ]1f̃]1v~x1!50,

~113!

which is required in order to eliminate off-diagonal comp
nents in Eq.~20!, when making the coordinate transform
tions. This allows us to solve for

mS~x1!5
F82~x1!22F~x1!F8~x1!

2lq3
. ~114!

Using Eq.~109! this can be rewritten as

mS~x1!5
24p

N\ lq3
F2~x1!F-~x1!. ~115!

In a less straightforward manner, we could have also u
Eqs.~75! and~61! to evaluate the mass based on the previo
definition ~102!,

FIG. 11. A plot of the behavior of the functionF(x1) which
approaches zero with increasingx1. F50 signals the end point o
evaporation, which occurs at the AdS boundary,x25x1, represent-
ing timelike infinity.
]1mS~x1!52
F~x1!F-~x1!

lq3
~116!

52
F~x1!F-~x1!1F~x1!F9~x1!2F~x1!F9~x1!

lq3
~117!

5]1S 24pF~x1!2F-~x1!

N\ lq3 D , ~118!
8-11



fin

s
f

n
s
va

tu
-

as

n
ck
in

er,
at,

ued
s is
ccur-

the
r as

the
the
s to

d.
le

way.

in

-
da
tio

in

o

-

rve
nd-

ono-

KAMRAN DIBA AND DAVID A. LOWE PHYSICAL REVIEW D 65 024018
arriving at Eq.~114!. We can see now that

]1mS~x1!52
N\

24p

mS~x1!

F~x1!
. ~119!

Multiplying by dx1/dv

]vmS~v !52
N\

24p lq3
mS~v !, ~120!

so that

mS~v !5Dme2(N\/24p)[(v2v0)/ lq3]Q~v2v0!. ~121!

Using a complementary method, it is also possible to de
instead a late time Bondi mass@21,22#, which behaves as

]umS~u!52
N\

24p lq3
mS~u!. ~122!

We can now use the fact that the four-dimensional stre
energy tensor can be related back to the rate of change o
mass@7,23#,

Tvv
(4)5]vmS~v !5Dmd~v2v0!2

N\

24p lq3
mS~v !Q~v2v0!,

~123!

to see that there is a negative flux of energy being sent i
reduce the black hole mass@21#. Generally, however, it doe
not make sense to allow the shock mass being sent in to
as a function ofx1 for all values ofx2, including those
corresponding to very large distances away, where quan
effects due to an ‘‘infinitely’’ far black hole ought to be neg
ligibly small. SincemS(v) now behaves as shown above,
opposed to simplymS(v)5DmQ(v2v0), then this solution
corresponds to sending in negative mass after the initialDm.
This is an artifact of the boundary condition requireme
which forcesT2250 everywhere, so that basically the bla
hole evaporation occurs through flux being sent in from

FIG. 12. T̃11 , the stress energy of an affine null observer
physical spacetimeds252e2r/Afdx1dx2, evaluated at points

along the fixed radiusf̃5100. Again, the flux is negative, indicat
ing that negative mass is being sent in as a result of the boun
conditions. This flux goes to zero as the black hole evapora
draws to an end.@ l 51,q5100;Dm5.0002;N\575p;f052500.#
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finity outside. The previous boundary condition, howev
was more natural, since the diminishing mass was arrived
rather than put in by hand. Nonetheless, it may be arg
that the difference between these two boundary condition
minute. In both cases, the same general phenomena is o
ring; T2250 andT11,0 bring about the evolution of the
black hole.

The stress-energy tensor can again be calculated for
affinely null coordinates. We proceed in the same manne
before, evaluatingT̃11 and T̃22 for the physical metric
~90!. We see from the stress-energy tensors,T̃11 , in Fig. 12
that there is indeed a negative flux of energy entering
black hole. In order to bring about exponential decay of
shock mass, it was necessary to send in negative mas
bring it down. T̃22 , ~Fig. 13! behaves also as expecte
There is a flux of energy being emitted from the black ho
which approaches zero as the black hole evaporates a
The differential ADM mass, as represented byT̃222T̃11

ry
n

FIG. 13. T̃22 , the stress energy of an affine null observer
physical spacetimeds252e2r/Afdx1dx2, evaluated at points

along the fixed radiusf̃5100. This outward positive flux goes t
zero as the black hole returns to extremality.@ l 51,q5100;Dm
5.0002;N\575p;f052500.#

FIG. 14. T̃222T̃11 , the stress energy of an affine null ob
server in physical spacetimeds252e2r/Afdx1dx2, shown at

points along the fixed radiusf̃5100. This quantity is related to the
differential ADM mass of the black hole. The area under the cu
corresponds to the finite shock mass of the black hole. The bou
ary conditions were chosen so that this quantity goes to zero m
tonically. @ l 51,q5100;Dm5.0002;N\575p;f052500.#
8-12



e
ur

ge
a
al
e
in

ho
s
re
i

he
th
iv
ce
ge

e
ul

lly
by
ndi-

a
far

ra-
ted

atu-
e.
he
ary
ad

uld
ng
e

E-

STRESS-ENERGY TENSOR IN SOLUBLE MODELS OF . . . PHYSICAL REVIEW D 65 024018
~Fig. 14! decays down to zero, as a result of the combin
effect of the negative energy being sent in and the nat
black hole emission.

V. CONCLUSION

We have considered toy models for semiclassical char
black hole evaporation with back reaction included. The c
culations of the physical stress-energy tensor of a freely f
ing observer allowed us to verify that an observer at a fix
distance outside of the black hole perceives a flux decay
to zero, as the black hole evaporates away the injected s
mass and returns to the extremal state. The affine stres
ergy also varies smoothly across the inner and outer appa
horizons, suggesting that there is no buildup of energy
places which would have undermined the validity of t
semiclassical solutions. Hence, while in these solutions
black hole evaporation is largely dictated by the negat
flux of energy entering the black hole, the vacuum choi
discussed do indeed yield a picture consistent with char
black hole evaporation in string theory@24# without encoun-
tering the singularities feared by@3#. Nevertheless, there ar
some questions and difficulties of interpretation that wo
er

ek

e

e

ys

d
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be better answered by working in an asymptotica
Minkowskian spacetime. Most notably, we are troubled
the apparent arbitrariness of the imposed boundary co
tions. It would be more natural to choose a vacuum in
spacetime that corresponds to what an observer infinitely
from the black hole might observe. In addition, the evapo
tion of the black hole in these solutions is inherently dicta
a priori by t6(x6). It would be more satisfying if quantum
effects did not have to be predicated, but rather were n
rally manifested as the solutions evolved forward in tim
More physically motivated boundary conditions render t
equations of motion less easily solvable, making it necess
to solve a set of coupled partial differential equations inste
of the ordinary differential equations used here. This wo
have to be done numerically. This work is currently bei
completed@25–27#. Preliminary results, however, seem to b
consistent with those presented here@28#.
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