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Near-extremal black hole evaporation in asymptotically flat spacetime

Kamran Diba* and David A. Lowe
Department of Physics, Brown University, Providence, Rhode Island 02912

~Received 4 March 2002; published 30 July 2002!

We study black hole evaporation of near-extremal black holes in spherically reduced models with asymp-
totically Minkowskian spacetime, with the effects of the back reaction on the geometry included semiclassi-
cally. The stress-energy tensor is calculated for null in-falling observers. It is shown that the evaporation
proceeds smoothly and there are no instabilities of the outer or inner apparent horizon before the end point of
evaporation.
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I. INTRODUCTION

The evolution of near-extremal black holes has import
consequences for the resolution of the information parad
Extremal black holes are potential candidates for end p
remnants@1,2#, and can potentially store information behin
the double horizon@3#. In addition, the study of their evapo
ration avoids the naked singularities observed in models
linear dilaton black hole evaporation@4,5#, which are likely
typical of the evolution of uncharged black holes.

However, it has been suggested by Jacobson, using a
batic arguments, that the semiclassical evolution of ne
extremal black holes may break down while still far fro
extremality@6#. The claim is that in-falling photons create
at the outer apparent horizon during Hawking evaporat
will eventually fall through the inner horizon and either e
counter a large buildup of energy behind the inner horiz
or alternatively, pile up behind the outer horizon, causing
to become unstable. Thus, in either scenario, the semicla
cal approximation may break down long before one wo
expect based on thermodynamic or statistical mechanics
guments@7#.

This claim has been explored in an analytical model@8#
using a near-horizon Reissner-Nordstro¨m ~RN! model origi-
nally proposed in@9,10#, and further elaborated in@11,12#.
No instabilities were observed in that case. However, as
cussed extensively in@13,14#, the choice of boundary condi
tions is intimately related to the vacuum choice. The bou
ary conditions introduced by@9,10# in AdS2 and modified in
@8# do not have a straightforward physical interpretati
when extended to asymptotically Minkowskian spacetim
even though they have the useful advantage of rendering
equations of motion analytically soluble. This is becau
AdS space has a timelike infinity, so it is not possible
separately define ingoing and outgoing fluxes in a co
pletely coordinate invariant way~which is why it is not pos-
sible to construct aSmatrix in AdS space!. In asymptotically
Minkowskian spacetime, on the other hand, infinities are n
surfaces. This permits one to unambiguously define ingo
and outgoing energy fluxes. The boundary conditions m
be chosen so that at past null infinity the energy flux cor
sponds only to the classical shock-mass being sent in~see

*Email address: diba@het.brown.edu
0556-2821/2002/66~2!/024039~9!/$20.00 66 0240
t
x.
nt

of

ia-
r-

n

,
it
si-
d
ar-

s-

-

,
he
e

-

ll
g
st
-

@14# for a review in the present context!.
In the present work we numerically explore semiclassi

evaporation in two spherically reduced two-dimension
models of asymptotically Minkowskian near-extremal bla
holes. We find results consistent with@8#, indicating that
semiclassically there are no horizon instabilities during
evaporation of charged black holes.

II. THE RN MODEL

For our first model@15–17#, we begin with the Einstein-
Hilbert action

S5
1

2pE d2xA2ge22f@R12~¹f!212l2e2f#. ~1!

To this, we add an electromagnetic contribution:

SEM52
1

2pE d2xA2gQ2e2f, ~2!

whereQ is the charge of the black hole as it appears in
spherically symmetric Reissner-Nordstro¨m metric,

ds252S 12
2M

r
1

Q2

r 2 D dt21
1

12
2M

r
1

Q2

r 2

dr2. ~3!

The effective two-dimensional action that describes Eq.~3!
is given by

S5
1

2pE d2xA2ge22f@R12~¹f!2

12l2e2f2Q2e4f#. ~4!

In order to study the dynamics, we add a large numberN of
matter fields,f i ,

SM52
1

4p (
i 51

N E d2xA2g~¹ f i !
2. ~5!

This form of coupling is mostly justified by the ease of th
resulting solutions. However, it also corresponds to
©2002 The American Physical Society39-1
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KAMRAN DIBA AND DAVID A. LOWE PHYSICAL REVIEW D 66, 024039 ~2002!
bosonized version of the Callan-Rubakov modes of fermi
coupled to a magnetically charged black hole in four dim
sions@18#.

Additionally, we include the Liouville-Polyakov term

SQ52
N\

96pE d2xA2gRh21R, ~6!

which effectively accounts for the back-reaction of the m
ter stress-energy tensor on the spacetime geometry@19,20#.

The full Lagrangian in the conformal gauge becomes

L5e22f~4]1]2r24]1f]2f!1l2e2r2Q2e2r12f

22k]1r]2r. ~7!

From this point on, we choosel51.

A. Equations of motion

Variation of Eq.~7! with respect tof gives

]1]2r2]1]2f1]1f]2f1
Q2

4
e2r14f50. ~8!

A r variation gives

k

2
e2f]1]2r2]1]2f12]1f]2f

1
e2r

4
~e2f2Q2e4f!. ~9!

The resultant equations of motion can be written as

]1]2r5

]1f]2f1
1

4
e2r~e2f22Q2e4f!

12
k

2
e2f

, ~10!

]1]2f5]1]2r1]1f]2f1
Q2

4
e2r14f.

~11!

We may note that this model possesses a singularity
e22f5k/2. In our solutions, this singularity will lie safely
behind the inner horizon. It is useful to rewrite these eq
tions with f̃5e2f. Thus ]1f̃52]1f f̃ and ]2]1f̃

52]2]1f f̃1]2f ]1f f̃. We can rewrite Eq.~11!,

]1]2f2]1f ]2f

5
Q2

4
e2r14f1

]1f ]2f1
e2r

4
~e2f22Q2e4f!

12
k

2
e2f

,

~12!

as
02403
s
-

-

or

-

2
]1]2f̃

f̃
5

Q2

4

e2r

f̃4

1S ]1f̃ ]2f̃

f̃2
1

e2 r

4f̃2
2

Q2e2 r

2f̃4 D Y S 12
k

2f̃2D .

~13!

Hence

]1]2f̃52
Q2

4

e2r

f̃3
2

f̃]1f̃]2f̃1
e2rf̃

4
2

Q2e2r

2f̃

f̃22k/2
,

~14!

and

]1]2r5]1]2f2]1f]2f2
Q2

4
e2r14f ~15!

52
]1]2f̃

f̃
2

Q2e2r

4f̃4
. ~16!

More concisely,

]1]2r5

]1f̃]2f̃1
e2r

4 S 12
2Q2

f̃2 D
f̃22k/2

, ~17!

]1]2f̃52~]1]2r!f̃2
Q2e2r

4f̃3
. ~18!

B. The static solution

We first solve the equations of motion in the limit of th
static extremal black hole@15#. ~See also@21# for a recent
discussion of these static solutions, and@22# for analysis of
the full four-dimensional semiclassical equations of motio
in the near-horizon limit.! We will later need these as bound
ary conditions for the dynamic solutions. The model po
sesses a linear dilaton vacuum solution corresponding to

f52 log
1

2
~x12x2!, ~19!

r50. ~20!

This suggests to us a reasonable choice for the radial c
dinate:

s5
x12x2

2
. ~21!

We note that

]s

]x1
52

]s

]x2
5

1

2
. ~22!
9-2
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The equations of motion,~17! and ~18!, become

r95

~f̃8!22e2rS 12
2Q2

f̃2 D
f̃22k/2

, ~23!

f̃952r9f̃1
Q2e2r

f̃3
, ~24!

with the constraint that

2f̃~f̃922r8f̃9!1k@r92~r8!21t#50. ~25!

Linearizing about Eq.~19!, ass→` we see that

s2dr95112df̃82~112d r! ~26!

52df̃812d r, ~27!

and

df̃952s d r9. ~28!

We can see that

df̃952d r852s d r9 ~29!

has the solution

dr85
M

s2
, ~30!

df̃8512
2M

s
. ~31!

As s→` the linearized vacuum solutions are therefore

r52
M

s
, ~32!

f̃5s22M logs. ~33!

C. The boundary conditions

We will study black holes perturbed by shock waves
the matter fieldsf i . Our boundary conditions are chose
such that to the past ofx150, we have the static extrema
solution of Eqs.~23! and~24! with the initial conditions at a
chosen large value ofs5s` determined by Eqs.~32! and
~33!. In practice, we make choices forQ andk, and adjustM
so that a double horizon appears in the interior region of
solutions. Along a large value ofx25x`

2 , and to the future
of x150, we then impose the asymptotic linearized so
tions of a black hole with massM1DM

]1r52
M1DM

~x12x2!2
, ~34!
02403
f

e

-

]1f̃5
1

2
22

M1DM

x22x2
. ~35!

III. THE DW MODEL

The second model we consider, the so-called DW mo
derives from a general class of two-dimensional renorma
able generally covariant field theories@15,23#

Lcl5A2g@D~f!R1G~f!~¹f!21H~f!#. ~36!

We require that the potentials in Eq.~36! behave asymptoti-
cally like those of the linear dilaton gravity model consider
above. That is,

D~f!→ G~f!

4
→H~f!

4
→e22f ~37!

as f→2`. After requiring, without loss of generality, tha
G(f)522D8(f) and performing a Brans-Dicke transfo
mation on the metricĝ5e22fg, the Lagrangian can be re
written as

L̂cl5A2ĝ@D~f!R̂1W~f!#, ~38!

whereW(f)5e2fH(f). This is the form of the Lagrangian
we refer to as the DW model. For these solutions, it is c
venient to work in the conformal gauge,

ds252e2rdx1dx2. ~39!

Again, we addN matter fields, Eq.~5!, and a back-reaction
term, Eq.~6!. Now

L5Lcl1(
i 51

N

]1 f i]2 f i22k]1r]2r ~40!

54D]1]2r14D8]1f]2f1
W

2
e2r22f

22k]1r]2r1(
i 51

N

]1 f i]2 f i , ~41!

where we have letk5N\/12.

A. Equations of motion

Variation of Eq.~40! with respect tor andf yields

4D9]1f]2f14D8]1]2f1We2r22f14k]1]2r50
~42!

and

4D8]1]2r14D9]1f]2f28D8]1]2f

28D9]1f]2f2~W2W8/2!e2r22f

50, ~43!
9-3
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KAMRAN DIBA AND DAVID A. LOWE PHYSICAL REVIEW D 66, 024039 ~2002!
respectively. Reexpressing these in a more useful form,
obtain the equations of motion:

]1]2f52

D9]1f]2f1
1

4
e2r22fW1k]1]2r

D8
,

~44!

]1]2r5

2D9]1f]2f2
1

4
e2r22fS W1

W8

2 D
D812k

.

~45!

As discussed in@23#, we must chooseD such thatD8(f)
,0 for all f in order to avoid a singularity of the Brans
Dicke transformation. Also,

df

ds
;E dfW~f!D8~f! ~46!

has zeroes alongs, the radial coordinate, equal to the num
ber of zeroes ofW(f)D8(f) plus one. Therefore, for a
charged black hole,W(f)D8(f) must possess a single zer
for which f(s) will correspond to the extremal radius. I
our solutions, we investigate the choice whereD5e22f

2g2e2f and W542m2e4f. m2, as the coefficient ofe2f,
behaves as the charge of the black hole. This becomes
through comparison with Eq.~2!, from the Reissner-
Nordström model.

B. The boundary conditions

The boundary conditions are set so that to the pas
x0

151 the solution corresponds to the static, extremal so
tion of the equations of motion, while alongx252`, and to
the future ofx0

151, the boundary conditions are

f5r52
1

2
log@M1DM ~x0

12x1!2x1x2#, ~47!

]1f5]1r5
x21DM

2~M1DMx0
12x1x22DMx1!

.

~48!

This is the same boundary condition imposed in@4#. In prac-
tice, the static solutions are solved with the static form
Eqs. ~44! and ~45!, imposed at some large value ofx2

5x`
2 . Then,M is fine-tuned so that there is a double horiz

static solution to the equations of motion,~44! and~45!. This
solution in turn becomes the boundary condition atx0

151
for the full dynamical solutions.

IV. AFFINE COORDINATES

We would like to answer questions regarding black h
stability during the evaporation process. An appropriate in
cator would be the behavior of the stress-energy as obse
along a null affinely parametrized geodesic. The Christo
02403
e

ear

of
-

f

e
i-
ed
l

symbols for the metric~39! are

G11
1 52]1r, ~49!

G22
2 52]2r. ~50!

From the geodesic equation forx1, we obtain

d2x1

dx̃12
12]1r

dx1

dx̃1

dx1

dx̃1
50, ~51!

FIG. 1. DW model: The outer horizon is shown as it recedes
meet the inner horizon, in turn moving out, atf0, the extremal
radius. x1 and x2 are thex and y axes, respectively. (g58; m
515; k510; andDM51.5.!

FIG. 2. RN model: The outer horizon is shown as it recedes

meet the inner horizon, in turn moving out, atf̃0, the extremal
radius.x1 andx2 are thex andy axes, respectively. The additiona

contour lying above these is a remnant off̃0. No particular mean-
ing has been attributed to this as it lies in a causally inaccess
region. (Q5A60; k540; andDM50.2.!
9-4
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NEAR-EXTREMAL BLACK HOLE EVAPORATION IN . . . PHYSICAL REVIEW D66, 024039 ~2002!
with a similar equation forx2. x̃1 is an affinely param-
etrized null geodesic. Ifx2 is held fixed atx25x0

2 ,

]1r
dx1

dx̃1
5

dr

dx̃1
. ~52!

Then Eq.~51! reduces to

d2x1

dx̃12
12

dr

dx̃1

dx1

dx̃1
50. ~53!

Thus

d

dx̃1 S log
dx1

dx̃1D 522
dr

dx̃1
, ~54!

which is then solved to give

dx̃1

dx1
5C~x0

2!e2r(x1,x0
2), ~55!

whereC(x2) is a constant of integration which we will soo
determine. Similarly, at fixedx15x0

1 ,

FIG. 3. DW model: The Ricci scalar curvature,R, calculated
along the contourf521.3 throughout the evaporation proces
The asymptotic value to whichR settles coincides with its extrema
value. (g58; m515; k510; andDM51.5.!

FIG. 4. RN model: The Ricci scalar curvature,R, calculated

along the contourf̃515 throughout the evaporation process. T
asymptotic value to whichR settles coincides with its extrema
value. (Q5A60; k540; andDM50.2.!
02403
dx̃2

dx2
5C~x0

1!e2r(x0
1 ,x2). ~56!

Thus we make calculations ofT̃, as defined by

T̃66[S dx̃6

dx6D 2

T665
C~x0

7!

e4r(x6)
T66 . ~57!

This gives us an observable measure of the energy flux
is independent of the choice in coordinates.

We choose the normalization constants,C(x0
2) and

C(x0
1) in Eqs.~55! and ~56!, so the affine coordinates coin

cide with asymptotically Minkowskian coordinates far fro
the black hole. This normalization will not be necessary
the RN case because there the coordinates are alread
ymptotically Minkowskian. For the DW model, we choos
C(x0

2), C(x0
1) with the requirement that along some larg

chosen value ofx1, termedx15x`
1 , and along a similarly

chosenx25x`
2 ,

ds252dx̃1dx̃2, ~58!

.

FIG. 5. DW model: T̃11 calculated along the contourf
521.3 varies smoothly throughout the evaporation process.

data suggest that the fluxT̃11 approaches zero, or a small consta
as the shock mass is evaporated away. (g58; m515; k510; and
DM51.5.!

FIG. 6. DW model: T̃22 calculated along the contourf
521.3 varies smoothly throughout the evaporation process. As
end point of evaporation is reached, the data suggest that this q
tity approaches some constant value. (g58; m515; k510; and
DM51.5.!
9-5
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so that,

e2r
dx1

dx̃1

dx2

dx̃2
51. ~59!

Given that asymptoticallye22r5M2x1x2, then this
amounts to requiring that, atx25x0

2 ,

dx1

dx̃1
5e22r(x1,x0

2)
AM2x`

1x`
2

M2x`
1x0

2
, ~60!

and atx15x0
1

dx2

dx̃2
~x0

1!5e22r(x0
1 ,x2)

AM2x`
1x`

2

M2x0
1x`

2
. ~61!

Using these we obtain meaningfully normalized null affi
coordinates with which to calculate the stress-energy ten
of Eq. ~57!.

V. RESULTS

Careful analysis limits the range of values of our variab
(g, m, and k in the DW model,Q and k in the RN! for
which numerical errors are sufficiently small to permit u
ambiguous statements. We compared our results agains
classical solutions to gauge the buildup of numerical er

FIG. 7. RN model:T̃22 calculated along the contourf̃515
throughout the evaporation process. (Q5A60; k540; and DM
50.2.!

FIG. 8. RN model:T̃11 calculated along the contourf̃515
throughout the evaporation process. After the shock mass is in

duced atx0
1 , the flux T̃11 , which is negative, effectively ap

proaches zero. (Q5A60; k540; M55.641; andDM50.2.!
02403
rs

s

the
r.

These numerical constraints prevent us from making
back reaction arbitrarily weak. A useful measure of t
strength of the back reaction is the ratio of the time scale
the quantum evaporation to the light-crossing time of
black hole. These time scales may be extracted by inspec
of the equations of motion, with the results thatt l ight /tevap
5k/Q2 for the RN model, andt l ight /tevap5k/m for the DW
model. We quote the results for the regime when this ratio
of order one, where numerical errors are negilible. The qu
tative behavior of the solutions does not change ask is made
smaller as far as we have been able to determine. Of cou
the semiclassical approximation to the evaporation is no
valid when we do not impose the weak back-reaction con
tion.

A typical contour plot is shown for each model in Figs.
and 2. As a shock mass is sent in, the two apparent horiz
given by the zeroes of]1f, split apart, with the outer appar
ent horizon moving pastf0, while the inner horizon moves
behind this radius. Immediately afterwards, the outer horiz
begins to recede and meets the inner horizon back at

o-

FIG. 9. DW model: The Ricci scalar curvature,R, evaluated at
points along the outer horizon, the inner horizon, andf0, over-
lapped. The absolute value of the curvature at the outer horizo
increasing, while decreasing at the inner horizon. When the h
zons meet again at the extremal radius,f0, the curvature is at its
extremal value, indicating that the horizon environment has
turned to its original state. (g58; m515; k510; andDM51.5.!

FIG. 10. RN model: The Ricci scalar curvature,R, evaluated at

points along the outer horizon, the inner horizon, andf̃0, over-
lapped. The absolute value of the curvature at the outer horizo
increasing, while decreasing at the inner horizon. When the h

zons meet again at the extremal radius,f̃0, the curvature is at its
extremal value, indicating that the horizon environment has
turned to its original state. (Q5A60; k540; andDM50.2.!
9-6
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NEAR-EXTREMAL BLACK HOLE EVAPORATION IN . . . PHYSICAL REVIEW D66, 024039 ~2002!
extremal radiusf0 ~the value off at the position of the
horizon of the initial extremal black hole!.

It is useful to regard the separation of the horizons alo
thex2 direction as a measure of the excitation energy of
extremal black hole~this statement can be made more p
cise in the adiabatic approximation@15,17#!. This indicates
that the semiclassical solutions break down before the m
ing point of the apparent horizons since here the energy o
emitted quanta inevitably becomes comparable to the en
of excitation above the extremal ground state@7#. Evolving
for points in the causal future of this end point would
longer be consistent with the semiclassical approximatio

As discussed in@15#, the Ricci scalar curvature calculate
along a given contour off ~see Figs. 3 and 4! demonstrates
a return to the extremal quantity as evaporation proce
strongly indicating a smooth evaporation process. This is
say that an observer at a fixed radius outside of the b
hole sees the same physical environment towards the
point of evaporation as was seen before the shock mass
introduced.

For the DW model, we also evaluateT̃66 ~as shown in
Figs. 5 and 6!, calculated from Eq.~57! along the fixedf
contour in Fig. 1. The behavior of these quantities is sim
larly consistent with a smooth evaporation process, return
the near-extremal black hole back to the extremal gro
state. These fluxes are nonzero initially, but approach z
during evaporation. In the RN case, however, the flux p
ceived by an observer at a fixed radius outside of the bl
hole does not go to zero. This is evident from inspecting

FIG. 11. DW model:T̃11 evaluated at points along the out
horizon, shown as it varies smoothly for increasingx1. (g58; m
515; k510; andDM51.5.!

FIG. 12. DW model:T̃22 evaluated at points along the out
horizon, shown as it varies smoothly for increasingx1. (g58; m
515; k510; andDM51.5.!
02403
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behavior ofT22 , shown in Fig. 7, whose absolute valu
does not decrease monotonically, indeed eventually ris
again. This is a not an entirely unexpected result, since
affine coordinates are not true asymptotically Minkowski
coordinates, so the flux need not vanish at infinity.T11 ~Fig.
8!, however, does approach a zero value with increasingx1.

In order to directly test for instabilities in the inner o
outer apparent horizon we also inspect the behavior of
stress-energy momentum and the Ricci scalar curvature
the contours of]1f50 along the outer and inner appare
horizons in order to see if an instability arises. Figures 9 a
10 appear to indicate that the scalar curvature evol
smoothly throughout evaporation and returns to its extre
value. Meanwhile, Figs. 11–18 demonstrate that for b
models the absolute flux through the horizons decreases
ing the evaporation, consistent with a decreasing black h
mass. More importantly, there is no indication of a buildup
energy behind either the inner or outer apparent horizon.
smooth variation ofT11 andT22 in these regions sugges
a return, through evaporation, to the extremal ground s
after the initial excitation.

VI. DISCUSSION

The pictures emerging from both the DW and RN cas
were consistent. After the injection of shock matter, the ne

FIG. 13. DW model:T̃11 evaluated at points along the inne
horizon, shown as its value decreases smoothly for increasingx1.
(g58; m515; k510; andDM51.5.!

FIG. 14. DW model:T̃22 evaluated at points along the inne
horizon, shown as it varies for increasingx1. This flux goes to zero
as the shock mass evaporates away. (g58; m515; k510; and
DM51.5.!
9-7
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KAMRAN DIBA AND DAVID A. LOWE PHYSICAL REVIEW D 66, 024039 ~2002!
extremal black hole evaporates and returns to the extre
ground state. The outer and inner horizons experience
distressing energy instabilities and come back together,
joining at the extremal radius. Furthermore, studies of
Ricci scalar and the stress-energy tensors calculated a
null affine geodesics indicate that for observers outside
black hole, the environment returns to its original sta
These results are based on a semiclassical approxim
with a large numberN of matter fields, takingN→` with
\N fixed. Fluctuations of the stress energy tensor will
suppressed by powers of 1/N. It is conceivable that thes
fluctuations lead to instabilities that are not apparent at le
ing order in the largeN limit.

The original motivation for studying the evaporation
charged black holes was to shed light on the black hole
formation puzzle. Quantum mechanics necessarily requ
unitarity. However, semiclassically, the emitted radiati
from black holes possesses a thermal distribution. This le
to the information puzzle: what happens to the informat
contained in the ingoing matter once the mass of the bl
hole is radiated away?

While it may be that physics in the real universe is simp
not unitary @24–27#, other resolutions have neverthele
been suggested. One such potential resolution of the par
is that the information of the ingoing matter becomes sto
in stable remnants that remain at the end of evaporat
These remnants would apparently need to contain an a

FIG. 15. RN model:T̃22 evaluated at points along the out
horizon, shown as it varies smoothly for increasingx1. (Q5A60;
k540; andDM50.2.!

FIG. 16. RN model:T̃11 evaluated at points along the out

horizon, shown as it varies smoothly for increasingx1. The T̃11

flux through the outer horizon appears to vanish as evapora
proceeds. (Q5A60; k540; andDM50.2.!
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trarily large amount of information despite possessing
Planck-sized mass@28#. In this regard, extremal black hole
hold some promise; behind the charged black hole hori
lies an infinite throat region@3# that can apparently store a
arbitrary amount of information. This fact is also manifest
by the infinite degeneracy of the extremal ground state@17#
at the semiclassical level. Thus extremal black holes rep
sent the testing ground for the remnant resolution to the
formation paradox@1,2#. There is some debate as to wheth
or not the pair production of such charged black holes occ
at a finite rate@1–3,29#, given the infinite degeneracy of th
ground state. However, this infinite degeneracy is likely
result of the semiclassical averaging over the quantum ge
etries. This should not occur in a full quantum treatment. F
example, D-brane calculations demonstrate that summ
over microstates in fact yields a finite Bekenstein-Hawki
entropy @30#. Matrix theory also indicates a similar resu
@31#. This may lay to rest infinite production concerns. O
studies did not reveal an instability in the evolution of e
cited extremal black holes. Thus as it stands, we cannot
rule them out as the ultimate devices for information stora

Another suggested resolution to the information puz
proposes that higher order quantum corrections would re
that the outgoing radiation is not strictly thermal, carryin
off information about the ingoing radiation in the form o

n

FIG. 17. RN model:T̃11 evaluated at points along the inne
horizon, shown as it varies for increasingx1. This flux decreases in
absolute value throughout the evaporation process. (Q5A60; k
540; andDM50.2.!

FIG. 18. RN model:T̃22 evaluated at points along the inne
horizon, shown as it varies smoothly for increasingx1. (Q5A60;
k540; andDM50.2.!
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quantum correlations with the ingoing matter. This, howev
while at first seeming to be a most agreeable resolution,
sents other theoretical difficulties. Once matter disappe
behind the horizon, it becomes causally dissociated from
outside region. Therefore such cross-horizon correlati
would necessarily violate causality, unless some sort of
formation stripping were to occur at the horizon itself. At t
semiclassical level, however, we do not expect anything s
cial to occur at the horizon in the frame of reference of
in-falling observer. This issue can be resolved by appea
to a ‘‘stretched horizon’’ membrane picture@32#, based on
the principle of black hole complementarity. This princip
asserts that matter which has fallen past the event hor
and the Hawking radiation emitted from there are not diff
ent objects; they are equivalent and complementary des
tions from reference frames which can be related to e
other by large Lorentz boosts. Since there is no commun
tion outside of the black hole once an observer has passe
there is no logical contradiction by prescribing that unitar
remains valid entirely outside of the horizon. Furthermo
the contribution of nonlocal terms arising from string theo
@33,34# may account for cross-horizon correlations whi
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will nevertheless be undetectable by any single obser
That is, if we do not require a local field theory, except
low energy, it becomes possible to construct a fully se
consistent causal theory where field operators behind an
front of the horizon will not commute@35#. String theory and
the existence of quantum correlations between the ingo
and outgoing matter then ultimately promise to contain
key for resolving the information puzzle.

The models we have considered here suggest that a
semiclassical level, upon entering the black hole, informat
is lost to the outside world. However, while it becomes
accessible, the information enters the infinite asympto
throat region behind the horizon and is not actually d
stroyed. While this picture permits remnants to contain
‘‘lost’’ information, it still remains possible that the nonloca
string theory terms do indeed represent the real universe
the information does return to the outside region. Our s
cess lies in showing that the semiclassical treatment
charged black hole evaporation does not breakdown so
than would be expected from@7#, despite heuristic argument
of Jacobson@6# to the contrary. Results presented here
also consistent with analytical results found in@8#.
r,
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