PHYSICAL REVIEW D 66, 024039 (2002

Near-extremal black hole evaporation in asymptotically flat spacetime

Kamran Dibd and David A. Lowe
Department of Physics, Brown University, Providence, Rhode Island 02912
(Received 4 March 2002; published 30 July 2p02

We study black hole evaporation of near-extremal black holes in spherically reduced models with asymp-
totically Minkowskian spacetime, with the effects of the back reaction on the geometry included semiclassi-
cally. The stress-energy tensor is calculated for null in-falling observers. It is shown that the evaporation
proceeds smoothly and there are no instabilities of the outer or inner apparent horizon before the end point of

evaporation.
DOI: 10.1103/PhysRevD.66.024039 PACS nunifer04.70.Dy
I. INTRODUCTION [14] for a review in the present context

In the present work we numerically explore semiclassical

The evolution of near-extremal black holes has importangevaporation in two spherically reduced two-dimensional

consequences for the resolution of the information paradoxnodels of asymptotically Minkowskian near-extremal black

Extremal black holes are potential candidates for end poinfioles. We find results consistent wif], indicating that

remnantg1,2], and can potentially store information behind semiclassically there are no horizon instabilities during the

the double horizoh3]. In addition, the study of their evapo- €vaporation of charged black holes.

ration avoids the naked singularities observed in models of

linear dilaton black hole evaporatiqd,5], which are likely Il. THE RN MODEL

typical of the evolution of uncharged black holes. ) o ) )
However, it has been suggested by Jacobson, using adia- For our first mode[15-17, we begin with the Einstein-

batic arguments, that the semiclassical evolution of neartilbert action

extremal black holes may break down while still far from

extremality[6]. The claim is that in-falling photons created S= if d2x\J—ge 2[R+2(V ¢)2+2\2e??]. (1)

at the outer apparent horizon during Hawking evaporation 2m

will eventually fall through the inner horizon and either en- ] ) o

counter a large buildup of energy behind the inner horizonTO this, we add an electromagnetic contribution:

or alternatively, pile up behind the outer horizon, causing it

to become_unsjtable. Thus, in either scenario, the semiclassi- Sey=— ij dzx\/—_ngezd’, )

cal approximation may break down long before one would 2

expect based on thermodynamic or statistical mechanics ar-

guments7]. whereQ is the charge of the black hole as it appears in the
This claim has been explored in an analytical mo@l  spherically symmetric Reissner-Nordstranetric,

using a near-horizon Reissner-Nordsir€RN) model origi-

nally proposed inf9,10], and further elaborated ifl1,12. Q? ) 1 )

No instabilities were observed in that case. However, as dis- ds’=—|1- T+ 2 t oM Q2 G
cussed extensively ifl3,14], the choice of boundary condi- 1— —+ =

tions is intimately related to the vacuum choice. The bound- r r2

ary conditions introduced bj9,10] in AdS, and modified in . _ _ _ _

[8] do not have a straightforward physical interpretationThe effective two-dimensional action that describes €.
when extended to asymptotically Minkowskian spacetime|s given by

even though they have the useful advantage of rendering the 1

equations of motion analytically soluble. This is because :_J' 2y [T a2 2

AdS space has a timelike infinity, so it is not possible to S 2 d>xV-ge IR+2(Ve)

separately define ingoing and outgoing fluxes in a com-
pletely coordinate invariant wafgvhich is why it is not pos-
sible to construct & matrix in AdS spacke In asymptotically .
Minkowskian spacetime, on the other hand, infinities are nuIIIn order_ to study the dynamics, we add a large nuntbef
surfaces. This permits one to unambiguously define ingoing@tter fieldsf;,

and outgoing energy fluxes. The boundary conditions must L N

be chosen so that at past null infinity the energy flux corre- __ = 20, [~ N2

sponds only to the classical shock-mass being serisée Su 4 .21 d>V=g(V )~ ®

+2)\%e??—Q%*]. 4

This form of coupling is mostly justified by the ease of the
*Email address: diba@het.brown.edu resulting solutions. However, it also corresponds to the
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bosonized version of the Callan-Rubakov modes of fermions ~ 2 22p
d.d_¢dp Qe

coupled to a magnetically charged black hole in four dimen— ——

sions[18].
Additionally, we include the Liouville-Polyakov term

N
st—@f d?xy/—gRO 'R, (6)

which effectively accounts for the back-reaction of the mat-. .o

ter stress-energy tensor on the spacetime georfie®20.

The full Lagrangian in the conformal gauge becomes

L=e ?%(4d,9_p—4d, pi_¢)+\%eP—Q%e?+2¢
—2Kkd L pd_p. (7)

From this point on, we choose=1.

A. Equations of motion
Variation of Eq.(7) with respect togp gives

2
i 0_p—09,9_p+d, ¢&_¢+%e2”*4‘/’=0. (8)

A p variation gives

K 2
€ 9. 0_p—0,0_Pp+20,Ppi_¢

e?r
+ T(e”— Q%e*?). 9

The resultant equations of motion can be written as

1
9, ¢a,¢+ZeZP(e2¢—2Q2e4¢)

d,.0_p= , (10
1_ £e2¢
2
QZ
0,0_p=0,.9_p+d.dpi_p+ Tezf’““/’.
(11

s 49

. ba_p e Q2e2P>/( K)
—t == 1-—].
+ ¢2 +4¢2 2¢4 2¢2
(13

L eZpE) Q2e2p

 qrew T

I
(14

and
Q2
,0_p=d,0_¢p—0d,Ppd_dp— Te29+4¢ (15)
9.d_¢ Q%
= . 16
b 4pt o
More concisely,
-~ ~ €% 2Q?
ﬂ+¢0_¢+7(1—?>
&Jrﬁ,p: &2—K/2 ’ (17)
ZeZp

(18

a+aiib=—(a+afp)?i>—7¢3-

B. The static solution

We first solve the equations of motion in the limit of the
static extremal black holgl5]. (See alsd?21] for a recent
discussion of these static solutions, d2&] for analysis of
the full four-dimensional semiclassical equations of motion,
in the near-horizon limij.We will later need these as bound-
ary conditions for the dynamic solutions. The model pos-
sesses a linear dilaton vacuum solution corresponding to

We may note that this model possesses a singularity for
e 2%=k/2. In our solutions, this singularity will lie safely
behind the inner horizon. It is useful to rewrite these equa-
tions with ¢=e"?. Thus d.dp=—d. ¢ and d_d. ¢
=—0_d.pdp+d_¢ . dd. We can rewrite Eq(11),

1
¢=—logz (X" —x7),

p=0.

4 d_p—d,pd_¢ dinate:
e2p + _
, 9 o+ T(e2¢’—2Q2e4“’) X=X
= Q_e2P+4¢+ . 2
4 K '
1--e*
2 We note that
(12) Jdo _ Jo B 1
as ax* ax~ 2
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This suggests to us a reasonable choice for the radial coor-

(21)

(22
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The equations of motior(17) and(18), become 1 M+AM
d,p==—-2 : (35
- 2Q? 2 X =x
(¢")2-e”| 1- =
n ¢
= = ) (23 Il. THE DW MODEL
¢ — kl2
The second model we consider, the so-called DW model,
N _ Q% derives from a general class of two-dimensional renormaliz-
¢"'=—p"Pp+ ? (24 able generally covariant field theorigk5,23

Lo=—0g[D()R+G($)(VH)2+H(d)]. (36

~ ~ , 2 We require that the potentials in E@®6) behave asymptoti-
2¢(¢"=2p"¢") + klp" = (p")*+1]=0. (29 cally like those of the linear dilaton gravity model considered
above. That is,

with the constraint that

Linearizing about Eq(19), aso—« we see that

~ H
o28p"=1+25%' —(1+26p) (26) D(d))_)%@_}(%@_)e,m 37)
=26¢'+25p, (27) as ¢p— — o, After requiring, without loss of generality, that
and G(¢)=—2D’'(¢) and performing a Brans-Dicke transfor-
mation on the metrig=e2%g, the Lagrangian can be re-
5’(}//: - 5P”- (28) written as
We can see that Lo=V—0[D($)R+W(¢)], (38
8¢"'=28p' =—a5p” (290  whereW(¢)=e**H(¢). This is the form of the Lagrangian
we refer to as the DW model. For these solutions, it is con-
has the solution venient to work in the conformal gauge,
M ds?=—e?dxtdx . (39
op'=—, (30
g

Again, we addN matter fields, Eq(5), and a back-reaction
term, Eq.(6). Now

~ 2M
5¢’:l— 7 (31) N
L=Ly+ >, d.fi0 fi—2kd pd_p (40)
As o— the linearized vacuum solutions are therefore i=1
M ’ w 2p—2
p=——, (32) =4D3,9_p+4D' 9, i+ e ¢
g
- N
¢=0—-2Mlogo. (33 —2Ka+pa,p+;1 9. fa_f;, (41)

C. The boundary conditions where we have lek=N7/12.

We will study black holes perturbed by shock waves of
the matter fieldsf;. Our boundary conditions are chosen A. Equations of motion
such that to the past of* =0, we have the static extremal o . )
solution of Eqs(23) and(24) with the initial conditions at a Variation of Eq.(40) with respect top and ¢ yields
chosen large value of = o, determined by Eqs(32) and " / p—2¢ _
(33). In practice, we make choices fQrand«, and adjusMm 4D"9, $3-§+4D'3.9-p+ We* >0+ 4x3,.9-p=0 42)
so that a double horizon appears in the interior region of the
solutions. Along a large value of =x_, , and to the future gnd
of x*=0, we then impose the asymptotic linearized solu-

tions of a black hole with madsl + AM 4D'9,9_p+4D"9,pd_¢p—8D'd,d_¢
M+AM —8D"d, i p—(W—W'/2)e?~2¢
Ip=2—"-, (34)
P X2 ~0, (43
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respectively. Reexpressing these in a more useful form, we 0
obtain the equations of motion:
1
D"d,¢pd_d+ ZeZP‘2¢W+ KL I_p -0.5
d,d_¢p=— ,
+d-¢ Y
(44 -1
1 w’
D", pd_p— —e> 2 W+ —)
9 g o 4 2 -1.5
wop D'+ 2«
(45)
-2
As discussed 23], we must choos® such thatD'(¢)
<0 for all ¢ in order to avoid a singularity of the Brans-
Dicke transformation. Also, 0 5 10 15 20

do FIG. 1. DW model: The outer horizon is shown as it recedes to
_~f dpW($)D' () (46) meet the inner horizon, in turn moving out, &t, the extremal
do radius.x* and x~ are thex andy axes, respectively.{=8; u

. . =15; k=10; andAM=1.5)
has zeroes along;, the radial coordinate, equal to the num-

ber of zeroes ofW(¢)D'(¢) plus one. Therefore, for a
charged black holaN($)D’(¢) must possess a single zero,
for which ¢(o) will correspond to the extremal radius. In

symbols for the metri¢39) are

+
our solutions, we investigate the choice whdde=e 2¢ I'iy=2d.p, (49)
—v?e?? and W=4—p2e*®. 12, as the coefficient 0&??,
behaves as the charge of the black hole. This becomes clear r-_=2d_p. (50)
through_ comparison with Eq(2), from the Reissner-
Nordstron model. From the geodesic equation fef, we obtain
B. The boundary conditions d2x* dx* dxct
The boundary conditions are set so that to the past of oA + 0+P§§=0, (51)

xg =1 the solution corresponds to the static, extremal solu-
tion of the equations of motion, while aloxg = —, and to

the future ofx, =1, the boundary conditions are —00
1 . -
¢:P:_§|OQ[M+AM(X0_X+)—X+X 1, (47 600
Db, p— X +AM 200
i P 2(M+AMX; —x X" —AMx") 400
(48)
. e 300
This is the same boundary condition imposed4h In prac-
tice, the static solutions are solved with the static form of 200
Egs. (44) and (45), imposed at some large value &f
=X_, . Then,M is fine-tuned so that there is a double horizon 100
static solution to the equations of motigd4) and(45). This
solution in turn becomes the boundary conditionxgt=1 0
for the full dynamical solutions. 0 20 40 60 80 100 120 140

FIG. 2. RN model: The outer horizon is shown as it recedes to
meet the inner horizon, in turn moving out, &5, the extremal

We would like to answer questions regarding black holeradius.x* andx™ are thex andy axes, respectively. The additional
stability during the evaporation process. An appropriate indicontour lying above these is a remnantaig_ No particular mean-
cator would be the behavior of the stress-energy as observasy has been attributed to this as it lies in a causally inaccessible
along a null affinely parametrized geodesic. The Christoffekegion. Q= \/60; k=40; andAM=0.2)

IV. AFFINE COORDINATES

024039-4
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FIG. 3. DW model: The Ricci scalar curvaturB, calculated FIG. 5. DW model: T, . calculated along the contou
along the contourd=— 1.3 throughout the evaporation process. — —1.3 varies smoothly throughout the evaporation process. The

The asymptotic value to whicR settles coincides with its extremal data suggest that the fidi, . approaches zero, or a small constant,
value. (y=8; u=15; k=10; andAM = 1.5) as the shock mass is evaporated away=8; u=15; «k=10; and

AM=1.5)

+

with a similar equation forx~. x* is an affinely param-

etrized null geodesic. Ik~ is held fixed atx™ =X, , ——C(x*)ezf’(xg"‘f) (56
— =X :
dx* B dp
‘7”’@ T dxt (52 Thus we make calculations af, as defined by
Then Eq.(51) reduces to = E - :C(XS)T (57
** Ayt = e4”(xi) B

d’>x" dp dx*

—— t2—= —— =
dx™2 dxT dx*

(53 This gives us an observable measure of the energy flux that
is independent of the choice in coordinates.
We choose the normalization constants(x,) and

Thus C(xg) in Egs.(55) and(56), so the affine coordinates coin-
N cide with asymptotically Minkowskian coordinates far from
d |O§dx —_ di (54) the black hole. This normalization will not be necessary in
dx* dx*t dx*’ the RN case because there the coordinates are already as-
ymptotically Minkowskian. For the DW model, we choose
which is then solved to give C(Xg), C(xg) with the requirement that along some large
chosen value ok™, termedx* =xZ , and along a similarly
dx*t L chosenx ™ =x_, ,
—— =C(x)e*™ %), (55)
ds?=—dx"dx", (59
whereC(x™) is a constant of integration which we will soon T
determine. Similarly, at fixeat " =xg , —‘O/A-ﬂ-’L&
R i \
;"2.5 7.5 10 12.5 15 17.5 20 %
0.0024 .
:-0.0032
0.00235 .
0.0023 -0.0034
0.00225
. *-0.0036
50 100 150 28800 ¥

FIG. 6. DW model: T__ calculated along the contou
FIG. 4. RN model: The Ricci scalar curvaturg, calculated = —1.3 varies smoothly throughout the evaporation process. As the
along the contoukp=15 throughout the evaporation process. Theend point of evaporation is reached, the data suggest that this quan-
asymptotic value to whiclR settles coincides with its extremal tity approaches some constant valug=8; u=15; «=10; and
value. Q= 60; k=40; andAM=0.2) AM=1.5)
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FIG. 7. RN model:T__ calculated along the contoub= 15
throughout the evaporation proces€=/60; x=40; and AM
-0.2)

so that,

2pdx+ dx~
e d';('*' Ezl. (59)

Given that asymptoticallye >*=M—x"x", then this
amounts to requiring that, at” =x, ,

+ M _wto—
R A (60)
dx* M — X X
and atx " =xg
dx AM=xox
—(xg)=e 2l ) I T (61)
dx~ M —Xg X,
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.
2.5 5 7.5 10 12.5 15 17.5 20 %

o/

FIG. 9. DW model: The Ricci scalar curvatuiR, evaluated at
points along the outer horizon, the inner horizon, af¢ over-
lapped. The absolute value of the curvature at the outer horizon is
increasing, while decreasing at the inner horizon. When the hori-
zons meet again at the extremal radigg, the curvature is at its
extremal value, indicating that the horizon environment has re-
turned to its original state.y(=8; u=15; k=10; andAM =1.5)

These numerical constraints prevent us from making the
back reaction arbitrarily weak. A useful measure of the
strength of the back reaction is the ratio of the time scale of
the quantum evaporation to the light-crossing time of the
black hole. These time scales may be extracted by inspection
of the equations of motion, with the results thgfn/te,ap

= k/Q? for the RN model, andign /te,ap= «/ 1 for the DW
model. We quote the results for the regime when this ratio is
of order one, where numerical errors are negilible. The quali-
tative behavior of the solutions does not change &smade
smaller as far as we have been able to determine. Of course,
the semiclassical approximation to the evaporation is no less
valid when we do not impose the weak back-reaction condi-

Using these we obtain meaningfully normalized null affinejgn.
coordinates with which to calculate the stress-energy tensors A typjcal contour plot is shown for each model in Figs. 1

of Eq. (57).

V. RESULTS

Careful analysis limits the range of values of our variable

(v, m, and k in the DW model,Q and « in the RN for

and 2. As a shock mass is sent in, the two apparent horizons,
given by the zeroes af, ¢, split apart, with the outer appar-
ent horizon moving pasp,, while the inner horizon moves
behind this radius. Immediately afterwards, the outer horizon

Sbegins to recede and meets the inner horizon back at the

which numerical errors are sufficiently small to permit un-
ambiguous statements. We compared our results against the

classical solutions to gauge the buildup of numerical error. ~ ~2:093
-0.01
T_.
0055 -0.015
006 -0.02
0065 -0.025
-0.07} -0.03 .
/ 20 40 60 80 100 120 1407%
~0.075} f
£ . FIG. 10. RN model: The Ricci scalar curvatuke,evaluated at
50 100 150 200 g0 * points along the outer horizon, the inner horizon, ahg over-

lapped. The absolute value of the curvature at the outer horizon is
FIG. 8. RN model:T. , calculated along the contoub= 15 increasing, while decreasing at the inner horizon. When the hori-
throughout the evaporation process. After the shock mass is intrgzons meet again at the extremal radiEb@, the curvature is at its
duced atxg , the flux T.., which is negative, effectively ap- extremal value, indicating that the horizon environment has re-
proaches zero.@=/60; k=40; M =5.641; andAM =0.2) turned to its original state. = y60; x=40; andAM=0.2)
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-0.125 3
-0.4
-0.15 )
/ o
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FIG. 11. DW model:T. , evaluated at points along the outer
horizon, shown as it varies smoothly for increasitig (y=8; u

FIG. 13. DW modelT, , evaluated at points along the inner
=15; k=10; andAM=1.5)

horizon, shown as its value decreases smoothly for increasing
(y=8; u=15; k=10; andAM=1.5)
extremal radiusp, (the value of¢ at the position of the
horizon of the initial extremal black hole behavior of T__, shown in Fig. 7, whose absolute value
It is useful to regard the separation of the horizons alongloes not decrease monotonically, indeed eventually rising
thex™ direction as a measure of the excitation energy of theagain. This is a not an entirely unexpected result, since the
extremal black holdthis statement can be made more pre-affine coordinates are not true asymptotically Minkowskian
cise in the adiabatic approximatidt5,17]). This indicates coordinates, so the flux need not vanish at infirity., (Fig.
that the semiclassical solutions break down before the mee8), however, does approach a zero value with increasing
ing point of the apparent horizons since here the energy of an In order to directly test for instabilities in the inner or
emitted quanta inevitably becomes comparable to the energyuter apparent horizon we also inspect the behavior of the
of excitation above the extremal ground stfif¢ Evolving  stress-energy momentum and the Ricci scalar curvature for
for points in the causal future of this end point would nothe contours of/,. =0 along the outer and inner apparent
longer be consistent with the semiclassical approximation. horizons in order to see if an instability arises. Figures 9 and
As discussed ifi15], the Ricci scalar curvature calculated 10 appear to indicate that the scalar curvature evolves
along a given contour op (see Figs. 3 and)4dlemonstrates smoothly throughout evaporation and returns to its extremal
a return to the extremal quantity as evaporation proceedsalue. Meanwhile, Figs. 11-18 demonstrate that for both
strongly indicating a smooth evaporation process. This is tenodels the absolute flux through the horizons decreases dur-
say that an observer at a fixed radius outside of the blaclg the evaporation, consistent with a decreasing black hole
hole sees the same physical environment towards the endass. More importantly, there is no indication of a buildup of
point of evaporation as was seen before the shock mass wasergy behind either the inner or outer apparent horizon. The
introduced. smooth variation off . , andT__ in these regions suggests
For the DW model, we also evaluale.. (as shown in & return, through evaporation, to the extremal ground state
Figs. 5 and § calculated from Eq(57) along the fixed¢  after the initial excitation.
contour in Fig. 1. The behavior of these quantities is simi-
larly consistent with a smooth evaporation process, returning VI. DISCUSSION

the near-extremal black hole back to the extremal ground The bi ing f both the DW and RN
state. These fluxes are nonzero initially, but approach zero € pictures emerging from both the an cases

during evaporation. In the RN case, however, the flux perVere consistent. After the injection of shock matter, the near-

ceived by an observer at a fixed radius outside of the black
hole does not go to zero. This is evident from inspecting the

X+
4.5 4.75 ppempem=TT5 5 5 575 6
o 7 -0.2
-0.4
-0.004

-0.6
-0.0045 . 0.8

‘o

\I
-0.005 \ . 1
-0.0055 B -1.2
P -1.4

2 3 4 5 [

FIG. 14. DW modelT__ evaluated at points along the inner
FIG. 12. DW model:T__ evaluated at points along the outer horizon, shown as it varies for increasirg. This flux goes to zero
horizon, shown as it varies smoothly for increasiig (y=8; u as the shock mass evaporates away=8; w=15; k=10; and
=15; k=10; andAM=1.5) AM=1.5)
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T Tis
-0.2
-0.6
-0.4
-0.8 0.6

20 40 60 80 100 1‘2&{ X

\ H0 105 110 115 120 125 130 X
’ -1.41

FIG. 15. RN model:T__ evaluated at points along the outer
horizon, shown as it varies smoothly for increasitg (Q= /60;
x=40; andAM=0.2)

FIG. 17. RN model T, , evaluated at points along the inner
horizon, shown as it varies for increasirg. This flux decreases in
absolute value throughout the evaporation proce€s= {/60; «
=40; andAM=0.2)
extremal black hole evaporates and returns to the extremal
ground state. The outer and inner horizons experience no . . . . .
distressing energy instabilities and come back together, rér@rly large amount of information despite possessing a
joining at the extremal radius. Furthermore, studies of thd’'anck-sized masi2g]. In this regard, extremal black holes
Ricci scalar and the stress-energy tensors calculated alortp!d Some promise; behind the charged black hole horizon
null affine geodesics indicate that for observers outside thé€s an infinite throat regiofi3] that can apparently store an
black hole, the environment returns to its original state arbitrary amount of information. This fact is also manifested
These results are based on a semiclassical approximatidty the infinite degeneracy of the extremal ground sfai
with a large numbeN of matter fields, taking\—o with at the semiclassical level. Thus extremal black holes repre-
#N fixed. Fluctuations of the stress energy tensor will besent the testing ground for the remnant resolution to the in-
suppressed by powers ofNL/ It is conceivable that these formation paradox1,2]. There is some debate as to whether
fluctuations lead to instabilities that are not apparent at leadar not the pair production of such charged black holes occurs
ing order in the largeN limit. at a finite ratd 1-3,29, given the infinite degeneracy of the

The original motivation for studying the evaporation of ground state. However, this infinite degeneracy is likely a
charged black holes was to shed light on the black hole inresult of the semiclassical averaging over the quantum geom-
formation puzzle. Quantum mechanics necessarily requirestries. This should not occur in a full quantum treatment. For
unitarity. However, semiclassically, the emitted radiationexample, D-brane calculations demonstrate that summing
from black holes possesses a thermal distribution. This leadsver microstates in fact yields a finite Bekenstein-Hawking
to the information puzzle: what happens to the informationentropy [30]. Matrix theory also indicates a similar result
contained in the ingoing matter once the mass of the black31]. This may lay to rest infinite production concerns. Our
hole is radiated away? studies did not reveal an instability in the evolution of ex-

While it may be that physics in the real universe is simplycited extremal black holes. Thus as it stands, we cannot yet
not unitary [24—27], other resolutions have neverthelessrule them out as the ultimate devices for information storage.
been suggested. One such potential resolution of the paradox Another suggested resolution to the information puzzle
is that the information of the ingoing matter becomes storegbroposes that higher order quantum corrections would reveal
in stable remnants that remain at the end of evaporatiorthat the outgoing radiation is not strictly thermal, carrying
These remnants would apparently need to contain an arbeéff information about the ingoing radiation in the form of

T++ T__
-0.2 -1.4
-0.4 -1.5
-0.6 -1.6
-0.8 -1.7
N -1.8
i/ 20 40 60 80 100 120 %
o1 2f -1.9
o +
- ) 100 105 110 115 120 125 130 %
FIG. 16. RN model:T, , evaluated at points along the outer
horizon, shown as it varies smoothly for increasiig The T, . FIG. 18. RN modelT__ evaluated at points along the inner
flux through the outer horizon appears to vanish as evaporatiohorizon, shown as it varies smoothly for increasing (Q= /60;
proceeds. Q= /60; k=40; andAM=0.2) xk=40; andAM=0.2)
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guantum correlations with the ingoing matter. This, howeverwill nevertheless be undetectable by any single observer.
while at first seeming to be a most agreeable resolution, preFhat is, if we do not require a local field theory, except at
sents other theoretical difficulties. Once matter disappear®w energy, it becomes possible to construct a fully self-
behind the horizon, it becomes causally dissociated from theonsistent causal theory where field operators behind and in
outside region. Therefore such cross-horizon correlationfront of the horizon will not commutg35]. String theory and
would necessarily violate causality, unless some sort of inthe existence of quantum correlations between the ingoing
formation stripping were to occur at the horizon itself. At theand outgoing matter then ultimately promise to contain the
semiclassical level, however, we do not expect anything spekey for resolving the information puzzle.

cial to occur at the horizon in the frame of reference of the The models we have considered here suggest that at the
in-falling observer. This issue can be resolved by appealingemiclassical level, upon entering the black hole, information
to a “stretched horizon” membrane pictuf82], based on is lost to the outside world. However, while it becomes in-
the principle of black hole complementarity. This principle accessible, the information enters the infinite asymptotic
asserts that matter which has fallen past the event horizotihroat region behind the horizon and is not actually de-
and the Hawking radiation emitted from there are not differ-stroyed. While this picture permits remnants to contain the
ent objects; they are equivalent and complementary descrigtost” information, it still remains possible that the nonlocal
tions from reference frames which can be related to eachtring theory terms do indeed represent the real universe and
other by large Lorentz boosts. Since there is no communicahe information does return to the outside region. Our suc-
tion outside of the black hole once an observer has passed ioess lies in showing that the semiclassical treatment of
there is no logical contradiction by prescribing that unitarity charged black hole evaporation does not breakdown sooner
remains valid entirely outside of the horizon. Furthermore than would be expected frofi], despite heuristic arguments
the contribution of nonlocal terms arising from string theory of Jacobsor{6] to the contrary. Results presented here are
[33,34 may account for cross-horizon correlations whichalso consistent with analytical results found8j.
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