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1 Introduction

In matching markets without transfers in which agents’ preferences are

strictly increasing in the attribute or type of those on the other side and

types are commonly known, stable matchings are positive assortative (see,

e.g., Becker (1973)). This well-known relationship between stability and

sorting has been important for applied work because it holds regardless of

the vectors of agents’ types.

Interestingly, however, Bikhchandani (2017) analyzes markets in which

the type of workers is private information and shows by example that even

with increasing preferences, there can be (incomplete-information) stable

matchings that are negative, and not positive, assortative. This paper

sheds light on the interpretation, and scope, of these examples.

The notion of incomplete-information stability studied by Bikhchan-

dani (2017) adapts the one introduced by Liu et al. (2014) to markets

without transferable utilities, and so presumes that firms use their infor-

mation “cautiously” when evaluating any blocking opportunity. That is,

given a vector of workers’ types, firms are informed of the type of their own

worker and are not willing to participate in a block with another worker if

they can find a vector of workers’ types consistent with their information at

which both the type of the blocking worker is lower than the type of their

own worker, and no other firm is willing to participate in a block. Thus,

a matching is incomplete-information stable for a given vector of workers’

types if and only if it can be stabilized (Liu et al., 2014); namely, if and

only if the vector belongs to a set with the property that for every vector

in the set that prescribes a blocking opportunity, there is another vector

in the set, consistent with the blocking firm’s information, at which such

2



opportunity disappears.

Given the permissive nature of incomplete-information stability, the

negative, and not positive, assorted nature of some incomplete-information

stable matching at a given vector of workers’ types should come as no sur-

prise, even within monotonic environments. On the contrary, the element

of surprise should come, this paper argues, from the following observation:

If only one firm has the lowest-matched type, then no stabilizing set can

prescribe negative, and not positive, sorting at all of its members.

To be clear, the result does not say that every set of vectors that sta-

bilizes a given non-empty matching satisfying the assumed unitary bound

contains some vector at which the matching delivers positive sorting. In-

stead, it says that every stabilizing set containing no vector at which the

matching delivers positive sorting must contain a vector at which the sort-

ing is mixed.1 Moreover, the result does not only concern the entire set

of vectors at which a given matching is incomplete-information stable, the

largest stabilizing set, but in fact all of its stabilizing subsets as well.

Since the only assumption in place concerns the first-order statistic

of the distribution of matched firms’ types, the observation above sug-

gests that the presence of incomplete information cannot completely over-

turn the well-known relationship between stability and positive sorting,

in most monotonic markets. What is more, the very permissive nature

of incomplete-information stability entails that this is true pretty much

regardless of the incomplete-information stability notion one looks at.

This paper contributes to the fast-growing literature studying stable

1It turns out that stabilizing sets that rule out positive assortativeness can either
prescribe mixed sorting at all of its members, or a combination of negative and mixed
sorting. See Section 5 for examples.
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outcomes in the presence of incomplete information, but suggests that fo-

cusing attention to properties of a single vector of workers’ types, rather

than to those of self-stabilizing sets, might not offer a complete picture.

This suggestion seems consistent with the intended interpretation of incomplete-

information stability, as no outside observer who—knows that agents’ pref-

erences are increasing and—observes firms’ types, and no blocking taking

place, would be able to conclude that the matching she observes is negative,

and not positive, assortative, regardless of the underlying stabilizing set.

The rest of the paper is organized as follows. Section 2 describes

the environment and Section 3 the notions of complete- and incomplete-

information stability. Section 4 contains the main result of the paper, and

Section 5 offers some examples and discusses the related literature.

2 The Environment

Let J = {1, ..., |J |} ⊆ N and I = {1, ..., |I|} ⊆ N be the finite sets of

firms and workers in a one-to-one labor market without transfers. I will

write i ∈ I for an individual worker and j ∈ J for an individual firm. The

finite sets of workers and firms are, respectively, W := {1, ..., K} ⊆ N and

F := {1, ..., L} ⊆ N. I denote by w ∈ W |I| a vector of workers’ types and by

f ∈ F |J | a vector of firms’ types, writing wi and fj to denote, respectively,

the type of worker i and firm j.

I let ui(wi, fj) denote worker i’s utility whenever she is of type wi and

is matched to firm j of type fj. Similarly, vj(wi, fj) represents firm j’s

utility when it is of type fj and is matched to a worker of type wi. The

dependence of ui on fj and of vj on wi captures the idea that types describe
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unobservable characteristics, such as productivity.2

2.1 Matchings and outcomes

A matching is a one-to-one map µ : I ∪ J → I ∪ J , where µ(i) denotes

the firm matched to worker i, µ(j) denotes the worker matched to firm j,

and µ(i) = j if and only if µ(j) = i. I write µi and µj instead of µ(i) and

µ(j). Moreover, I write µi = ∅ instead of µi = i whenever i is unmatched

(and similarly for any j). To deal with unmatched agents, I introduce a

“dummy” type 0 and let fµi = 0 = wµj whenever µi = µj = ∅.3 Without

loss, I assume that ui(wi, 0) = vj(0, fj) = 0 for every i, every j, every w,

and every f .

An outcome is a triplet (µ,w, f). A matching µ is nonempty if there

exists i with µi 6= ∅. An outcome (µ,w, f) is nonempty if µ is nonempty.

2.2 Information

Firms’ types are assumed to be commonly known among workers and firms,

but workers have private information about their types.

To capture firms’ uncertainty about workers’ types, I follow Liu et al.

(2014) and assume that the true vector of workers’ types is drawn from

some distribution with support Ω ⊆ W |I|. As in Liu et al. (2014), the

underlying distribution will play no role.

2More generally, utilities might depend on the “identity” of the assignment; namely,

on the indices i and j. This dependence would model situations where some observable

characteristics, encapsulated by each agent’s index, are of value to firms and workers.
3Since 0 < 1, this ensures that this dummy type is strictly lower than every possible

type of any firm and worker.
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3 Stability

3.1 Complete-information stability

An outcome (µ,w, f) is individually rational if ui(wi, fµi) ≥ 0 for every

i and vj(wµj , fj) ≥ 0 for every j. Let
∑0 denote the set of individually

rational outcomes.

An outcome (µ,w, f) ∈
∑0 is complete-information blocked by a

pair (i, j) if ui(wi, fj) > ui(wi, fµi) and vj(wi, fj) > vj(wµj , fj).

An outcome (µ,w, f) is complete-information stable if (µ,w, f) ∈∑0 and (µ,w, f) is not complete-information blocked.

3.2 Incomplete-information stability

The following blocking concept is proposed by Bikhchandani (2017), and

adapts the one introduced by Liu et al. (2014) to markets without transfers.

Definition 1. Fix any nonempty set X ⊆
∑0. An outcome (µ,w, f) ∈ X

is X-blocked if there is a pair (i, j) such that:

1. ui(wi, fj) > ui(wi, fµi); and

2. for every w′ ∈ Ω with (µ,w′, f) ∈ X such that ui(w
′
i, fj) > ui(w

′
i, fµi)

and w′µj = wµj , we have

vj(w
′
i, fj) > vj(wµj , fj). (1)

An outcome (µ,w, f) ∈ X is X-stable if it is not X-blocked.

To get an intuitive grasp, let X =
∑0. Then, a firm forms a

∑0-block

with a given worker if and only if they form a complete-information block
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after the firm accounts for the individually rational nature of the matching,

the type of its own worker, and the worker’s willingness to participate.

Define, for every k ≥ 1:

∑k := {(µ,w, f) : (µ,w, f) ∈
∑k−1 and (µ,w, f) is not

∑k−1 -blocked}.

∑
:=

⋂
k≥0

∑k describes the set of outcomes that are incomplete-

information stable in the sense of Liu et al. (2014) when transfers are not

available.

Notice that the set of complete-information stable outcomes is contained

in the set of incomplete-information stable ones, for any given vector of

workers’ types. From this, Bikhchandani (2017) concludes that, no mater

the vector of agents’ types that is drawn, an incomplete-information stable

matching exists; i.e.,
∑

(w, f) 6= ∅ for every (w, f).4

3.3 Self-stabilizing sets

Liu et al. (2014) offer an equivalent way to describe the set of incomplete-

information stable outcomes in terms of what they call self-stabilizing sets.

Definition 2. A nonempty set of individually rational outcomes E is self-

stabilizing if every outcome (µ,w, f) ∈ E is E-stable. The set E stabilizes

a given outcome (µ,w, f) if (µ,w, f) ∈ E and E is self-stabilizing. A set

of vectors of workers’ types Ω∗ ⊆ Ω stabilizes a matching µ if {(µ,w′, f) :

w′ ∈ Ω∗)} is a self-stabilizing set.5

Intuitively, a set is self-stabilizing if for every outcome in the set that

is complete-information blocked by a pair (i, j), one can find another out-

4This result follows directly from Proposition 1 in Liu et al. (2014).
5Notice that this definition fixes a (commonly known) vector of firms’ types.
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come in the set, consistent with j’s information, at which the block is not

profitable to j.

Following Proposition 2 in Liu et al. (2014), Bikhchandani (2017) shows

that every self-stabilizing set is a subset of
∑

. Hence,
∑

is the largest

self-stabilizing set. This result is quite useful, because it provides an oper-

ative characterization of incomplete-information stability; namely, an out-

come is incomplete-information stable if and only if it is a member of a

self-stabilizing set. It follows that that a given matching µ is part of an

incomplete-information stable outcome, for a given vector of firms’ types,

if and only if one can find a vector of workers’ types such that the resulting

set of outcomes is self-stabilizing. This latter characterization will be used

below.

4 Main result

The following three subsections describe the class of environments and

outcomes the main result of this paper will focus on. The last subsection

presents the main result.

4.1 Increasing utilities

I will restrict attention to monotonic environments; namely, those in which

agents’ utilities increase, strictly, with the type of their match:

Definition 3. Agents’ utilities are increasing if ui(wi, fj) is strictly in-

creasing in fj for every i and every wi and vj(wi, fj) is strictly increasing

in wi for every j and every fj.
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Notice that Definition 3 does not require utilities to increase, even

weakly, with respect to an agent’s own type.

4.2 Assortative outcomes

The following definition is standard:

Definition 4. An outcome (µ,w, f) is positive assortative (PAM) if, for

every i, i′ such that µi 6= ∅ and µi′ 6= ∅, we have wi > wi′ ⇒ fµi ≥ fµi′ .

Negative assortativeness (NAM) can be defined analogously, replacing

fµi ≥ fµi′ by fµi ≤ fµi′ .
6 I will write P(µ, f) and N (µ, f) to denote the set

of vectors of workers’ types at which µ is positive and negative assortative,

respectively. Two comments are in order.

First, notice that P(µ, f)∩N (µ, f) 6= ∅ for every µ, as every nonempty

matching is both positive and negative assortative at every vector of agents’

types at which either every matched worker or every matched firm has the

same type.7 Second, complete-information stable outcomes are positive

assortative in monotonic environments.

4.3 Lowest-matched-firm-type outcomes

For any pair (µ, f) where µ is nonempty, let J(µ, f) denote the set of firms

holding the lowest type in f , among those that are matched in µ; i.e.:

J(µ, f) := {j : fj = min{fj̃ : µj̃ 6= ∅}}.

We can then define:

6Notice that these definitions of PAM and NAM account only for matched agents.
This is why asking for “every j, j′ such that µj 6= ∅ and µj′ 6= ∅, fj > fj′ ⇒ wµj

≥ wµj′ ”
in PAM is redundant.

7Notice that empty outcomes are both PAM and NAM since, by convention, fµi = 0
whenever µi = ∅.

9



Definition 5. A pair (µ, f) where µ is nonempty satisfies the lowest-

matched-firm-type (LMFT) property if J(µ, f) is a singleton.

In words, LMFT requires that there is only one matched firm holding

the lowest-matched type; i.e., the lowest type in f , among all matched firms.

Notice that LMFT is a joint condition on µ and f , both commonly known

among workers and firms, but does not depend on the vector of workers’

types.

I view LMFT as a weak requirement, as it concerns only the “left-end

tail”, or first-order statistic, of the distribution of firms’ types, among those

that are matched. In particular, LMFT is weaker than requiring that there

are no two firms with the lowest type in f , as it concerns only the set of

matched firms, and much weaker than requiring different firms to be of

different types.8

4.4 Sorting and stabilizing sets

The following result constitutes the main finding of the paper:

Proposition 1. Suppose that utilities are increasing, and fix any pair (µ, f)

and any set Ω∗ ⊆ Ω that stabilizes µ. If (µ, f) satisfies the LMFT property,

then

Ω∗ ⊆ N (µ, f)⇒ Ω∗ ∩ P(µ, f) 6= ∅.

The proof of Proposition 1 can be found in the appendix, but a rough

intuition of its content goes as follows: the presence of increasing utilities

implies that if a matching is negative, but not positive, assortative for a

given vector of workers’ types, then a complete-information block must be

8In fact, LMFT does not even rule out nonempty outcomes at which every firm has
the same type.
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formed by one of the highest-type matched firms and one of the highest-

type matched workers. The assumed negative assortative nature of the

matching at the given vector of workers’ types implies that some of those

workers is matched to a firm with the lowest-matched type, but by hypoth-

esis only one such worker exists. If the vector of workers’ types belongs

to a set that stabilizes the matching, then the set must contain another

vector at which the blocking firm does not form a block with the blocking

worker. By monotonicity, the type of the blocking worker must be lower

at this new vector. If the matching is once again negative, but not posi-

tive, assortative at the new vector, then another firm with the same type

than the original blocking firm must form a block with the same blocking

worker, and so the same argument can be repeated, lowering the type of

the blocking worker even further. Eventually, one must reach a vector of

workers’ types in the set at which the matching delivers positive sorting.

Whenever, on the other hand, two or more firms have the lowest-matched

type, the “anchor” used to carry out this inductive argument does not ex-

ist, and so a “loop” in the sequence of vectors of workers’ types required

by incomplete-information stability can be created, with each vector in the

sequence delivering negative, but not positive, sorting. This is illustrated

by Example 1 below.

A few comments are in order. First, the result can be extended to

positive and negative sorting of all agents, matched or not, when all types

are acceptable to all agents and there is at most one unmatched worker.9

Second, the result does not imply that every stabilizing set must de-

liver positive sorting at some of its members. Indeed, Section 5 shows by

9Further, one can show that these two assumption are also “tight” in the sense that
the result does not necessarily holds when either of them is relaxed.
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example(s) that stabilizing sets can prescribe either mixed sorting at all of

its members, or a combination of mixed and negative sorting.

Third, the result could prove useful to any outside observer who sees

no blocking taking place, and knows that utilities are increasing. Indeed,

both the matching and the vector of firms’ types are observable, and so

whether LMFT holds or not can be readily assessed. If it holds, then any

such observer would be able to conclude that the matching she observes

cannot be negative, and not positive, assortative at all vectors of workers’

types in the underlying stabilizing set, whatever this set happens to be. At

this point, one could argue: We sort of knew this. After all, stabilizing

sets at which some of its members feature positive assortativeness are rela-

tively easy to come by.10 Thus, the argument would go, any outsider could

“always” imagine a vector of workers’ types at which the matching she ob-

serves is positive assortative. To this argument I would respond that such

an outsider knows better: Self-stabilizing sets are commonly known among

firms and workers (see Bikhchandani (2014)), and so readily available to

her. As a consequence, she should restrict her inquiry to the members

of the set she has access to. This is the whole point of the present pa-

per; namely, unless the outsider elicits workers’ private information, she

should be interested in properties of stabilizing sets, not on those of iso-

lated vectors of workers’ types where the matching she observes happens

to be incomplete-information stable.

The following example illustrates that Proposition 1 is not necessarily

true when LMFT fails.

Example 1. There are three workers and three firms, I = {i1, i2, i3} and

10This is so because every complete-information stable outcome is incomplete-
information stable, and positive assortative when utilities are increasing.
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J = {j1, j2, j3}. The utility of every i is given by ui(wi, fj) = fj and

the utility of every j by vj(wi, fj) = wi. Thus, utilities are increasing.11

Suppose that fj1 = fj2 = 2, and fj3 = 3, and consider the following two

vectors of workers types:

Worker indices: i1 i2 i3
Worker types, w: 4 2 2

Firm types, f : 2 2 3
Firm indices: j1 j2 j3

Worker indices: i1 i2 i3
Worker types, w′: 2 4 2

Firm types, f : 2 2 3
Firm indices: j1 j2 j3

Imagine the matching µ that assigns i1 to j1, i2 to j2 and i3 to j3.

Clearly, LFMT fails since j1 and j2 are both matched and have the lowest

type (2) among all matched firms. Further, µ is negative, but not positive,

assortative at both w and w′. Moreover, the set E = {(µ,w, f), (µ,w′, f)}

is self-stabilizing. To see this, notice that j3 is the only firm with a complete-

information block at both w and w′, and it can use each of these vectors

to justify its unwillingness to form the complete-information block at the

other.

5 Discussion

5.1 Alternative sorting patterns

Proposition 1 shows that there is no stabilizing set prescribing negative,

and not positive, sorting at all of its members. A natural follow-up ques-

tion is whether some other sorting pattern is inconsistent with incomplete-

information stability within monotonic environments. As it turns out, the

answer is “no.” In particular, the following two examples illustrate that one

11The particular utilities are irrelevant as long as they increasing.
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can find stabilizing sets that prescribe either mixed assortativeness at all

of its members, or a combination of mixed and negative, but not positive,

sorting. Example 2 illustrates the former, and Example 3 the latter.

Example 2. There are four workers and four firms, I = {i1, i2, i3, i4} and

J = {j1, j2, j3, j4}. The utility of every i is given by ui(wi, fj) = fj and the

utility of every j by vj(wi, fj) = wi. Thus, utilities are increasing. Suppose

that fj1 = 1, fj2 = 2, fj3 = 3, and fj4 = 4, and consider the following two

vectors of workers types:

Worker indices: i1 i2 i3 i4
Worker types, w: 2 1 2 3

Firm types, f : 1 2 3 4
Firm indices: j1 j2 j3 j4

Worker indices: i1 i2 i3 i4
Worker types, w′: 1 1 4 3

Firm types, f : 1 2 3 4
Firm indices: j1 j2 j3 j4

Imagine the matching µ that assigns i1 to j1, i2 to j2, i3 to j3, and i4

to j4. Notice that µ exhibits mixed sorting at both w and w′. In particular,

(i1, j2) is the only complete-information block at w, and (i3, j4) the only

complete-information block at w′. Moreover, j2 can appeal to w′ to say

“no” to i1, and j4 can appeal to w to say “no” to i3. Thus, the set E =

{(µ,w, f), (µ,w′, f)} is self-stabilizing.12

Example 3. There are four workers and four firms, I = {i1, i2, i3, i4} and

J = {j1, j2, j3, j4}. The utility of every i is given by ui(wi, fj) = fj and the

utility of every j by vj(wi, fj) = wi. Thus, utilities are increasing. Suppose

that fj1 = 1, fj2 = 2, fj3 = 3, and fj4 = 4, and consider the following three

vectors of workers types:

12Further, notice that LMFT holds in this example.
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Worker indices: i1 i2 i3 i4
Worker types, w: 2 1 2 3

Firm types, f : 1 2 3 4
Firm indices: j1 j2 j3 j4

Worker indices: i1 i2 i3 i4
Worker types, w′: 1 1 4 3

Firm types, f : 1 2 3 4
Firm indices: j1 j2 j3 j4

Worker indices: i1 i2 i3 i4
Worker types, w′′: 4 4 4 3

Firm types, f : 1 2 3 4
Firm indices: j1 j2 j3 j4

Imagine again the matching µ that assigns i1 to j1, i2 to j2, i3 to j3, and

i4 to j4. Notice that µ exhibits mixed sorting at both w and w′, but neg-

ative, and not positive, sorting at w′′. In particular, j4 forms a complete-

information block with i1, i2, and i3 at w′′, and again (i1, j2) is the only

complete-information block at w, and (i3, j4) the only complete-information

block at w′. As before, j2 can appeal to w′ to say “no” to i1, and j4 can

appeal to w to say “no” to i3. Moreover, j4 can appeal to w to say “no”

to i1, i2, and i3. Thus, the set E = {(µ,w, f), (µ,w′, f), (µ,w′′, f)} is self-

stabilizing.13

5.2 Literature

The earliest attempt to embed incomplete information in the theory of

matching markets goes back to Roth (1989), who studies stable mecha-

nisms in the presence of preference uncertainty and shows that some re-

sults that hold under complete information do not hold in the presence

of incomplete information.14 Unlike the private values model analyzed by

13Further, notice that LMFT holds in this example.
14Another earlier attempt is that of Ehlers & Massó (2007), who also analyze a model

with preference uncertainty and examine when complete-information stable mechanisms

satisfy an ordinal notion of incentive compatibility (see also Ehlers & Massó (2015)).
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Roth (1989), Chakraborty et al. (2010) examines a one-sided incomplete-

information model with interdependent values and shows that the existence

of a stable—and strategy-proof—mechanism depends on whether the mech-

anism makes the matching public or not. Both of these papers analyze

stability in centralized markets. In contrast, this paper contributes to the

literature that studies stability in decentralized matching markets with in-

complete information, and interdependent values.

Liu et al. (2014) analyze the same model studied in this paper, but

allow for monetary transfers. Like the present paper, though, Liu et al.

(2014) assume that the prior information of all firms is identical. Instead,

Chen & Hu (2019) makes firms’ information explicit by describing it as

arbitrary partitions. They do so to study convergence to a notion of stabil-

ity they propose that turns out to be equivalent to incomplete-information

stability.15 In markets with transfers, other important contributions are

those by Alston (2020), Bikhchandani (2017), Jeong (2019), Liu (2020),

and Pomatto (2018). Unlike Liu et al. (2014) and Chen & Hu (2019),

these papers enlarge the description of the model to account, explicitly, for

agents’ beliefs.16 In a recent working paper, Chen & Hu (2018) generalize

the theory of stability in the presence of incomplete information to markets

with two-sided uncertainty. They allow for arbitrary partitions, relax the

assumption that firms know the type of their match, and analyze several

stability concepts that accommodate the different inferences that a poten-

tial blocking worker-firm pair can make about each other’s type from the

15Lazarova & Dimitrov (2017) also study markets with two-sided incomplete infor-
mation and, like Chen & Hu (2019), address the question of “path to stability” for a
stability concept that can be interpreted as capturing a best-case notion of blocking.

16Further, Liu (2020) and Pomatto (2018) study stability under incomplete informa-
tion from a noncooperative viewpoint.
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observation that both are willing to participate.

The present paper builds from Bikhchandani (2017), who study the

notion of incomplete-information stability proposed by Liu et al. (2014)

in markets without transfers. In fact, the very question answered by the

present paper arises from an example in Bikhchandani (2017) in which

it is shown that incomplete-information stable matchings can be negative

assortative in monotonic environments. Besides a few differences in the

set of primitives of both papers, the main difference with the analysis in

Bikhchandani (2017) is that the present paper provides a general under-

standing of when, and what it means to say that, an incomplete-information

stable matching is negative assortative in monotonic environments, beyond

those covered by the example in Bikhchandani (2017). In particular, the

main result of this paper does not require the market to be balanced, all

types to be acceptable by all agents, all agents to be of different types, or

any specific form for agents’ utilities.
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Appendix

Proof of Proposition 1

Proof. Fix any (µ, f) that satisfies the LMFT property, and take any set

Ω∗ ⊆ Ω that stabilizes µ and satisfies Ω∗ ⊆ N (µ, f). For any w′ ∈ Ω∗,

define kw′ and kw
′

to be, respectively, the highest and lowest worker-type

in w′, among all matched workers; i.e.,

kw′ := max{w′i′ : µi′ 6= ∅} and kw
′
:= min{w′i′ : µi′ 6= ∅}.

Since (µ, f) satisfies the LMFT property, J(µ, f) is a singleton. Thus, let

J(µ, f) = {j} and i = µj.

LMFT implies that i has the highest type, among all matched workers,

in every member of Ω∗. This is shown next:

Claim 1: w′i = kw′ at every w′ ∈ Ω∗.

Proof. Suppose, instead, that w′i < kw′ in some w′ ∈ Ω∗. By construction,

there must then be some i′ with w′i′ = kw′ such that µi′ 6= ∅. We would

then have w′i′ > w′i. Since w′ ∈ N (µ, f) by hypothesis, however, it would

then follow that fµi′ ≤ fµi = fj. Yet since µi′ 6= j, this would contradict

that (µ, f) satisfies the LMFT property.

Let l be the highest firm-type, in f , among all matched firms; i.e.,

l := max{fj′ : µj′ 6= ∅}.

Define J̄(µ, f) := {j : fj = max{fj̃ : µj̃ 6= ∅}}. Hence, fj′ = l for every

j′ ∈ J̄(µ, f).

The following claim shows that, in every member of Ω∗, there must

some firm in J̄(µ, f) matched to a worker of the highest type, among those
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that are matched; i.e.,

Claim 2: In every w′ ∈ Ω∗, there exists ĵ ∈ J̄(µ, f) such that

w′µĵ = kw
′
.

Proof. Suppose, contrary to hypothesis, that there exists w′ ∈ Ω∗ at which

no firm j′ ∈ J̄(µ, f) is matched to a worker of type kw
′
. By construction,

there exists a worker i′ of type kw
′

such that µi′ 6= ∅. By hypothesis,

moreover, fµi′ < l. But since µj′ 6= ∅ for every j′ ∈ J̄(µ, f), we have

fj′ > fµi′ and w′µj′ > w′i′ = kw
′
, for every j′ ∈ J̄(µ, f), contradicting that

w′ ∈ N (µ, f).

I show the desired result by induction, using Claims 1 and 2. If there

exists some w′ ∈ Ω∗ such that kw′ = 1, then kw′ = kw
′
. But then, the very

definitions of kw′ and kw
′

imply that w′
ĩ

= kw
′

for every ĩ such that µĩ 6= ∅.

Hence, w′ ∈ P(µ, f), as desired.

Suppose, as induction hypothesis, that the desired result is true if kw′ ≤

t in any w′ ∈ Ω∗. Take, then, any w′ ∈ Ω∗ and assume that kw′ = t+ 1. If

kw
′

= t + 1, then we are again done, so suppose that kw
′
< t + 1, and use

Claim 2 to pick any ĵ ∈ J̄(µ, f) such that w′µĵ = kw
′
. Since Ω∗ stabilizes

µ, the presence of increasing utilities and Claim 1 jointly entail that there

must be some w′′ ∈ Ω∗ such that w′′i ≤ w′µĵ = kw
′
< t + 1. But then,

w′′i ≤ t. Hence, the induction hypothesis delivers the desired result.
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