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1 Introduction

The analysis of two-sided markets with heterogeneous agents has been largely

carried out under the assumption that agents have complete information about

each other’s characteristics. This assumption proves convenient in understanding

how these markets are organized, allowing the analysis to focus on the search for

(complete-information) stable allocations (see, e.g., Shapley & Shubik (1971)), but

it is not always a good approximation of how information is disseminated.

Recently, Liu et al. (2014) analyzed a one-to-one labor market with inter-

dependent values in which workers’ types are private information and propose

an incomplete-information stability notion that prescribes that once a commonly

known, individually rational allocation is in place and each firm is informed of the

type of its own worker, a firm agrees to participate in a block if and only if it

knows that the block is indeed profitable, once it accounts for the type of its own

worker, the individually rational nature of the allocation, the blocking worker’s

willingness to participate, and the observation that no other block takes place.

Incomplete-information stability embeds a “worst-case” use of information that

accounts for the analyst’s ignorance about firms’ beliefs, but assumes that firms

can draw all possible finite orders of inferences about workers’ types. This assump-

tion is somewhat implausible (see, e.g., Alaoui et al. (2020) and Kneeland (2015)),

but far from innocuous. For example, Liu et al. (2014) show that incomplete-

information stable outcomes always exist and, within monotonic and strictly mod-

ular environments, are efficient and assortative. While the former holds true re-

gardless of whether firms can draw higher-order inferences or not, the latter one

does not. Thus, assortativeness and efficiency are implications of stability in those

familiar environments, but only when firms can hold an arbitrarily large number

of higher-order beliefs.

It seems reasonable to imagine that the analyst’s uncertainty about firms’

beliefs includes, in particular, doubts about whether, and how much, firms can

engage in higher-order reasoning. If so, she might be interested in understanding

what are the first-order implications of stability; namely, those steaming from
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stability, regardless of the number of inferences firms can draw.

This paper studies the weakening of incomplete-information stability–termed

first-order stability—that is obtained when firms account for the type of their own

worker, the individually rational nature of the allocation they commonly observe,

and the workers’ willingness to form a complete-information block with them,

but not for the absence of other blocks. Intuitively, first-order stability weak-

ens incomplete-information stability much in the same way that rationalizability

refines the set of best responses in non-cooperative games. As a consequence,

every property of first-order stability must be shared not only by its incomplete-

information counterpart, but by every other of its refinements. I address the

following question: what properties do first-order stable outcomes have in general,

and familiar—i.e., monotonic and modular—environments?

1.1 Preview of results

Proposition 1 characterizes first-order stability and illustrates that the presence

of incomplete information enlarges the set of stable outcomes only if, somewhere

in their domain, firms’ values are interdependent and workers’ values exhibit ei-

ther increasing or decreasing differences. Intuitively, for an allocation to be first-

order stable at some state—profile of workers’ types—at which it is not complete-

information stable, every firm involved in a complete-information block must con-

sider possible an alternative state at which the blocking worker says “yes” to every

transfer she (the worker) accepts at the true state, but the firm says “no.” The

latter requires the firm’s value from being matched to the blocking worker to be

strictly higher at the true state, and the former demands the worker’s value to ex-

hibit either weak increasing or decreasing differences at the two states, depending

on whether the worker’s type is higher or lower at the alternative state, and her

firm’s type is higher or lower than the type of the blocking firm.

When looked at closely, the necessary disagreement required by first-order

stability between any worker and firm involved in a complete-information block

delivers important implications in general and familiar preference domains.
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To start, Proposition 1 reveals the important, and opposite role played by the

presence of private values on workers and firms’ preferences. When firms’ val-

ues are private, the set of first-order stable outcomes coincides with that of its

complete-information counterpart (Corollary 1), and so the focus on the latter is

without loss. Instead, the presence of private values on workers’ preferences im-

plies that they always say “yes,” and so firms learn nothing from their willingness

to accept. Thus, some interdependence on firms’ values is necessary for the exis-

tence of some first-order stable outcome that is not complete-information stable,

but when workers’ values are private first-order stability is consistent with every

complete-information block for which the blocking firm can say “no” and still be

acceptable to the blocking worker.

Within familiar preference domains, the scope of first-order stability is surpris-

ingly limited. I start with monotonicity. When agents’ values are jointly increas-

ing in workers’ types, no first-order stable allocation can be complete-information

blocked by (a firm and) a worker with a type that is equal or lower than the type of

some unmatched worker (Corollary 2). This result is also true if agents’ values are

jointly decreasing in workers’ types, for the same underlying reason: The selection

of unmatched blocking workers is advantageous to the blocking firms, not adverse.

If, on the other hand, agents’ values are increasing with respect to firms’ types,

the type of every unmatched firm that forms a complete-information block with

a matched worker must be lower than the type of the worker’s firm (Corollary 3).

The same result holds true when agents’ values are decreasing in firms’ types, if

lower is replaced by higher.

Corollaries 2 and 3 deliver two important results. First, monotonicity implies

that all unmatched agents are sorted above or below all those that are matched

(Corollary 4), a property inherited from complete-information environments (see,

e.g., Chiappori (2017).) Second, a version of the “lone wolf theorem” is obtained,

when the match surplus created by every pair of types is non-negative (Corollary

5): If an agent is unmatched in every complete-information allocation, then she

must be unmatched in every first-order stable allocation. These findings shed
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more light on the relationship between efficiency and stability in the presence of

incomplete information; they reveal that not every inefficiency is consistent with

stability, regardless of whether firms draw higher-order inferences or agents’ values

are modular.

Now we add modularity. When agents’ values are jointly increasing in work-

ers’ types, and workers’ values are strictly supermodular, an allocation is first-

order stable only if it is not-downward-blocked ; namely, only if every complete-

information block involves a firm and a worker that is matched to a firm with a

type that is either the same or higher than the type of the blocking firm (Corol-

lary 7). One can replace downward by upward, with a similar interpretation, when

workers’ values are instead strictly submodular. Further, similar results are also

true if agents’ values are jointly decreasing in workers’ types, when supermodular

and submodular are “swapped.” The intuition hinges, again, on workers’ selection:

Some complete-information blocks are not consistent with first order stability be-

cause they lead the corresponding matched blocking workers to select themselves

in a way that is favorable to the blocking firms.

When all agents’ values are increasing in all types, workers’ values are strictly

supermodular, and the match surplus is strictly supermodular, every first-order

stable outcome is first-order worker-assortative (Liu et al., 2014), and the following

local-upward characterization of complete-information stability is obtained (Corol-

lary 8): If an allocation is first-order stable, the allocation is in fact complete-

information stable if and only if it is positive assortative and there is no local-

upward block; namely, there is no complete-information block between a firm and

a worker that is matched to a firm with a type that is either the same or higher

than, but adjacent to, the type of the blocking firm. This result is also true if work-

ers’ values are strictly supermodular, the match surplus is strictly submodular,

and agents’ values are decreasing in firms’ types, when local-upward is replaced

by local-downward. These characterizations follow from the sufficiency of local

complete-information stability constraints when the match surplus is monotonic

and exhibits strict differences, an observation borrowed from Peralta (2022).
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The results in this paper reveal that, within the standard class of monotonic

and supermodular environments, the set of conclusions the analyst can draw about

the nature of the allocation she observes, when no block takes place, is quite

large, even if she cautiously assumes that firms are not sophisticated at all. In-

deed, she can infer a great deal about the “form” of any underlying complete-

information block, and thus sharpen her understanding of how complete- and

incomplete-information stability relate to one another, regardless of the degree of

sophistication. By understanding that first-order stability is only consistent with

the existence of upward/downward complete-information blocks involving matched

workers, the analyst would be able to rule out, at the outset, a potentially large

number of “objections” and inefficiencies. Since all of this is true for every re-

finement of first-order stability, the results in this paper also uncover important,

“hidden” properties of incomplete-information stability, in monotonic and modu-

lar environments, besides assortativeness and efficiency.

1.2 Organization of the paper and related literature

Section 2 describes the class of one-to-one matching markets studied by Liu et al.

(2014), and Section 3 presents the standard notion of (complete-information) sta-

bility and the incomplete-information extension proposed by Liu et al. (2014).

Section 4 offers a characterization of first-order stability, and Section 5 lays out

its main implications in different classes of environments. The Appendix contains

every proof omitted in the body of the paper.

This paper uncovers important properties of stable outcomes in decentral-

ized markets with incomplete information, without making assumptions about

the “depth of reasoning” agents engage in. In this sense, the results in this paper

might contribute to the empirical (e.g., Alaoui et al. (2020) and Kneeland (2015))

and theoretical (e.g., Börgers & Li (2019) and Strzalecki (2014)) literature that

seeks to understand what behavior can be predicted in situations in which agents

can, for various reasons, only draw a limited number of inferences.

The paper builds heavily on the analysis in Liu et al. (2014), who extend
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the notion of stability introduced by Gale & Shapley (1962) and Shapley & Shu-

bik (1971) to decentralized markets with interdependent values in which workers’

types are private information and both the matching and the payment scheme are

observable. Yet the notion introduced by Liu et al. (2014), incomplete-information

stability, presumes that firms can draw an arbitrarily large number of inferences

about the workers’ types. A similar presumption is made by Forges (1994) and

Holmström & Myerson (1983) in mechanism design problems. Instead, the present

paper pays attention to the set of outcomes that are incomplete-information sta-

ble when firms can only draw first-order inferences. This focus is not entirely

new. For example, Dutta & Vohra (2005) study core allocations in the presence

of incomplete information that are credible in the sense that members of deviat-

ing coalitions must account for their mutual willingness to participate (see also

Chade (2006).) More generally, the present paper is related to the literature that

studies the core in the presence of incomplete information (see, e.g., Forges et al.

(2002) and Myerson (2007), among others.) A key goal in this literature is to find

incentive compatible ways in which coalitional members can share some or all of

their information, an element that is absent in the present paper.

Most of the papers that followed the analysis in Liu et al. (2014) investigate

refinements of incomplete-information stability—with and without transfers—by

expressing agents’ beliefs as an explicit part of the model (see, e.g., Alston (2020),

Bikhchandani (2017), Jeong (2019), Liu (2020), and Pomatto (2018)). Instead, I

study a weakening of incomplete-information stability.

A few number of papers have departed from the assumption that the matching

is fixed, and thus a primitive part of the model. For example, Chen & Hu (2019)

propose a random matching selection process that delivers incomplete-information

stable outcomes in the sense that starting from any allocation and any information

structure the process converges to an information structure for which the alloca-

tion is incomplete-information stable. See also Lazarova & Dimitrov (2017). On

the other hand, Ehlers & Massó (2007), Chakraborty et al. (2010), Roth (1989),

and Yenmez (2013), among others, analyze stability and/or incentive issues in
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centralized markets.

Finally, Chen & Hu (2018) have recently extended the analysis in Liu et al.

(2014) to capture two-sided incomplete information and formulated various block-

ing notions that account for the agents’ ability to draw inferences.

2 The environment

There is a finite set of workers, I, and a finite set of firms, J , with i ∈ I and j ∈ J .

There is also a finite set of types of workers, W , and a finite set of types of firms,

F , where W = {w1, w2, ..., wK} ⊆ R+, F = {f 1, f 2, ..., fL} ⊆ R+, and wk and f l

are increasing in their indices. A state is a vector w ∈ W |I| of workers’ types. I

write w ∈ W and f ∈ F for generic elements of W and F , but also use wi ∈ W to

denote the type of worker i at state w. Firms’ types are commonly known among

workers and firms, so that a vector of firms types f ∈ F |J | is fixed throughout,

denoting by fj the type of firm j.

Value is generated by matches. Following Liu et al. (2014), I take as primi-

tive agents’ premuneration values; namely, the aggregate match value each agent

receives in the absence of payments. Thus, a match between a worker of type

w ∈ W and a firm of type f ∈ F gives rise to a premuneration value νwf ∈ R for

the worker and a premuneration value φwf ∈ R for the firm. The sum of these

premuneration values, Swf := νwf + φwf , is the surplus of the match. Without

loss, I assume that the premuneration value of unmatched agents is zero, and use

the notation f∅ = ∅ = ω∅, with the convention that ∅ < w and ∅ < f for every

ω ∈ W and every f ∈ F .

Given a sate w, a matching between worker i and firm j gives rise to payoffs

πw
i := νwifj + p and πf

j := φwifj − p,

for i and j, respectively, where p ∈ R is the (possibly negative) payment from j

to i.

A matching is a function µ : I → J ∪ {∅}, one-to-one on µ−1, that assigns

worker i to µ(i), where µ(i) = ∅ means that i is unmatched. Similarly, µ−1(j)
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denotes the assignment of firm j, where µ−1(j) = ∅ means that j is unmatched. I

will use notation µi and µj to denote the (possibly empty) assignments of i and

j, respectively.

A payment scheme p associated with a matching µ is a vector that specifies a

payment pi,µi ∈ R for each i and a payment pµj ,j ∈ R for each j. Without loss, I

assume that pi,∅ = p∅,j = 0.

An allocation is a pair (µ,p), consisting of a matching and a payment scheme.

An outcome is a triplet (µ,p,w), describing an allocation and a state.1

To capture firms’ uncertainty about workers’ types, I follow Liu et al. (2014)

and assume that the true state is drawn from some distribution with common

support Ω ⊆ W |I|.

3 Stability

3.1 Individual rationality

Definition 1. An outcome (µ,p,w) is individually rational if

νwifj + pi,µi ≥ 0 for every i ∈ I, and

φwifj − pµj ,j ≥ 0 for every j ∈ J .

I write
∑0 for the set of individually rational outcomes. I denote by

∑0(µ,p)

the set of states at which allocation (µ,p) is individually rational.

3.2 Complete information

The following definition describes the well known notion of stability introduced

by Shapley & Shubik (1971) for environments with complete information (see also

Crawford & Knoer (1981).)

Definition 2. An outcome (µ,p,w) is complete-information stable if (µ,p,w) ∈∑0 and there is no complete-information block; i.e., there is no worker-firm pair

1Notice that an outcome does not specify a vector of types for firms simply because firms’
types are fixed throughout.
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(i, j) and payment p ∈ R such that:

νwifj + p > νwifµi + pi,µi and φwifj − p > φwµj fj
− pµj ,j.

Notice that (i, j) forms a complete-information block, at state w, if and only

Swifj > πw
i + πf

j . For any (µ,p,w), let

Bj(µ,p,w) := {i ∈ I : Swifj > πw
i + πf

j}

denote the set of workers that form a complete-information block with j. I write

C for the set of complete-information stable outcomes.

3.3 Incomplete information

The following blocking notion, introduced by Liu et al. (2014), extends the no-

tion of complete-information block to markets in which workers’ types are private

information, but no dissolution or re-matching is observed.

Definition 3. Fix any nonempty set X ⊆
∑0. An outcome (µ,p,w) ∈ X is

X-blocked if there exists (i, j) and p ∈ R such that:

1. νwi,fj + p > νwifµi + pi,µi, and

2. φw̃ifj − p > φw̃µj fj
− pµj ,j, for every w̃ ∈ Ω with (µ,p,w′) ∈ X such that:

w̃µj = wµj and νw̃i,fj + p > νw̃ifµi + pi,µi

To understand Definition 3, let X =
∑0. An outcome (µ,p,w) is

∑0-blocked

by worker i and firm j if and only if (i, j) forms a complete-information block at w

and at every other state in Ω that is consistent with the signals j receives; namely,

the type of its own worker, the individually rational nature of the allocation, and

i’s willingness to participate in the block.

Let
∑1 denote the set of individually rational outcomes that are not

∑0-

blocked; i.e.,∑1 := {(µ,p,w) : (µ,p,w) ∈
∑0 and (µ,p,w) is not

∑0 -blocked}.
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∑1 is the set of first-order stable outcomes, and I write
∑1(w) for the set of

allocations that are first-order stable at w.

Two aspects of
∑1 are worth emphasizing. First,

∑1 embeds a “cautious” or

“robust” use of information as it presumes that a firm follows a worst-case scenario

decision rule; namely, firms are not willing to participate in a complete-information

block if there is at least one state consistent with her signals for which the block

is strictly profitable only to the blocking worker. The intended interpretation, as

argued in Liu et al. (2014), refers to an outside observer who sees no block taking

place, but is uncertain about firms’ beliefs. Under this interpretation, any such

observer might reasonably seek for some beliefs that explain the absence of blocks.

Second, the information updating in Definition 3—and embedded in
∑1—

presumes that, when contemplating a given potential complete-information block,

a firm draws inferences about the type of the blocking worker from the worker’s

willingness to participate, and fact that no match is dissolved, but not from the

absence of other complete-information blocks, including those between itself and

the same worker at other states. These are what I call first-order inferences.

Of course, one could imagine firms drawing additional inferences from ob-

serving, not only that no match is dissolved, but also that no other complete-

information block is formed. Liu et al. (2014) assumes that, indeed, firms draw

second, third, and in fact all finite-order inferences from observing no re-matching

taking place. Thus, they use
∑1 as a “building block” and define, for every k ≥ 1,

the sets

∑k := {(µ,p,w) : (µ,p,w) ∈
∑k−1 and (µ,p,w) is not

∑k−1 -blocked}.

Each of these sets describes an additional inference each firm draws—about

workers’ types—from observing, not only that no agent takes her outside option,

but also that no firm and worker implement a complete-information block. Indeed,

at every k ≥ 1 every firm refines its information by ruling out states in which some

firm considers possible that some firm considers possible that...some firm knows

that it forms a complete-information block with a given worker. Thus, the set of

(incomplete-information) stable outcomes studied by Liu et al. (2014) corresponds
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to the set
∑

=:
⋂
k≥1

∑k. Intuitively, the difference between
∑1 and

∑
resembles

the difference between the notions of best response and rationalizability.

This paper is interested in the properties that stem from stability regardless of

the number of inferences firms can draw. As a consequence, the focus will be on∑1. Importantly, Liu et al. (2014) show that the set of incomplete-information

stable allocations is nonempty at every state; i.e.,
∑

(w) 6= ∅ for every w. Since∑
⊆

∑1, it follows that the set of first-order stable allocations is nonempty at

every state; i.e.,
∑1(w) 6= ∅ for every w.

4 First-order stability: characterization

Consider a pair (i, j) that, at some state w, complete-information blocks the

allocation (µ,p). By definition, this means that the surplus created by a match

between i and j is strictly larger than the sum of the payoffs they currently receive;

i.e.,

pi,µi − pµj ,j < φwifj − φwµj fj
+ νwifj − νwifµi . (1)

Consider, in particular, the “smallest” transfer giving rise to this complete-information;

namely,

pεwi := νwifµi + pi,µi − νwifj + ε. (2)

The reader should think of ε as being “small,” and so interpret pεwi as the “smallest”

transfer that worker i would accept, being of type wi, to leave her firm and match

with j instead. For (µ,p,w) to be in
∑1, we need some alternative state w′ ∈ Ω,

consistent with j’s information, at which the complete-information block, with

respect to pεwi , is profitable to i, but not to j, for every ε > 0. The former

requires the worker’s value to exhibit either increasing or decreasing differences,

depending on the sign of wi −w′i and fµi − fj, and the latter demands (1) to fail

when φwifj is replaced by φw′
ifj

. This is the content of (3) and (4) in the following
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characterization of first-order stability.

Proposition 1. (µ,p,w) ∈
∑1 if and only if (µ,p,w) ∈

∑0 and for every (i, j)

there exists w′ ∈
∑0(µ,p) ∩ Ω with w′µj = wµj , such that:

pi,µi − pµj ,j ≥ φw′
ifj
− φwµj fj

+ νwifj − νwifµi , (3)

and νw′
ifj

+ νwifµi − νwifj − νw′
ifµi
≥ 0. (4)

Intuitively, (4) can be interpreted as the “selection constraint” of the problem

faced by each blocking firm. The following sections will exploit this interpretation

and lay out the various implications that follow from (3) and (4) in general, and

familiar environments. They will shed a good amount of light on the properties

of first-order stable outcomes.

5 First-order implications

5.1 Interdependent values

To start, Proposition 1 uncovers the important role played by the presence of

interdependent values, defined as follows:

Definition 4. Workers’ premuneration values are private if νwf does not vary

with f , and firms’ premuneration values are private if φwf does not vary with w.

It is easy to see that if workers’ values are private, then (4) above is always

satisfied. Intuitively, there is no selection whenever workers’ values are private,

and so firms learn nothing from their willingness to block. More precisely, every

worker i that is part of a complete-information block at some state w would also

be willing to form the block, for pεwi , in every other state. It follows that in

environments in which workers’ values are private it is “easiest” for firms to say

“no,” and so first-order stability grows larger.

The following result shows that, instead,
∑1 “completely shrinks” when firms’

values are the ones that are private:
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Corollary 1. If firms’ values are private, then
∑1 = C.

Proof. By definition, C ⊆
∑1. The other direction follows from (3). Take any

outcome (µ,p,w) 6∈ C, and any (i, j) such that i ∈ Bj(µ,p,w). Thus, (1) follows.

If, contrary to hypothesis, (µ,p,w) ∈
∑1, then, Proposition 1 implies that there

exists w′ ∈
∑0(µ,p) ∩ Ω, with w′µj = wµj , such that (3) holds. But then, (1)

implies that

φwifj > φw′
ifj
, (5)

contradicting that firms’ values are private.

Corollary 1 implies that the presence of incomplete information “bites” only

when firms’ values vary with the type of workers. Said differently, focusing on

complete-information stability is without loss in environments in which firms’ val-

ues are private. Further, Corollary 1 implies that first-order stable outcomes are

efficient if firms’ values are private, and it is easy to find examples in which effi-

ciency is lost when that is not the case.

5.2 Monotonic values

It turns out that when agents’ values are either increasing or decreasing with

respect to their types Proposition 1 implies that first-order stability sorts all un-

matched agents, a well-known implications of complete-information stability, and

satisfies a novel version of the “lone wolf” theorem.

5.2.1 Motonocinity with respect to workers’ types

Assumption 1 (Increasing values in workers’ types). The worker premuneration

value νwf and firm premuneration value φwf are increasing in w, with νwf strictly

increasing in w.

Assumption 1 is weaker than Assumption 1 in Liu et al. (2014), as it does not

concern firms’ types. In the presence of Assumption 1, an immediate observation
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follows: Saying “no” requires the blocking firms to conceive an alternative state at

which the blocking worker’s type is strictly lower than her true type. This follows

from (5) above, when Assumption 1 is in place, as one must then have:

wi > w′i. (6)

Armed with this observation, I now show that first-order stability is only con-

sistent with complete-information blocks that involve workers whose types are

strictly higher than the type of the best unmatched worker.

Corollary 2. Suppose that Assumption 1 holds, and fix any (µ,p,w) ∈
∑1. If

i ∈ Bj(µ,p,w), then wi > wi′ for every i′ such that µi′ = ∅. Thus, µi 6= ∅.

The proof is in the appendix, but the intuition is simple for the particular case

in which the blocking worker is unmatched: An unmatched blocking worker would

only say “yes” to (2), given Assumption 1, at states in which her type is (weakly)

higher than her true type. Indeed, (4) becomes νw′
ifj
− νwifj ≥ 0 whenever µi = ∅.

Yet in no such state the blocking firm would say “no”, as indicated by (6). Notice

that Corollary 2 holds true if agents’ values are decreasing, when one replaces

wi > wi′ with wi < wi′ , because (6) becomes wi < w′i.

Why does Assumption 1 imply that i worker says “yes” only at states in which

her type is weakly higher, intuitively? The reason is that under Assumption 1

the selection of an unmatched blocking worker is favorable to the blocking firm,

not negative. To see this, notice that (2), which becomes pεwi = −νwifj + ε, is

decreasing in w in the presence of Assumption 1. Thus, the higher the worker’s

type, the smaller the worker’s “reservation value.”

5.2.2 Monotonicity with respect to firms’ types

Assumption 2 (Increasing values in firms’ types). The worker premuneration

value νwf and firm premuneration value φwf are increasing in f , with φwf strictly

increasing in f .
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Assumptions 1 and 2 are jointly equivalent to Assumption 1 in Liu et al. (2014).

The following consequence of Proposition 1 follows:

Corollary 3. Suppose that Assumption 2 holds, and fix any (µ,p,w) ∈
∑1. If

i ∈ Bj(µ,p,w) and µi 6= ∅, then µj = ∅ ⇒ fj ≤ fµi.

The proof can be found in the Appendix, but the intuition goes as follows:

If an unmatched firm forms a complete-information block with the worker of a

(strictly) worse firm, then the required individual rationality of the allocation at

the alternative state the blocking firm must consider possible entails that, at w,

the blocking worker is weakly worse-off with the blocking firm, contradicting that

workers’ values increase with firms’ types.

Three comments are in order. First, the result is also true if agents’ values are

jointly decreasing in firms’ types, when fj ≤ fµi is replaced by fj ≥ fµi . Second,

Corollary 2 implies that “µi 6= ∅” is immediately satisfied if one adds Assumption

1. Third, and somewhat interestingly, we will see in Section 5.3 that Corollary 3

holds in fact for all blocking firms, matched or unmatched, when Assumption 1 is

instead in place, and workers’ values are strictly modular.

The next two subsections state the main implications of Corollaries 2 and 3.

5.2.3 Sorting singles

It is well known that complete-information stable outcomes sort all unmatched

agents, when the surplus is strictly monotonic (see, e.g., Chiappori (2017).) That

is, the type of every unmatched worker must be lower (resp. higher) than the type

of every matched one, when the surplus is strictly increasing (resp. decreasing)

on w, and the type of every unmatched firm must be lower (resp. higher) than

the type of every matched one, when the surplus is strictly increasing (resp. de-

creasing) on f . Interestingly, the same property holds true for first-order stability,

under Assumptions 1 and 2.

Corollary 4. Fix any (µ,p,w) ∈
∑1.

1. If Assumption 1 holds, then µi 6= ∅ ⇒ µi′ 6= ∅ for every i′ with wi′ > wi.
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2. If Assumption 2 holds, then µj 6= ∅ ⇒ µj′ 6= ∅ for every j′ with fj′ > fj.

The proof, which can be found in the Appendix, uses Corollary 2 to obtain 1.

and Corollary 3 to prove 2. It is not hard to see that the same results are true if

agents’ values are instead decreasing in w and f , when the strict inequalities in 1.

and 2. are reversed.

5.2.4 Lone wolfs

Corollaries 2 and 3 imply that every agent that is unmatched in every efficient

matching must be unmatched in every first-order stable allocation, whenever the

surplus created by every match is non-negative. To see this, let E(w) denote the

set of (welfare) efficient matchings at state w. The proof of the following result

can be found in the Appendix.

Corollary 5. Suppose that Swf ≥ 0 for every w and f , and fix any state w.

1. If Assumption 1 holds and µi = ∅ in every µ ∈ E(w), then µ′i = ∅ in every

(µ′,p′) ∈
∑1(w).

2. If Assumption 2 holds and µj = ∅ in every µ ∈ E(w), then µ′j = ∅ in every

(µ′,p′) ∈
∑1(w).

Corollary 5 sheds light on when, and to what extent, the well-known rela-

tionship between efficiency and stability in complete-information environments is

lost in the presence of incomplete information. When the true state is commonly

known among workers and firms, stability grants efficiency “for free.” We know

that that is not the case in the presence of incomplete information. In fact, Liu

et al. (2014) show that efficiency is only guaranteed when firms draw all possible in-

ferences and, in addition to Assumption 1, one assumes that workers’ values, and

surpluses, are strictly supermodular. Even with these additional assumptions,

however, first-order stable outcomes are not necessarily efficient. Nonetheless,

Corollary 5 implies that first-order stable outcomes are not consistent with every

inefficiency.
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Interestingly, Corollary 5 resembles a version of the so called “lone wolf the-

orem”, a result stating that, in the absence of transfers, every agent that is un-

matched in some stable matching must in fact be unmatched in all of them (see,

e.g., Klaus & Klijn (2010) and McVitie & Wilson (1970)). The result has a coun-

terpart in the presence of transfers (see, e.g., Jagadeesan et al. (2020)), but to my

knowledge all of its versions feature complete information. Corollary 5 shows that

a similar conclusion is obtained when one moves, not across complete-information

stable allocations, but rather from complete-information environments to those

with incomplete information.

5.3 Monotonic and modular values

I start this section with the following definition:

Definition 5 (Workers’ supermodularity). The worker premuneration value νwf

is supermodular if for every (w′, f ′) and (w, f) such that w′ > w and f ′ > f :

νw′f ′ − νwf ′ ≥ νw′f − νwf .

This definition concerns only the value of workers, not those of firms, and

constitutes the first part of Assumption 2 in Liu et al. (2014). I will say that νwf

is stricly supermodular when the weak inequality above is strict. Further, I will

say that νwf is submodular when ≥ is replaced by ≤ in Definition 5, and strictly

submodular when, in turn, ≤ is replaced by <.

Armed with this definition, one can see that Proposition 1 reveals yet another

important consequence of first-order stability, when Assumption 1 is in place. To

say “yes” in any alternative state that the blocking firm “uses” to say ”no,” the

blocking worker’s values must exhibit either increasing or decreasing differences

between the true and the alternative state, depending on whether the type of the

blocking firm is smaller or higher than the type of worker’s firm, and the type of

the blocking worker in the alternative state is higher or lower than her true type.

This is formalized next:
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Corollary 6. Suppose that Assumption 1 holds, and fix any (µ,p,w) ∈
∑1, and

any (i, j) such that i ∈ Bj(µ,p,w). Then, there exists w′ ∈
∑0(µ,p) ∩ Ω with

w′µj = wµj such that:

(a) fj < fµi ⇒ νw′
ifj

+ νwifµi − νwifj − νw′
ifµi
≥ 0.

(b) fj > fµi ⇒ νwifj − νw′
ifj

+ νw′
ifµi
− νwifµi ≤ 0.

The proof of Corollary 6 is straightforward and therefore omitted, but notice

that the result says that first-order stability requires workers’ values to be super-

modular (submodular) between states w and w′, whenever the type of the blocking

firm is lower (higher) than the type of the worker’s firm.2 Intuitively, Assump-

tion 1 demands worker i to say “yes” to pεwi , being of a lower type—w′i < wi. If

fµi > fj, but i’ value was submodular at (w′i,wi, fµi , fj), however, then pεwi would

be “too low” for i to say “yes.”

Corollary 6 uncovers the different role played by the presence of increas-

ing/decreasing differences in match surpluses and—those in some part of—workers’

values. The former grants assortativeness in environments with complete infor-

mation, but the latter is required for the existence of “new” stable allocations

in environments in which information is incomplete. It follows immediately from

Corollary 6 that the presence of either strict supermodularlity or strict submod-

ularity in the entire domain of workers’ values imposes a strong requirement on

the “direction” of complete-information blocks that are consistent with first-order

stability. The notion of “direction” can be formalized as follows:

Definition 6. An outcome (µ,p,w) is not-downward-blocked (NDB) if, for

every (i, j), i ∈ Bj(µ,p,w)⇒ µi 6= ∅ and fµi ≥ fj.

Instead, the outcome is said to be not-upward-blocked (NUB) whenever

fµi ≥ fj is replaced by fµi ≤ fj. We then reach the main result of this section:

Corollary 7. Suppose that Assumption 1 holds, and fix any (µ,p,w) ∈
∑1.

2A similar conclusion holds when agents’ values are instead decreasing, and so w′
i > wi.
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1. If νwf is strictly supermodular, then (µ,p,w) is not-downward-blocked.

2. If νwf is strictly submodular, then (µ,p,w) is not-upward-blocked.

The proof is in the Appendix, but the intuition is simple: For the given outcome

to be first-order stable each blocking firm must consider possible an alternative

state at which the blocking worker is of a strictly smaller type, but still willing to

accept the firm’s proposal. If the type of the blocking firm is higher (lower) than

the type of the blocking worker’s firm when workers’ values are strictly supermod-

ular (submodular), then only “high” types workers are willing to accept the firm’s

proposal. The underlying selection is then favorable to the blocking firms, not

adverse. As a consequence, the blocking firms cannot refuse.

Corollary 7 implies that identifying whether an individually rational outcome is

not
∑0-blocked, when agents’ values are increasing and workers’ values are strictly

supermodular (submodular), requires to consider only complete-information blocks

for which the blocking worker is matched to some firm and this firm’s type is

weakly higher (lower) than that of the blocking firm. Thus, Corollary 7 refines the

set of inferences that an outside observer can make, within these environments,

about the nature of the allocation she observes, from observing that no block takes

place. Indeed, any such observer might be interested in understanding whether

the absence of blocks is driven by a lack of profitable blocking opportunities or

instead by a purely informative motive, without making any assumption about

the number of inferences firms are able to make.

Corollary 7 is also true if agents’ values are decreasing, but in that case strict

submodularity implies NDB and strict supermodularity implies NUB.

5.4 Monotonic and modular values, and modular surpluses

Liu et al. (2014) show that incomplete-information stable outcomes are efficient

when agents’ values are increasing, workers’ values strictly supermodular, and the

surplus created by every match is strictly supermodular. This section lays out

what the three assumptions grant to first-order stability.
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5.4.1 First-order-worker assortativeness

When Assumption 1 is satisfied, and both νwf and Swf are strictly supermodular,

Lemma B.3 in Liu et al. (2014) shows that first-order stable outcomes cannot

prescribe a failure of positive assortativeness involving a matched worker with

the lowest possible type w1. More precisely, no first-order stable outcome can

prescribe two workers, i and i′, with wi′ > wi = w1 and fµi′ < fµi , a property

Liu et al. (2014) call first-order-worker assortativeness.3 One can use Corollary

7 to understand why. If two such workers i and i′ were to exist, then the strict

supermodularity of the match surplus would imply that either (i, µi′) or (i′, µi)

forms a complete-information block. By Corollary 7, the latter cannot be the

case. But then, (6) implies that µi′ must consider possible that worker i is of a

type strictly lower than w1; impossible.

5.4.2 Characterizing complete-information stability

Interestingly, the three assumptions above provide a novel, local characterization

of complete-information stability.

For any outcome (µ,p,w), define the relation
(µ,p,w)−−−−→ on J × J as:

j
(µ,p,w)−−−−→ j′ if and only if µj′ 6= ∅ and µj′ ∈ Bj(µ,p,w).

In words, j
(µ,p,w)−−−−→ j′ means that firm j forms a block with the worker of firm j′.4

Define, for every j, the sets

U(j) := {j′ ∈ J : fj′ = fj or fj′ = minf :f>fj f}, and

D(j) := {j′ ∈ J : fj′ = fj or fj′ = maxf :f<fj f}.

That is, U(j) (D(j)) is the set of firms that have either the same type than j or

the higher (lower), but consecutive one. I invite the read to think of any j and

j′ ∈ U(j) ∪D(j) as being “local” with respect to one another.

3See their Definition B.1.
4Recall that Bj(µ,p,w) is the set of workers with whom firm j forms a complete-information

block of µ, when the outcome is (µ,p,w).
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Definition 7. An outcome (µ,p,w) is positive assortative (PAM) if

1. for every i, i′ with µi 6= ∅ we have wi′ > wi ⇒ fµi′ ≥ fµi, and

2. for every j, j′ with µj 6= ∅ we have fj′ > fj ⇒ wµj′
≥ wµj .

One can analoguosly define (µ,p,w) to be negative assortative (NAM) by

reversing both strict inequalities. Notice that these definitions make use of the

fixed vector of firms’ types. Thus, I write P(w) andN (w) for the sets of matchings

that are, respectively, positive and negative at state w.

Armed with these definitions, we can now state the main result of this section:

Corollary 8. Fix any (µ,p,w) ∈
∑1, and suppose that Assumptions 1 and 2

hold, and that νwf and Swf are strictly supermodular. Then,

(µ,p,w) ∈ C ⇔ µ ∈ P(w) and j����
(µ,p,w)−−−−→j′ for every j and every j′ ∈ U(j).

The proof is in the appendix, but notice that Corollary 8 takes the content

of Corollary 7 one important step further; namely, the presence of increasing

surpluses exhibiting strict differences happens to guarantee that it is without loss

to focus on local upward/downward complete-information blocks, when dealing

with assortative outcomes (Peralta, 2022).

Assumptions 1 and 2 are necessary to guarantee that all complete-information

stable outcomes are positive assortative. A similar result would hold if, instead,

values are decreasing, workers’ values and surpluses are strictly submodular, and

surpluses decrease with firms’ types, if PAM is replaced by NAM, and U(j) by

D(j). Further, the main insight of Corollary 8 does not hinge on the supermodu-

larity of νwf and Swf . For example, one can replace “νwf is strictly supermodular”

with “νwf is strictly submodular,” and U(j) with D(j).

Corollary 8 drastically simplifies the task of checking whether a given first-

order, assortative outcome is in fact complete-information or not. This would

offer a particular leeway in environments in which no two firms have the same

type, as then one would only have to check at most one stability constraint per

firm. In turn, these simplifications could prove useful to any outside observer.
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Even when an outside observer cannot infer that no complete-information block

exists from observing that no such block forms, she can actually infer that, if

some complete-information block does exist, then: i) all of them must be “going

in the same direction”; upward or downward, depending on whether surpluses and

workers’ values are (strictly) supermodular or submodular, and ii) at least one of

them must be local.

Corollary 8 holds not only for first-order stability, but for every stability no-

tion sandwiched between complete-information and first-order stability, including

incomplete-information stability. In fact, I view Corollary 8 as particularly in-

sightful for any outside observer who is confident that firms draw all possible

inferences, and so focus on incomplete-information stability. This is so because

first-order stable allocations are not necessarily assortative, when the three as-

sumptions in question are in place, but incomplete-information stable outcomes

are.5

5As Liu et al. (2014) demonstrate, incomplete-information stable outcomes are always nega-
tive assortative, when agents’ values are increasing, and surpluses and workers’ values are strictly
submodular, only if, in addition, the surplus created by every pair of types is strictly positive.
See their Proposition 4.
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6 Appendix

Proof of Proposition 1

Take any (i, j) such that i ∈ Bj(µ,p,w), and define, for any ε > 0:

pεwi := νwifµi + pi,µi − νwifj + ε.

Since i ∈ Bj(µ,p,w), it follows that (i, j) forms a complete-information block,

at w, for pεwi . Suppose that there exists w′ ∈
∑0(µ,p) ∩ Ω, with w′µj = wµj , such

that (3) and (4) hold. Clearly, (1) is equivalent to j saying “no” to every transfer

i would accept to form a complete-information block with j, being of type wi;

namely, (3) is equivalent to

φw′
ifj
− pεwi ≤ φwµj

− pµj ,j, (7)

for every ε > 0. Similarly, (4) is equivalent to i saying “yes” to pεwi for every ε > 0,

at state w′. That is, (4) is equivalent to

νw′
ifj

+ pεwi > νw′
ifµi

+ pi,µi , (8)

for every ε > 0. This showed the “if” part.

For the “only if” part, the existence of some w′ ∈
∑0(µ,p) ∩ Ω, with w′µj =

wµj , such that (7) and (8) is required by
∑1. But since we established that (7) is

equivalent to (3), and (8) is equivalent to (4), the “only if” part follows.

Proof of Corollary 2

Fix any (µ,p,w) ∈
∑1 and suppose, contrary to hypothesis, that there exists

(i, j) such that i ∈ Bj(µ,p,w), but wi ≤ wi′ for some i′ such that µi′ = ∅. Since

values are increasing, we must then have that i′ ∈ Bj(µ,p,w). To see this, suppose

otherwise. Then,

Swifj > πw
i + φf

j and Swi′ fj
≤ πw

i′ + φf
j .
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But since µi′ = ∅, we have πw
i′ = 0. Hence,

Swi′ fj
− Swifj + πw

i < 0.

Since (µ,p,w) ∈
∑0, it follows that Swi′ fj

− Swifj < 0. Yet wi′ ≥ wi, so that we

contradict Assumption 1.

Thus, i′ ∈ Bj(µ,p,w) must follow. Yet since µi′ = ∅ and (µ,p,w) ∈
∑1, one

can use Proposition 1 to conclude that (4) becomes:

νw′
i′ fj
− νwi′ fj ≥ 0.

At this point, one uses (6)—applied to worker i′—to infer that w′i′ < wi′ , and

contradict Assumption 1.

Proof of Corollary 3

Fix any (µ,p,w) ∈
∑1, and any i ∈ Bj(µ,p,w) such that µi 6= ∅ and µj = ∅.

Suppose, contrary to hypothesis, that fj > fµi . Since (µ,p,w) ∈
∑1, there exists

w′ ∈ Ω ∈
∑0(µ,p) such that φw′

ifj
− pεwi ≤ 0, where

pεwi := νwifµi + pi,µi − νwifj + ε.

Since fj > fµi , Assumption 2 implies that φw′
ifµi
− pεwi < 0. But then

φw′
ifµi
− pi,µi − νwifµi + νwifj ≤ 0.

Since (µ,p,w) ∈
∑1, it follows that (µ,p,w′) ∈

∑0. Hence, φw′
ifµi
− pi,µi ≥ 0.

Hence, we must have νwifµi ≥ νwifj . But since fj > fµi , this contradicts that νwf

weakly increases with f .

Proof of Corollary 4

Fix any (µ,p,w) ∈
∑1. I start with 1., so assume Assumption 1 is satisfied.

Suppose, contrary to hypothesis, that there are two workers i, i′, with wi′ > wi,

such that µi 6= ∅ and µi′ = ∅. It then follows that (µ,p,w) is complete-information
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blocked by (i′, µi). To see why, suppose not. Then, Swi′ fµi
≤ πf

µi
, because πw

i′ = 0.

But πf
µi

= Swifµi
− πw

i . Hence,

πw
i ≤ Swifµi

− Swi′ fµi
< 0,

where the strict inequality follows from Assumption 1, because wi′ > wi. But

then, individual rationality fails, contradicting that (µ,p,w) ∈
∑1. Hence,

(µ,p,w) is complete-information blocked by (i′, µi). Since µi′ = ∅, however, this

contradicts Corollary 2.

Let’s now prove 2. Suppose, contrary to hypothesis, that there are two firms

j, j′, with fj′ > fj, such that µj 6= ∅ and µj′ = ∅. The same argument displayed

above can be used to show that Assumption 2 entails that (µ,p,w) is complete-

information blocked by (µj, j
′). Since µj′ = ∅, we contradict Corollary 3.

Proof of Corollary 5

I start with 1. Fix any state w, and suppose that there exists i such that µi = ∅

in every µ ∈ E(w). The following claims are in order.

Claim 1 : µj 6= ∅ for every j in every µ ∈ E(w).

Proof. Suppose not, and take any µ ∈ E(w), and any j such that µj = ∅. Since

µi = ∅, by hypothesis, consider the matching µ̃ that results from “adding” the

match between i and j to µ; i.e., µ̃j = µĵ for every ĵ such that µĵ = ∅, and

µ̃î =

µî î 6= i

j î = i

Since Swf ≥ 0 for every w and every f , we must have Swifj = 0, since otherwise µ

would not be efficient. But then, µ̃ is efficient, contradicting that i is unmatched

in every efficient matching at w.

Suppose, contrary to hypothesis, that there exists some allocation (µ′,p′) ∈∑1(w) with µ′i 6= ∅. Since µj 6= ∅ for every j in every µ ∈ E(w), Claim 1 implies
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that there must be some i′ 6= i such that µ′i′ = ∅, but µ̄i′ 6= ∅ in some µ̄ ∈ E(w).

We must have that

Claim 2 : Swifµ′
i

< Swi′ fµ′
i

.

Proof. Since µi = ∅ in every µ ∈ E(w), we must have that Swifµ
î
< Swi′ fµî

for

every î such that µî 6= ∅ in any µ ∈ E(w). Hence, Assumption 1 implies that

wi < wî for every î such that µî 6= ∅ in any µ ∈ E(w). Since µ̄i′ 6= ∅, it follows

that Swifµ′
i

< Swi′ fµ′
i

, as desired.

It must then follow that (µ′,p′,w) is complete-information blocked by (i′, µ′i′).

Indeed, Claim 2 entails that

Swi′ fµ′
i′
> Swifµ′

i

= πw
i + πf

µ′i
≥ πw

i′ + πf
µ′i

,

where the last inequality follows by individual rationality and the fact that worker

i′ is unmatched under µ′, so that πw
i′ = 0. Since µ′i′ = ∅, we can use Assumption

1 to invoke Corollary 2, and reach a contradiction.

I now prove 2. Fix any state w, and suppose that there exists j such that

µj = ∅ in every µ ∈ E(w). The analogue of Claim 1 holds; namely:

Claim 3 : µi 6= ∅ for every i in every µ ∈ E(w).

The proof of Claim 3 is identical to that of Claim 2, and therefore omitted. Sup-

pose, again contrary to hypothesis, that there exists some allocation (µ′,p′) ∈∑1(w) with µ′j 6= ∅. Since µi 6= ∅ for every i in every µ ∈ E(w), Claim 3 implies

that there must be some j′ 6= j such that µ′j′ = ∅, but µ̄j′ 6= ∅ in some µ̄ ∈ E(w).

We must then have that

Claim 4 : Swµ′
j
fj < Swµ′

j
fj′

.

The proof of Claim 4 is similar to that of Claim 2, when one instead uses Assump-

tion 2 to obtain fj′ > fj. Hence, an argument similar to the one used above entails

that (µ′,p′,w) is complete-information blocked by (µ′j, j
′). But since µ′j′ = ∅, we

can invoke Corollary 3 to reach a contradiction.
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Proof of Corollary 7

Take any (µ,p,w) ∈
∑1. If (µ,p,w) ∈ C, then the desired conclusion follows.

Hence, suppose that (µ,p,w) 6∈ C, and consider any complete-information block

(i, j). By Corollary 2, µi 6= ∅. If νwf is strictly supermodular, then Corollary

6 implies that fj ≤ fµi . A similar argument applies if, instead, νwf is strictly

submodular.

Proof of Corollary 8

The “only if” part of the equivalence is immediate since complete-information

stability requires the absence of all complete-information blocks, and complete-

information stable outcomes are positive assortative when the match surplus is

strictly increasing and strictly supermodular.

Suppose, contrary to hypothesis, that the “if” part of the equivalence fails; i.e.,

that there exists (µ,p,w) ∈
∑1 \ C, with µ ∈ P(w), such that

j����
(µ,p,w)−−−−→j′ for every j and every j′ ∈ U(j).

Here’s where we reach a contradiction with Proposition 1 in Peralta (2022). In-

deed, (µ,p,w) ∈
∑0 and Corollary 2 implies that (µ,p,w) cannot be complete-

information blocked by unmatched workers. By hypothesis, (µ,p,w) cannot be

complete-information blocked by unmatched firms either. Thus, all complete-

information blocks must either be upward, but global, by Corollary 7, or involve

a failure of equal treatment of equal firms. The latter is impossible, by hypoth-

esis, since U(j) and D(j) contain all firms with j’s type. But the latter is also

impossible, since Proposition 1 in Peralta (2022) entails that no global complete-

information block can exist.
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