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1 Introduction

The analysis of two-sided markets with heterogeneous agents has been largely carried out under

the assumption that agents have complete information about each other’s attributes or types.

This assumption is convenient because it delivers an equivalence between stability and efficiency

(see, e.g., Shapley and Shubik (1971)) and, within preference domains in which the surplus is

strictly supermodular and strictly increasing in agents’ types, it implies that stable matchings are

positive assortative (Becker (1973)).

Notably, Liu et al. (2014) introduce a notion of stability for labor markets in which workers’

types are private information, dubbed incomplete-information stability, and show that incomplete-

information stable matchings are assortative and efficient if firms’ and workers’ values are in-

creasing ([i]), and both match surpluses and workers’ values are strictly supermodular ([ii]).

Incomplete-information stability prescribes that once an array of workers’ types is in place,

and all agents commonly observe an individually rational allocation, each firm is informed of the

type of its own worker and agrees to participate in a block if and only if the block is profitable at

every array of workers’ types that accounts for individual rationality of the matching it observes,

the type of its own worker, the blocking worker’s willingness to participate, and the fact that no

other block takes place.

Incomplete-information stability presumes that firms make a ‘"autious" use of their infor-

mation to account for the analyst’s ignorance about firms’ beliefs, and thus capture necessary

conditions for stability. At the same time, however, incomplete-information stability assumes

that after accounting for the type of its own worker each firm can make all possible inferences

about the true array of workers’ types. These include not only those that Liu et al. (2014) dub

first-order inferences, namely those that account for the individually rational nature of the alloca-

tion and the willingness of workers to form blocks, but also all of those (higher-order inferences)

coming from the common observation that no block takes place; i.e., first-order inferences that

account for all firms’ first-order inferences (second-order inferences), second-order inferences

that account for all firms’ second-order inferences (third-order inferences), and so on.

The assumption that agents can draw high-order inferences is standard in economic mod-

elling, but somewhat inconsistent with the evidence that suggests that most agents cannot reason

iteratively for more than two or three rounds (see, e.g., Ho et al. (1998), and Kneeland (2015)) and

are not fully capable of engaging in contingent reasoning (see, e.g., Charness and Levin (2009)
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and Bayer and Renou (2016)). The assumption would not be problematic, one might argue, if

its role in delivering important properties, like assortativeness and efficiency, was innocuous.

Unfortunately, that’s not the case: Mimicking the nontrivial impact of higher-order inferences in

the equilibria of games (see, e.g., Rubinstein (1989)), stable allocations are consistent with fail-

ures of positive assortativeness and efficiency, within domains that satisfy [i] and [ii], when firms

draw a fixed, albeit arbitrarily large number of inferences (Section 5). How confident should

the analyst then be in concluding that the matching she observes is assortative and efficient? It

seems reasonable to imagine that the analyst’s uncertainty about firms’ beliefs might include, in

particular, doubts about whether, and how much, firms can engage in higher-order reasoning. If

so, she might be interested in understanding whether, and when, assortativeness and efficiency

are lower-order implications of stability. This paper brings good news: second-order inferences

suffice when [ii] is strengthened by replacing the strict supermodularity of the surplus with the

supermodularity of firms’ values ([iii]) (Theorem 1).

To be clear, Theorem 1 is concerned with the number of inferences that are sufficient to

conclude that any disassortative or inefficient allocation is not stable, but has no bearing on

the number of inferences required to stabilize, or argue for the instability of, assortative and

efficient ones (Section 7.2). Put another way, [i] and [iii] do not imply that second-order inferences

capture all higher-order ones. Further, first-order inferences are generally insufficient to deliver

assortativeness and efficiency, within domains that satisfy [i] and [iii], but they do imply that

their failure is testable, even within domains that satisfy [i] and [ii] (Section 7.1).

The importance of searching for outcomes that are robust to the cognitive ability of the agents

has long been recognized in centralized matching markets (see, e.g., Pathak and Sönmez (2008)).

In fact, the same search has recently attracted a considerable amount of attention in mechanism

design (see, e.g., Börgers and Li (2019) and Li (2017)). This paper hopes to shed some light to this

search by showing that within interesting preference domains the assortativeness and efficiency

of stable allocations are robust to the presence of incomplete information, independently not

only of the particular beliefs firms might hold, as Liu et al. (2014) demonstrate, but also, to a

very large extent, of their cognitive ability.1 Interestingly, the preference domain considered by

Theorem 1 have been the focus of related studies (see, e.g., Mailath et al. (2013) and Mailath

et al. (2017)), and shown to be important for near-by goals. For example, Chen and Ho Cher Sien

1This contribution might, in turn, shed some light on the seemingly unrelated goal of understanding whether an
agent’s observed behavior is driven by some cognitive limitation or instead by her (high-order) beliefs about others’
cognitive bounds (see, e.g., Alaoui and Penta (2016)). See Section 7.4 for a brief discussion.
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(2020) show that within domains that satisfy [i] and [iii] all matchings that are stable in markets

with two-sided uncertainty are both assortative and efficient.2 Similarly, Dizdar and Moldovanu

(2016) show that in suitable (one-dimensional) markets with two-sided uncertainty in which all

match surpluses are strictly supermodular, the efficient matching is (ex-post) implementable if

and only if both workers’ and firms’ values are supermodular.

Section 2 describes the class of one-to-one matching markets I consider, and Section 3 presents

the standard notion of (complete-information) stability and the incomplete-information extension

proposed by Liu et al. (2014). Section 4 describes the main result in Liu et al. (2014), and Section 5

offers an example that shows that their main result hinges on the assumption that firms can draw

an arbitrarily large number of inferences. Section 6 offers the main result of the paper, namely

that second-order inferences are sufficient within an interesting subdomain of the domain of

preferences considered by Liu et al. (2014), and Section 7 offers a brief discussion about the scope

of the main result, the (in)sufficiency of first-order inferences, the role of workers’ selection, and

a potentially interesting connection with the literature. The Appendix contains all the proofs.

2 The environment

There is a finite set of workers, I, and a finite set of firms, J, with i ∈ I and j ∈ J. There

is also a finite set of types of workers, W, and a finite set of types of firms, F, where W =

{w1, w2, ..., wK} ⊆ R+, F = { f 1, f 2, ..., f L} ⊆ R+, and wk and f l are increasing in their indices.

Firms’ types are commonly known by workers and firms. Thus, a state is a vector w ∈ W |I| of

workers’ types. I write w ∈ W and f ∈ F for generic elements of W and F, but also use wi and fj

to denote the type of worker i and firm j when the state is w and the array of firms’ types is f.

Value is generated by matches. Following Liu et al. (2014), I take as primitive the agents’

premuneration values; namely, the aggregate match value each agent receives in the absence of

payments. Thus, a match between a worker of type w ∈ W and a firm of type f ∈ F gives rise to

a premuneration value νw f ∈ R for the worker and a premuneration value ϕw f ∈ R for the firm.

The sum of these premuneration values, Sw f := νw f + ϕw f , is the surplus of the match. I assume

that the premuneration value of unmatched agents is zero and use the notation f∅ = ∅ = ω∅,

with the convention that ∅ < w and ∅ < f for every ω ∈ W and every f ∈ F.
2Chen and Ho Cher Sien (2020) also assume that the surplus is non-negative regardless of the agents’ types, and

that it is commonly known among workers and firms that higher-types earn and pay, respectively, higher wages.
Whether first- or second-order suffice for their result is an interesting open question.
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Given a state w, a matching between worker i and firm j gives rise to payoffs

πw
i := νwifj + p and πf

j := ϕwifj − p

for i and j, respectively, where p ∈ R is the (possibly negative) payment from j to i.

A matching is a function µ : I → J ∪ {∅}, one-to-one on µ−1, that assigns worker i to µ(i),

where µ(i) = ∅ means that i is unmatched. Similarly, µ−1(j) denotes the assignment of firm j,

where µ−1(j) = ∅ means that j is unmatched. I will use µi and µj to denote the (possibly empty)

assignments of i and j, respectively.

A payment scheme p associated with a matching µ is a vector that specifies a payment pi,µi
∈ R

for each i and a payment pµj,j ∈ R for each j. I assume that pi,∅ = p∅,j = 0.

An allocation is a pair (µ, p), consisting of a matching and a payment scheme, and an outcome

is a tuple (µ, p, w, f).

To capture firms’ uncertainty about workers’ types, I follow Liu et al. (2014) and assume that

the true state is drawn from some distribution with support Ω ⊆ W |I|.

3 Stability

3.1 Individual rationality

Definition 1. An outcome (µ, p, w, f) is individually rational if

νwifj + pi,µi
≥ 0 for every i ∈ I, and

ϕwifj − pµj,j ≥ 0 for every j ∈ J.

I write ∑0 for the set of individually rational outcomes.

3.2 Complete information

The following definition describes the well-known notion of stability introduced by Shapley and

Shubik (1971) for environments with complete information (see also Crawford and Knoer (1981).)

Definition 2. An outcome (µ, p, w, f) is complete-information stable if (µ, p, w, f) ∈ ∑0 and there

is no complete-information block; i.e., there is no worker-firm pair (i, j) and payment p ∈ R such

that
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νwifj + p > νwifµi
+ pi,µi

and ϕwifj − p > ϕwµj fj − pµj,j.

Notice that (i, j) forms a complete-information block at (w, f) if and only if Swifj > πw
i + πf

j .
3

I write C for the set of complete-information stable outcomes.

3.3 Incomplete information

The following blocking notion, introduced by Liu et al. (2014), extends the notion of complete-

information block to markets in which workers’ types are private information.

Definition 3. Fix any nonempty set X ⊆ ∑0. An outcome (µ, p, w, f) ∈ X is X-blocked if there

exists (i, j) and p ∈ R such that

1. νwi ,fj + p > νwifµi
+ pi,µi

, and

2. ϕw̃ifj − p > ϕw̃µj fj − pµj,j, for every w̃ ∈ Ω with (µ, p, w̃, f) ∈ X such that

w̃µj = wµj and νw̃i ,fj + p > νw̃ifµi
+ pi,µi

.

In words: An individually rational outcome (µ, p, w, f) ∈ X is X-blocked by (i, j) if and only

if (i, j) forms a complete-information block at w, and at every other state in Ω that is consistent

with the fact that j knows [a] the allocation (µ, p), [b] the type of its own worker, [c] that the

allocation is individually rational, and [d] that i is willing to participate in the block.

Two comments about this definition are in order. First, all firms make a “cautious" use of their

information. Indeed, a firm is not willing to participate in a complete-information block if there is

(at least) one state consistent with [a]-[b]-[c]-[d] at which the block is not profitable. The intended

interpretation, as argued in Liu et al. (2014), refers to an outside observer who presumes that all

firms know [a]-[b]-[c]-[d], but is uncertain about the particular beliefs they might have. Under

this interpretation, the definition above captures necessary conditions for stability.

Second, the definition above assumes that all firms use [a]-[b]-[c]-[d] to make inferences about

the true array of workers’ types. These inferences constitute their first-order inferences. Thus,

the set of individually rational outcomes that are not ∑0-blocked; i.e.,

∑1 := {(µ, p, w, f) : (µ, p, w, f) ∈ ∑0 and (µ, p, w, f) is not ∑0 -blocked}
3Because f is fixed throughout, from now on I will say that (i, j) forms a complete-information block at w instead.
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can be interpreted as the set of outcomes that are stable when all firms can make first-order

inferences. Of course, firms might know that all firms make first-order inferences, that all firms

know that all firms make first-order inferences, and so on. For each order k ≥ 1, the set of stable

outcomes would then be

∑k := {(µ, p, w, f) : (µ, p, w, f) ∈ ∑k−1 and (µ, p, w, f) is not ∑k−1 -blocked}

Liu et al. (2014) assume that all firms make all finite higher-order inferences, and so focus on

∑ =:
⋂

k≥1 ∑k, which they refer to as the set of incomplete-information stable outcomes. Liu et al.

(2014) show that the set of incomplete-information stable outcomes is nonempty regardless of

the arrays of agents’ types, namely, that ∑(w, f) ̸= ∅ for every (w, f). This is so, in fact, because

∑1(w, f) ̸= ∅ for every (w, f). Indeed, every property satisfied by—any outcome in—∑k must

be satisfied by—any outcome in—∑s, for every s > k. Hence, the existence of stable outcomes

is independent of the number of inferences firms can make. The following picture describes the

relationship between each of the different stability notions:

∑1

C

∑2

∑

...

Figure 1: The set of stable outcomes for different number of inferences.
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4 Assortativeness and efficiency

I start with the notions of positive assortativeness and efficiency that Liu et al. (2014) consider:

Definition 4. A matching µ is positive assortative at (w, f) if

1. for every i, i′ with µi ̸= ∅ we have wi′ > wi ⇒ fµi′ ≥ fµi , and

2. for every j, j′ with µj ̸= ∅ we have fj′ > fj ⇒ wµj′ ≥ wµj .

I will refer to 1 and 2 in this definition as “worker assortativeness" and “firm assortativeness,"

respectively. The standard definition of efficiency is as follows:

Definition 5. A matching µ is efficient at (w, f) if

∑i∈I Swifµi
= maxµ′ ∑i∈I Swifµ′i

.

The main result in Liu et al. (2014) shows that all incomplete-information stable matchings

are positive assortative and efficient within preference domains that satisfy the following two

payoff assumptions.

Assumption 1 (Monotonicity). Workers’ premuneration value νw f and firms’ premuneration

value ϕw f are increasing in w and f , with νw f strictly increasing in w and ϕw f strictly increasing

in f .

Assumption 2 (Supermodularity). The worker premuneration value νw f and the match surplus

Sw f are strictly supermodular in w and f .

Liu et al. (2014) prove the following result:

Proposition 1 (Proposition 3 in Liu et al. (2014)). Under Assumptions 1 and 2, every outcome

(µ, p, w, f) ∈ ∑ is positive assortative and efficient.

The proof provided by Liu et al. (2014) proceeds in two steps. First, they show that Assump-

tions 1 and 2 imply that all incomplete-information stable matchings are positive assortative.4

Second, they make use of the fact that positive assortativeness and efficiency are essentially the

same, when Assumptions 1 and 2 are in place, to show that all incomplete-information stable

matchings must also be efficient.5 The first step, in particular, hinges on the following first-order

implication of stability:
4The reader is invited to look at their Lemma B.5.
5This fact is stated in their Lemma B.1, and corresponds to Lemma 2 in Section 6 below.
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Lemma 1. Suppose that Assumptions 1 and 2 hold, and fix any (µ, p, w, f) ∈ ∑1. If (i, j) is a complete-

information block at w, then µi ̸= ∅ and fµi ≥ fj.

The proof is in the Appendix. This result says that not every complete-information block

is consistent with incomplete-information stability, regardless of the number of inferences firms

can make, under Assumptions 1 and 2.6 In particular, every complete-information block must

involve a matched worker and the worker must be matched to a firm with a type that is equal or

smaller than the type of the blocking firm. I will use this result heavily below.

5 Arbitrarily sophisticated firms

This paper is interested in understanding whether Proposition 1 is true for ∑k, for some "small"

value of k. Interestingly, the answer is "no." In fact, the following example illustrates that stability

is consistent with failures of positive assortativeness and efficiency for an arbitrarily large number

of inferences.

Example 1. There are two workers, I = {i1, i2}, and two firms, J = {j1, j2}. The type of j1 is 2, and

the type of j2 is 3. The type of worker i1 is 5, and the type of worker i2 is 5 − s, with 4 ≥ s > 0. The

premuneration value of both workers is νw f = nw f , with 2 ≥ n > 1, and the premuneration value of

both firms is ϕw f = w(4 − f ) + 5 f . Let w1 = 1 and wK = 5. Thus, Assumptions 1 and 2 are satisfied.7

Consider the following allocation:

Worker indices: i1 i2
Workers’ payoffs, πw: 10n 3n(5 − s) + p

Workers’ types, w: 5 5 − s
Transfers, p: 0 p

Firms’ types, f: 2 3
Firms’ payoffs, πf: 20 20 − s − p

Firms’ indices: j1 j2

Notice that s > 0 implies that the underlying matching is neither positive assortative nor

efficient at w. Consider

p := −2s1 − 5n + ns, (1)

6This result is not explicitly stated in Liu et al. (2014), but their Lemma 2 contains the same insight.
7This is clear for νw f , because n > 1, and notice that ϕw f is strictly increasing in w and f , when w < 5, which is the

relevant range of workers’ types. Further, Sw f is strictly supermodular, because n > 1.
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where s1 > s. The Appendix proves the following result:

Proposition 2. For every k ≥ 1 there is some n ∈ (1, 2] such that (µ, p, w, f) ∈ ∑k.

The proof constructs, for each k ≥ 1, a sequence of of k states that can be used, when s is small

enough, to argue that the allocation above belongs to ∑k. Two observations about the construction

are worth mentioning. First, the sequence associated with k is not just longer than the sequence

associated with k − 1, but in fact prescribes different values for its first k − 1 terms. That is so,

intuitively, because each additional inference changes, via stability, the implications of all lower-

order ones. Second, stability imposes a non-trivial upper bound on n for third- and higher-order

inferences, and the bound is decreasing in k.8 In fact, the converse is also true; namely, for each

value of n ∈ (1, 2] there is an upper bound on the number of higher-order inferences needed

to reach a contradiction (with the hypothesis that the allocation above is incomplete-information

stable), and the bound is weakly decreasing in n. Thus, the closer n gets to 1 the higher k is, and

viceversa.9 For example, the allocation belongs to ∑3 if and only if n < 2, to ∑4 if and only if

(approximately) n < 1.23, to ∑5 if and only if (approximately) n < 1.08, and so on.

To illustrate these two observations, and in so doing the construction in the proof, suppose

that one wants to argue that the allocation above belongs to ∑k, for k ∈ {1, 2, 3, 4}. The idea

is to define values for s1, (s1, s2), (s1, s2, s3), and (s1, s2, s3, s4) argue that the allocation belongs,

respectively, to ∑1, ∑2, ∑3, and ∑4. The following table describes these values:

k s1 s2 s3 s4

1 n+1
2 s // // //

2 ns n2+n
2 s // //

3 n
2−n s n2

2−n s n3+n2

4−2n s //

4 2n−n2

4−2n−n2 s n2

4−2n−n2 s n3

4−2n−n2 s n4+n3

8−2n2−4n s

Notice both that n decreases when k goes from 2 to 3, and from 3 to 4, for the values to be

well defined, and that the value of s1, s2, and s3 depends on k ∈ {1, 2, 3, 4}. The proof of Theorem

1 identifies the pattern behind these sequences to generalize the argument to any k > 4.

8By non-trivial I mean an upper bound that is strictly smaller than 2.
9When n = 1, the match surplus exhibits constant differences; that’s why the restriction n > 1 is imposed.
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6 Sufficiency of second-order inferences

A feature of Example 1 is that firms’ premuneration values are strictly submodular; it turns

out that the feature is a necessary ingredient of every example in which stability is consistent

with failures of efficiency and positive assortativeness, when firms are able to draw more than

second-order inferences.

Consider the following strengthening of Assumption 2:

Assumption 3. The worker premuneration value νw f is strictly supermodular and the firm pre-

muneration value ϕw f is weakly supermodular, in w and f .

The following result, which constitutes the main result of the paper, says that under Assump-

tions 1 and 3 second-order inferences are sufficient to achieve assortativeness and efficiency:

Theorem 1. Under Assumptions 1 and 3, every outcome (µ, p, w, f) ∈ ∑2 is positive assortative

and efficient.

The proof of Theorem 1 can be found in the Appendix, but proceeds by first showing that

Assumptions 1 and 3 deliver positive assortativeness, and then using assortativeness to obtain

efficiency. Intuitively, the argument for assortativeness goes as follows: Given that the surplus is

strictly increasing and strictly supermodular, every failure of positive assortativeness gives rise

to a complete-information block. By Lemma 1, no such complete-information block can involve

an unmatched worker. Thus, every such failure must involve a “mismatch," namely, two workers

and two firms of different types matched in a negative assorted way. Because of Lemma 1, the

only complete-information block is formed by the “low-low" pair. Since the allocation belongs

to ∑1, there must be some alternative array of workers’ types, consistent with the signals that

the low-type firm receives, at which (a) the blocking opportunity is not longer profitable to the

low-type firm and, given Lemma 1, (b) there is no blocking opportunity that involves the high-

high pair. The result in Liu et al. (2014) is obtained, using the second-, third-, and higher-order

inferences of the low-type firm because (a) requires, given that firms’ values are increasing in

workers’ types, that the type of the low-type worker is reduced and, as a consequence, the failure

of assortativeness is inherited by the alternative array. Theorem 1 shows, however, that under

Assumption 3 it is impossible, to begin with, for (a) and (b) to be met. Plainly, the lower type

of the low-type worker demanded by (a) makes the high-type worker attractive to the high-type
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firm at the alternative array, when firms’ values are supermodular, regardless of the transfers

that might be in place. Thus, Lemma 1 is contradicted.

Once positive assortativeness is established, the proof of Theorem 1 proceeds by showing that

all incomplete-information stable matchings are efficient by means of the following result:10

Lemma 2. Suppose that the surplus is strictly increasing in w and f , and strictly supermodular. Then,

matching µ is efficient at (w, f) if and only if µ is positive assortative at (w, f), Swifµi
≥ 0 for every i, and

there is no (i, j) with µi = µj = ∅ such that Swifj > 0.

To see why the efficiency of every matching µ for which there exists (p, w, f) such that

(µ, p, w, f) ∈ ∑2 is a consequence of Lemma 2, notice that if (µ, p, w, f) ∈ ∑2, then Swifµi
≥ 0

for every i, by individual rationality. Since µ would be positive assortative, Lemma 2 implies that

µ fails to be efficient if and only if there is some (i, j) with µi = µj = ∅ such that Swifj > 0. If

that’s the case, however, (i, j) must form a complete-information block, contradicting Lemma 1.

7 Discussion

7.1 Insufficiency of first-order inferences

The following example illustrates that first-order inferences are insufficient to deliver positive

assortativeness and efficiency, even under Assumptions 1 and 3:

Example 2. There are two workers, I = {i1, i2}, and two firms, J = {j1, j2}. The type of j1 is 2, and

the type of j2 is 3. The type of worker i1 is 5, and the type of worker i2 is 4, with W = {1, 2, 3, 4, 5}.

The premuneration value of both workers and both firms is the same, given by νw f = ϕw f = w f . Thus,

Assumptions 1 and 3 are satisfied. Consider the following allocation:

Worker indices: i1 i2
Workers’ payoffs, πw: 14 8

Workers’ types, w: 5 4
Transfers, p: 4 −4

Firms’ types, f: 2 3
Firms’ payoffs, πf: 6 16

Firms’ indices: j1 j2

10The proof of this Lemma is left to the reader, but Lemma B.1 in Liu et al. (2014) conveys the same result—with,
however, stronger assumptions.
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Notice that the matching is neither positive assortative nor efficient at w, and that (i2, j1) forms a

complete-information block at w, but (i1, j2) does not. We can focus on the “smallest" transfer for which

(i2, j1) forms a complete-information block at w; i.e., pϵ
wi2

= ϵ, where ϵ > 0. Consider the vector of

workers types w′ = (5, 3), so that

Worker indices: i1 i2
Workers’ payoffs, πw′

: 14 5
Workers’ types, w′: 5 3

Transfers, p: 4 −4
Firms’ types, f: 2 3

Firms’ payoffs, πf: 6 13
Firms’ indices: j1 j2

At w′, the payoff of i2 in the allocation (5) is strictly smaller than 6 + ϵ, the payoff she would get

by matching with j1 for pϵ
w, for every ϵ > 0, but the payoff of j1 from matching with i2, at w′, with

respect to pϵ
wi2

is 6 − ϵ, weakly smaller than 6, the payoff j1 obtains with i1, for every ϵ > 0. Thus,

(µ, p, w, f) ∈ ∑1.

Intuitively, ∑1 is consistent with failures of assortativeness and efficiency, under Assumptions

1 and 3, because it presumes that all firms account for the fact that the high-high pair cannot form

a complete-information block, but does not assume that all firms know that all firms account for

that. The latter is precisely what ∑2 imposes over ∑1. Indeed, notice that in the example above

Lemma 1 fails at w′.

Interestingly, however, the next result shows that first-order inferences do deliver assortative-

ness and efficiency for an interesting set of allocations, even under Assumptions 1 and 2:

Proposition 3. Suppose that Assumptions 1 and 2 hold, and fix any (µ, p, w, f) ∈ ∑1. If pj′ ≥ pj

for every j, j′ such that fj′ > fj, then (µ, p, w, f) is positive assortative and efficient.

The proof of Proposition 3 is in the Appendix, but the intuition comes directly from Lemma

1, because in every "mismatch" in which the high-type firm pays weakly more than the low-

type firm, the high-high pair forms a complete-information block. Notice, in particular, that in

Example 1 the transfer "paid" by the high-type firm, p, is smaller than 0, the transfer between the

low-type firm and its workers. Indeed, for every n ∈ (1, 2]

p = −2s1 + n(s − 5) < 0,
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because s ≤ 4 and s1 > s > 0.

An interesting consequence of Proposition 3 is that the analyst would be able to test every

failure of assortativeness and efficiency—because wages and firms’ types are assumed to be

observable—within the domains study by Liu et al. (2014), without knowing how sophisticated

firms are.11

7.2 The scope of Theorem 1

The following example illustrates that Assumptions 1 and 3 do not imply that ∑2 = ∑. Thus,

more than second-order inferences may be needed, even under Assumptions 1 and 3, to stabilize

a matching that is efficient and positive assortative.

Example 3. There are two workers, I = {i1, i2}, and two firms, J = {j1, j2}. The type of j1 is 2, and

the type of j2 is 3. The type of worker i1 is 4, and the type of worker i2 is 8, with W = {1, 2, 3, 4, 5}.

The premuneration value of both workers and both firms is the same, given by νw f = ϕw f = w f . Thus,

Assumptions 1 and 3 are satisfied. Consider the following allocation:

Worker indices: i1 i2
Workers’ payoffs, πw: 8 20

Workers’ types, w: 4 8
Transfers, p: 0 −4

Firms’ types, f: 2 3
Firms’ payoffs, πf: 8 28

Firms’ indices: j1 j2

Notice that the matching is positive assortative and efficient at w, and that (i2, j1) forms a complete-

information block at w, but (i1, j2) does not. We can focus on the “smallest" transfer for which (i2, j1)

forms a complete-information block at w; i.e., pϵ
wi2

= 4 + ϵ, where ϵ > 0. Consider the vector of workers

types w′ = (4, 6), so that

11In some markets wages do seem to be positively assorted with respect to firms’ types. See, e.g., Bloom et al. (2021)
and Chen and Ho Cher Sien (2020).
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Worker indices: i1 i2
Workers’ payoffs, πw′

: 8 14
Workers’ types, w′: 4 6

Transfers, p: 0 −4
Firms’ types, f: 2 3

Firms’ payoffs, πf: 8 22
Firms’ indices: j1 j2

At w′, the payoff of i2 in the allocation (14) is strictly smaller than 16 + ϵ, the payoff she would get by

matching with j1 for pϵ
w, for every ϵ > 0, but the payoff of j1 from matching with i2, at w′, with respect to

pϵ
w is 8 − ϵ, weakly smaller than 8, the payoff j1 obtains with i1, for every ϵ > 0. Thus, (µ, p, w, f) ∈ ∑1.

Once again, the matching is positive assortative and efficient at w′, (i2, j1) forms a complete-information

block at w′, and (i1, j2) does not. Notice that pϵ
w’i2

= 2 + ϵ, and consider the vector of workers types

w′′ = (4, 5), so that

Worker indices: i1 i2
Workers’ payoffs, πw′′

: 8 11
Workers’ types, w′′: 4 5

Transfers, p: 0 −4
Firms’ types, f: 2 3

Firms’ payoffs, πf: 8 19
Firms’ indices: j1 j2

At w′′, the payoff of i2 in the allocation (11) is strictly smaller than 12+ ϵ, the payoff she would get by

matching with j1 for pϵ
w′ , for every ϵ > 0, but the payoff of j1 from matching with i2, at w′′, with respect to

pϵ
w′ is 8− ϵ, weakly smaller than 8, the payoff j1 obtains with i1, for every ϵ > 0. Thus, (µ, p, w’, f) ∈ ∑1,

and so (µ, p, w, f) ∈ ∑2.

Even though the matching is positive assortative and efficient at w′′, it is not complete-information

stable. In particular, (i2, j1) forms a complete-information block at w′′, but (i1, j2) does not. Notice that

pϵ
w”i2

= 1 + ϵ, and consider the vector of workers types w′′′ = (4, 4), so that

Worker indices: i1 i2
Workers’ payoffs, πw′′′

: 8 8
Workers’ types, w′′′: 4 4

Transfers, p: 0 −4
Firms’ types, f: 2 3

Firms’ payoffs, πf: 8 16
Firms’ indices: j1 j2
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At w′′′, the payoff of i2 in the allocation (8) is strictly smaller than 9 + ϵ, the payoff she would get

by matching with j1 for pϵ
w′′ , for every ϵ > 0, but the payoff of j1 from matching with i2, at w′′, with

respect to pϵ
w′′ is 7 − ϵ, weakly smaller than 8, the payoff j1 obtains with i1, for every ϵ > 0. Thus,

(µ, p, w”, f) ∈ ∑1, so that (µ, p, w, f) ∈ ∑3. In fact, the allocation is complete-information stable at w′′′,

so that, in particular, (µ, p, w, f) ∈ ∑.

Two follow-up comments on this example. First, the same sequence of states and allocations

can be used to argue that (µ, p, w, f) ∈ ∑3 if p = (0,−3.99), but the allocation would not be

complete-information stable at w′′′. In particular, (i1, j2) would form a complete-information

block, thus violating Lemma 1, at w′′′. Thus, second-order inferences are not sufficient to argue

for the instability of efficient and positive assortative allocations either. Second, the example also

illustrates that "adding" the (weak) supermodularity of firms’ premuneration values does not

deliver positive assortative and efficiency because ∑2 and C collapse.

7.3 Workers’ selection

Arguably, Lemma 1 is the key driving force in Theorem 1 and Propositions 2 and 3, but holds true

because ∑1 presumes that all firms account for the selection of workers. The following example

illustrates that the notion of incomplete-information stability that does not assume that firms

account for the willingness of workers to participate in complete-information blocks is consistent

with failures of positive assortativeness and efficiency, evem under Assumptions 1 and 3.

Example 4. There are two workers, I = {i1, i2}, and two firms, J = {j1, j2}. The type of j1 is 2, and

the type of j2 is 3. The type of worker i1 is 5, and the type of worker i2 is 4, with W = {1, 2, 3, 4, 5}.

The premuneration value of both workers and both firms is the same, given by νw f = ϕw f = w f . Thus,

Assumptions 1 and 3 are satisfied. Consider the following allocation:

Worker indices: i1 i2
Workers’ payoffs, πw: 10 13

Workers’ types, w: 5 4
Transfers, p: 0 1

Firms’ types, f: 2 3
Firms’ payoffs, πf: 10 11

Firms’ indices: j1 j2

Notice that the matching is neither positive assortative nor efficient at w, and that (i1, j2) forms a
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complete-information block at w, but (i2, j1) does not. We can focus on the “smallest" transfer for which

(i1, j2) forms a complete-information block at w; i.e., pϵ
wi1

= −5 + ϵ, where ϵ > 0. Consider the vector of

workers types w′ = (2, 4), so that

Worker indices: i1 i2
Workers’ payoffs, πw′

: 4 13
Workers’ types, w′: 2 4

Transfers, p: 0 1
Firms’ types, f: 2 3

Firms’ payoffs, πf: 4 11
Firms’ indices: j1 j2

The payoff of j2 from matching with i1, at w′, with respect to pϵ
wi1

, is 11 − ϵ, strictly smaller than

11, the payoff j2 obtains with i2, for every ϵ > 0. Notice, however, that i2 is not strictly better-off,

at w′, with respect to pϵ
wi1

. At w’, the matching is positive assortative and efficient, and there are no

complete-information blocks.

Notice that in the example firm j2 does not account for the selection of worker i2, and thus

considers possible that the worker’s type is 2, in which case the underlying matching is complete-

information stable—and therefore positive assortative and efficient.

The reader should takeaway that whether the analyst should be confident in concluding that

the allocation she observes is positive assortative and efficient, because of Theorem 1, depends

on how confident she is that firms are sophisticated enough to infer that a worker would only

accept a transfer that leaves her better-off (see, e.g., Esponda (2008)).

7.4 Cognitive and strategic bounds

Theorem 1 sheds light on the relationship between the underlying preference domain and the

"cognitive load" required by assortativeneness and efficiency and, perhaps, on the well-studied

question of whether an agent’s observed behavior is driven by some cognitive limitation or in-

stead by her (high-order) beliefs about others’ cognitive bounds (see, e.g., Alaoui and Penta

(2016)). Besides a few exceptions (see, e.g., Alaoui et al. (2020) and Bayer and Renou (2016)), the

literature has struggled to disentangle an agent’s “cognitive" and “strategic" bounds.

Lemma 1 implies that the role of high-order inferences in delivering assortativeness and effi-

ciency is somewhat limited within domains that satisfy Assumptions 1 and 2. Indeed, in every
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mismatch the only relevant higher-order inferences are those made by the low-type firm, about

the type of the low-type worker, given that there is no blocking opportunity that involves the

high-high pair. It turns out that neither Lemma 1 nor this implication are necessary: Assortative-

ness and efficiency can be obtained within domains that satisfy Assumption 2 and a weakening of

Assumption 1 within which Lemma 1 does not apply, so that a blocking opportunity can involve

either the low-low or high-high type pairs (Peralta (2023)).12 As a consequence, assortativeness

and efficiency hinge, within those weaker domains, on a more elaborated, and somewhat more

familiar, form of strategic thinking; i.e., on the ability of both the low- and high-type firms to

draw higher-order inferences about the worker’s type of each other. Interestingly, second-order

inferences do not suffice under Assumption 3 and the weakening of Assumption 1.13 Thus, three

different, but logically related sets of preference domains deliver assortativeness and efficiency,

but make an arguably substantially different use of high-order beliefs.

The relationship between the underlying preference domain and the “kind" of high-order

inferences needed for assortativeness and efficiency discussed above could help, in principle, to

distinguish between an agent’s cognitive and strategic bound. Indeed, within domains that sat-

isfy either Assumptions 1 and 2 or Assumptions 1 and 3 one could perhaps isolate the cognitive

bound, because there is no relevant strategic interaction. In fact, one could perhaps measure

how low or high that bound might be, by comparing the two iterations that are needed under

Assumptions 1 and 3 with examples in which Assumptions 1 and 2 require a "large" number

of iterations. Moreover, if assortativeness and efficiency are obtained under Assumptions 1 and

3—or under Assumptions 1 and 2 when they require a "small" number of iterations—but not

under Assumption 2 and the weakening of Assumption 1, one might be able to say that behavior

is mostly driven by a strategic bound.

12The weakening of Assumption 1 requires νw f to be strictly increasing in w and Sw f to be strictly increasing in
both w and f .

13See Example 1 in Peralta (2023).

19



8 Appendix

8.1 Proof of Lemma 1

Take any (µ, p, w, f) ∈ ∑1, and any (i, j) that forms a complete-information block at w. If µi = ∅,

then consider

pϵ
wi

:= −νwifj + ϵ,

where ϵ > 0. Since unmatched agents get a payoff of 0, pϵ
wi

is the “smallest" transfers for which

(i, j) forms a complete-information block at w. Since (µ, p, w, f) ∈ ∑1, there must be, for every

ϵ > 0, some w′ ∈ Ω with (µ, p, w′, f) ∈ ∑0 and w′
µj
= wµj such that

νw’ifj + pϵ
wi

> 0 and ϕw’ifj − pϵ
wi

≤ ϕwµj fj − pµj,j,

where the second inequality uses the fact that w′
µj
= wµj . Since W is finite, and Ω ⊆ W |I|, we can

assume without loss that these two inequalities are true for every ϵ > 0.

Notice that the inequality on the left holds for every ϵ > 0 if and only if

νw’ifj − νwifj + ϵ ≥ 0,

which is true if and only if w′
i ≥ wi, by Assumption 1. On the other hand, it is not hard to see

that the inequality on the right implies, given that (i, j) forms a complete-information block at w,

that

ϕwifj > ϕw′
ifj

,

which holds true if and only if w′
i < wi, a contradiction. Thus, ∑1 implies that we must have

µi ̸= ∅ in every complete-information block (i, j).

Suppose now that µi ̸= ∅, but fj > fµi . Consider

pϵ
wi

:= νwifµi
+ pi,µi

− νwifj + ϵ.

Since (µ, p, w, f) ∈ ∑1, there must be, for every ϵ > 0, some w′ ∈ Ω with (µ, p, w′, f) ∈ ∑0

and w′
µj
= wµj such that
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νw’ifj + pϵ
wi

> πw
i and ϕw’ifj − pϵ

wi
≤ ϕwµj fj − pµj,j,

Again, because W is finite, and Ω ⊆ W |I|, we can assume without loss that these two inequalities

are true for every ϵ > 0. The inequality on the right again implies that w′
i < wi, and the

inequality on the left is equivalent to

νw’ifj + νwifµi
+ pi,µi

− νwifj + ϵ > πw
i .

It is not hard to see that this inequality is true for every ϵ > 0 if and only if

νw’ifj + νwifµi
− νwifj − νwifµi

≥ 0.

Since fj > fµi and νw f is strictly supermodular, because of Assumption 2, it follows that w′
i ≥ wi,

a contradiction.

8.2 Proof of Proposition 2

The proof constructs, for each k ≥ 1, a sequence of states that can be used to argue that the

allocation in the example, (µ, p, w, f), belongs to ∑k. Consider, for each k ≥ 1, the sequence

sk
k := nk+nk−1

2k−∑k−1
i=0 2ink−1−i+nk−1 s,

and, for every k ≥ 2, and each t ∈ {1, ..., k − 1},

sk
t =

2k−1−∑k−2
i=0 2ink−2−i+1t>02k−(t+1)nt+1t−1>02k−(t+1)nt−1+1t−2>02k−(t)nt−2+1t−3>02k−(t−1)nt−3+...−2k−2

2k−1−∑k−2
i=0 2ink−2−i s,

where 1 denotes the indicator function.

These sequences prescribe the value s1
1 = n+1

2 s for k = 1, the values s2
2 = n2+n

2 s and s2
1 = ns,

for k = 2, the values s3
3 = n3+n2

4−2n s, s3
2 = n2

2−n s, and s3
1 = n

2−n s, for k = 3, and so on. Hence, the

sequence contains one term for k = 1, two terms for k = 2, three terms for k = 3, and so on.

The next two lemmas, whose proofs can be found at the end of this subsection, show that

these sequences are well-defined for some n ∈ (1, 2]:

Lemma 3. For every k ≥ 1 there is some n ∈ (1, 2] such that 2k − ∑k−1
i=0 2ink−1−i + nk−1 > 0.

Lemma 4. For every k ≥ 2 and every n ∈ (1, 2] such that 2k − ∑k−1
i=0 2ink−1−i + nk−1 > 0, we have
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2k−1 − ∑k−2
i=0 2ink−2−i > 0.

Define, for each k ≥ 1 and each t ∈ {1, ..., k}, the sequence of states wk
t = (5, 5− sk

t ), and recall

that w = (5, 5 − s). The following lemma constitutes the base case for the inductive argument of

the proof:

Lemma 5. (µ, p, w, f) ∈ ∑1

Proof. Since s > 0, we have that µ is neither positive assortative nor efficient at w. By Assumption

2, either (i1, j2) or (i2, j1) forms a complete-information block at w. To see this, suppose that

neither of them does. Then, Swi1 fj2
≤ πw

i1
+ πf

j2 and Swi2 fj1
≤ πw

i2 + πf
j1

. Adding them up gives:

Swi1 fj2
+ Swi2 fj1

≤ πw
i1 + πf

j2 + πw
i2 + πf

j1

= Swi1 fj1
+ Swi2 fj2

.

But since s > 0 this contradicts the strict supermodularity of the surplus, because wi1 = 5 >

wi2 = 5 − s and fj1 = 2 < fj2 = 3.

I now show that, using s1 := s1
1 in the transfer defined in (1), (i1, j2) does not form a complete-

information block at w. To see this, notice that (i1, j2) forms a complete-information block at w

if and only if

n15 + 5 + 15 > 10n + 20 − s − p = 10n + 20 − s + 2s1
1 + 5n − ns

= 10n + 20 − s + 2
(n + 1)

2
s + 5n − ns

= 10n + 20 − s + (n + 1)s + 5n − ns

where the second line used the fact that s1
1 = n+1

2 s, because k = 1. Since both sides are actually

equal to one another, we reach a contradiction.

Next, I use w1
1 = (5, 5 − s1

1) to argue that individual rationality holds at both w and w1
1 =

(5, 5 − s1
1), and that every transfer that leads (i2, j1) to form a complete-information block at w

only leaves i2 strictly better-off at w1
1 = (5, 5 − s1

1).

For individual rationality it suffices to show that the payoff of i2 and j1 is non-negative at both

w and w1
1 = (5, 5 − s1

1), because 20 > 0 and 10n > 0, given that n > 1. The payoff of j1 is equal

to 20 + 5n at w = (5, 5 − s), and equals 20 + 1−n
2 s + 5n at w1

1 = (5, 5 − s1
1), both of which are
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positive regardless of s ∈ (0, 4], for any n > 1. The payoff of i2 is non-negative at w = (5, 5 − s)

if and only if s ≤ 10n
3n+1 , which is true for small enough s, for any n > 1, and is non-negative at

w1
1 = (5, 5 − s1

1) if and only if s ≤ 20n
3n2+3n+2 , which is satisfied for small enough s, because n ≤ 2.

In general, for any given k ≥ 1 individual rationality is satisfied at wt, for every t < k,

whenever it is satisfied at wk.

To argue that every transfer that leads (i2, j1) to form a complete-information block at w

leaves i2 strictly better-off at w1
1 = (5, 5 − s1

1), with respect to the payoff she obtains with j2, we

can focus, without loss, on the “smallest" such transfer; i.e.,

pϵ
w := 3n(5 − s) + p − 2n(5 − s) = n(5 − s) + p + ϵ,

where p is defined in (1), and ϵ > 0. Intuitively, the reader should think of ϵ as being “small"

and, thus, of pϵ
w as the “smallest" blocking transfer between j1 and i2, at w. We have to show

that, at w1
1 := (5, 5 − s1

1), the payoff i2 obtains with j1 with respect to pϵ
w is strictly higher than

the payoff she obtains with j2, for any ϵ > 0; i.e., that

2n(5 − s1
1) + n(5 − s) + p + ϵ > 3n(5 − s1

1) + p.

This is true, for any p, if and only if n(s1
1 − s) + ϵ > 0, and is satisfied for every ϵ > 0 because

s1
1 = n+1

2 s > s, given that n > 1. We also need that, at w1
1 := (5, 5 − s1

1), the payoff j1 obtains

matching with i2 with respect to pϵ
w is weakly smaller than the payoff it obtains with i1, for any

ϵ > 0; namely, we need

2(5 − s1
1) + 10 − n(5 − s)− p − ϵ ≤ 20,

to be true for every ϵ > 0, which is equivalent to

−2s1 − 5n + ns ≤ p + ϵ.

being true for every ϵ > 0. The two sides are in fact equal to one another, for any ϵ > 0, because

p is defined as in (1)).

Let the inductive hypothesis say that (µ, p, w, f) ∈ ∑x, for every x ∈ {2, ..., k − 1}, where

k > 2. We have to prove the following claim:

Lemma 6. (µ, p, w, f) ∈ ∑k
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Proof. Consider the sequence {wk
t}t∈{1,...,k}. I use wk

1 to argue that (µ, p, w, f) ∈ ∑1, and wk
t to

argue that (µ, p, wk
t−1, f) ∈ ∑1, for every t ∈ {2, .., k}. By Lemmas 3 and 4, fix any n ∈ (1, 2] such

that 2k − ∑k−1
i=0 2ink−1−i + nk−1 > 0 and 2k−1 − ∑k−2

i=0 2ink−2−i > 0, and notice that

sk
1 =

2k−1−∑k−2
i=0 2ink−2−i+2k−2n−2k−2

2k−1−∑k−2
i=0 2ink−2−i s

We have sk
1 > 0, for any n ∈ (1, 2] such that 2k−1 − ∑k−2

i=0 2ink−2−i, by Lemmas 3 and 4. We use

this value to define wk
1 := (5, 5 − sk

1). Since s > 0, we have that µ is neither positive assortative

nor efficient at w. As before, Assumption 2 implies that either (i1, j2) or (i2, j1) forms a complete-

information block at w. Using s1 := sk
1 in the transfer defined in (1), (i1, j2) does not form a

complete-information block at w. To see this, notice that (i1, j2) forms a complete-information

block at w if and only if

n15 + 5 + 15 > 10n + 20 − s − p = 10n + 20 − s + 2sk
1 + 5n − ns

= 10n + 20 − s + 2[
2k−1 − ∑k−2

i=0 2ink−2−i + 2k−2n − 2k−2

2k−1 − ∑k−2
i=0 2ink−2−i

s] + 5n − ns

= 10n + 20 − s + [
2k − 2 ∑k−2

i=0 2ink−2−i + 2k−1n − 2k−1

2k−1 − ∑k−2
i=0 2ink−2−i

]s + 5n − ns

= 10n + 20 − s + [
2k−1 − 2 ∑k−2

i=0 2ink−2−i + 2k−1n

2k−1 − ∑k−2
i=0 2ink−2−i

]s + 5n − ns.

where the second line used the value of sk
1 above. It is easy to see that this strict inequality holds

if and only if

1 + n − [
2k−1 − 2 ∑k−2

i=0 2ink−2−i + 2k−1n

2k−1 − ∑k−2
i=0 2ink−2−i

]s + 5n − ns > 0

which, in turn, is equivalent to

(1 − n)
k−2

∑
i=0

2ink−2−i > 0.

This contradicts the assumption that n > 1.

Next, I use wk
1 = (5, 5 − sk

1) to argue that individual rationality holds at both w and wk
1 =

24



(5, 5 − sk
1), and that every transfer that leads (i2, j1) to form a complete-information block at w

only leaves i2 strictly better-off at wk
1 = (5, 5 − sk

1).

For individual rationality it suffices, as before, to show that the payoff of i2 and j1 is non-

negative at both w and wk
1 = (5, 5 − sk

1), because 20 > 0 and 10n > 0, given that n > 1. At

w = (5, 5 − s), the payoff of j1 is equal to

20 + 5n + s(n−1)
2k−1−∑k−2

i=0 2ink−2−i ,

which is positive, for any s ∈ (0, 4], because n > 1. At wk
1 = (5, 5− sk

1), the payoff of j1 is equal to

20 + 5n + s[
2k−2 − ∑k−2

i=0 2ink−2−i + 2k−2n

2k−1 − ∑k−2
i=0 2ink−2−i

− n] = 20 + 5n + s[
(n − 1)∑k−2

i=0 2ink−2−i + 2k−2(1 − n))

2k−1 − ∑k−2
i=0 2ink−2−i

].

Since n > 1 and s ∈ (0, 4], this payoff is non-negative if and only if

(n − 1)∑k−2
i=0 2ink−2−i + 2k−2(1 − n) ≥ 0.

But this is true because (n − 1)∑k−2
i=0 2ink−2−i = (n − 1)[nk−2 + ... + 2k−2].

On the other hand, the payoff of i2 at w = (5, 5 − s) is

15n − 3ns − 2sk
1 − 5n + ns = 10n + s[−2n +

2 ∑k−2
i=0 2ink−2−i − 2k − 2k−1n + 2k−1

2k−1 − ∑k−2
i=0 2ink−2−i

].

For any fixed n ∈ (1, 2] such that 2k−1 − ∑k−2
i=0 2ink−2−i > 0, delivered by Lemmas 3 and 4, the

right-hand side of this expression is weakly positive for s small enough.

The payoff of i2 at wk
1 = (5, 5 − sk

1) is

15n − 3nsk
1 − 2sk

1 − 5n + ns,

which is equal to

10n + s[n − 3n
2k−1 − ∑k−2

i=0 2ink−2−i + 2k−2n − 2k−2

2k−1 − ∑k−2
i=0 2ink−2−i

− 2
2k−1 − ∑k−2

i=0 2ink−2−i + 2k−2n − 2k−2

2k−1 − ∑k−2
i=0 2ink−2−i

].

Again, the right-hand side is weakly positive, for small enough s, for any fixed n ∈ (1, 2] such

that 2k−1 − ∑k−2
i=0 2ink−2−i > 0, granted by Lemmas 3 and 4.

To argue that every transfer that leads (i2, j1) to form a complete-information block at w

leaves i2 strictly better-off at wk
1 = (5, 5 − sk

1), with respect to the payoff she obtains with j2, we
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can again focus, without loss, on pϵ
w; i.e., we have to show that, for every ϵ > 0

2n(5 − sk
1) + n(5 − s) + p + ϵ > 3n(5 − sk

1) + p.

Given the expression for sk
1 above, this strict inequality is equivalent to

⇔ nsk
1 − sn + ϵ > 0

⇔ nsk
1 − 1 > 0

⇔ n(2k−1 −
k−2

∑
i=0

2ink−2−i + n2k−2 − 2k−2)− 2k−1 −
k−2

∑
i=0

2ink−2−i > 0

⇔ [2k−1 −
k−2

∑
i=0

2ink−2−i](n − 1) + n[2k−2(n − 1)] > 0,

where the second line uses the fact that s > 0 and ϵ > 0 is small enough. Clearly, the last

inequality is true for any n such that 2k−1 −∑k−2
i=0 2ink−2−i > 0, given by Lemmas 3 and 4, because

n > 1. Thus, it is left to show that, at wk
1 := (5, 5 − sk

1), the payoff j1 obtains matching with i2

with respect to pϵ
w is weakly smaller than the payoff it obtains with i1, for any ϵ > 0; i.e., we need

2(5 − sk
1) + 10 − n(5 − s)− p − ϵ ≤ 20,

to be true for every ϵ > 0, where p is defined as in (1), with respect to sk
1. The reader can easily

check that this inequality is true, for ϵ > 0, by construction.

At this point, let the inductive hypothesis say that (µ, p, wk
t−1, f) ∈ ∑1, for every t ∈ {2, .., k − 1}.

I show that wk
k := (5, 5 − sk

k) can be used to argue that (µ, p, wk
k−1, f) ∈ ∑1, where wk

k−1 :=

(5, 5 − sk
k−1), and sk

k and sk
k−1 are given by14

sk
k := nk+nk−1

2k−∑k−1
i=0 2ink−1−i+nk−1 s

sk
k−1 := nk−1

2k−1−∑k−2
i=0 2ink−2−i s.

Since s ∈ (0, 4], it follows that sk
k and sk

k−1 are positive for any n ∈ (1, 2] given by Lemmas 3

14Notice that when t = k − 1, we have

sk
k−1 =

2k−1−∑k−2
i=0 2ink−2−i+1k−1>02k−(k−1+1)nk−1+1k−1−1>02k−(k−1+1)nk−1−1+1k−1−2>02k−(k−1)nk−1−2+1k−1−3>02k−(k−1−1)nk−1−3+...−2k−2

2k−1−∑k−2
i=0 2ink−2−i s,

which is equal to sk
k−1 = 2k−1−(nk−2+2nk−3+4nk−4...+2k−2)+1k−1>0nk−1+1k−2>0nk−2+1k−3>02nk−3+1k−4>022nk−4+...−2k−2

2k−1−∑k−2
i=0 2ink−2−i s,

which is equal to sk
k−1 := nk−1

2k−1−∑k−2
i=0 2ink−2−i s
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and 4. Thus, for any such value of n we have that µ is neither positive assortative nor efficient at

wk
k−1. As before, Assumption 2 implies that either (i1, j2) or (i2, j1) forms a complete-information

block at wk
k−1. Using s1 := sk

1 in the transfer defined in (1), (i1, j2) does not form a complete-

information block at wk
k−1. To see this, notice that (i1, j2) forms a complete-information block at

wk
k−1 if and only if

n15 + 5 + 15 > 10n + 20 − s − p = 10n + 20 − sk
k−1 + 2sk

1 + 5n − ns.

Simplifying and using the expressions for sk
k and sk

k−1 above, this inequality is equivalent to:

0 > s[
2k − 2 ∑k−2

i=0 2ink−2−i + 2k−1n − 2k−1 − nk−1 − n2k−1 + n ∑k−2
i=0 2ink−2−i

2k−1 − ∑k−2
i=0 2ink−2−i

]

Clearly, this inequality holds if and only if

2k − 2
k−2

∑
i=0

2ink−2−i + 2k−1n − 2k−1 − nk−1 − n2k−1 + n
k−2

∑
i=0

2ink−2−i < 0.

Suppose, contrary to hypothesis, that the inequality does not hold, so that

2k − 2
k−2

∑
i=0

2ink−2−i + 2k−1n − 2k−1 − n2k−1 + n
k−2

∑
i=0

2ink−2−i ≥ nk−1.

By the induction hypothesis, (i1, j2) does not form a complete-information block at wk
k−2, which

means, the reader can easily check, that

2k − 2
k−2

∑
i=0

2ink−2−i + 2k−1n − 2k−1 − n2k−1 + n
k−2

∑
i=0

2ink−2−i < nk−2.

But then, nk−2 > nk−1, contradicting that n > 1, because k > 1.

Next, I use wk
k = (5, 5 − sk

k) to argue that individual rationality holds at both wk
k−1 and wk

k.

As before, it is sufficient to show that the payoff of i2 and j1 is non-negative. The payoff of the

latter at wk
k−1 is

20 − sk
1 + 2sk

1 + 5n − ns = 20 + 5n + sk
1 − ns

= 20 + sk
1 + n(5 − s).
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This value is positive, because sk
1 > 0, given that s ∈ (0, 4]. At wk

k, the payoff of j1 is

20 − sk
k + 2sk

1 + 5n − ns = 20 + n(5 − s) + 2sk
1 − sk

k.

This payoff is weakly positive, for small enough s, for any fixed n such that 2k − ∑k−1
i=0 2ink−1−i +

nk−1 > 0 and 2k−1 − ∑k−2
i=0 2ink−2−i > 0, delivered by Lemmas 3 and 4.

On the other hand, the payoff of i2 at wk
k−1 is

15n − 3nsk
k−1 − 2sk

1 − 5n + ns = 10n + s[
−3nk − 2k + 2 ∑k−2

i=0 2ink−2−i + 2k−1 − n ∑k−2
i=0 2ink−2−i

2k−1 − 2 ∑k−2
i=0 2ink−2−i

].

As before, the right-hand side is weakly positive, for small enough s, for any fixed n such that

2k−1 − ∑k−2
i=0 2ink−2−i > 0 that Lemmas 3 and 4 deliver.

Finally, the payoff of i2 at wk
k is

15n − 3nsk
k − 2sk

1 − 5n + ns = 10n + s[n − −3(nk+1 + nk)

2k − ∑k−1
i=0 2ink−1−i + nk−1

−
2k + 2 ∑k−2

i=0 2ink−2−i + 2k−1n − 2k−1

2k−1 − ∑k−2
i=0 2ink−2−i

].

Once more, the right-hand side is weakly positive, for small enough s, for any fixed n such that

2k − ∑k−1
i=0 2ink−1−i + nk−1 > 0 and 2k−1 − ∑k−2

i=0 2ink−2−i > 0, delivered by Lemmas 3 and 4.

To argue that every transfer that leads (i2, j1) to form a complete-information block at wk
k−1

leaves i2 strictly better-off at wk
k = (5, 5 − sk

k), with respect to the payoff she obtains with j2, we

can again focus, without loss, on pϵ
wk

k−1
; i.e., we have to show that, for every ϵ > 0

2n(5 − sk
k) + n(5 − sk

k−1) + p + ϵ > 3n(5 − sk
k) + p. (2)

This is equivalent to

n(sk
k − sk

k−1) + ϵ > 0.

Since n > 1 and sk
k > sk

k−1, for every ϵ > 0, we are done.

Thus, it is left to show that, at wk
k := (5, 5 − sk

k), the payoff j1 obtains matching with i2 with

respect to pϵ
wk

k−1
is weakly smaller than the payoff it obtains with i1, for any ϵ > 0; i.e., we need

2(5 − sk
k) + 10 − n(5 − sk

k−1)− p − ϵ ≤ 20,
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to be true for every ϵ > 0, where p is defined as in (1), with respect to sk
1. This inequality is

equivalent to

2(sk
1 − sk

k) + ns(
nk−1

2k−1 − ∑k−2
i=0 2ink−2−i > 0

− 1)− ϵ ≤ 0.

Suppose, contrary to hypothesis, that this is not true, so that

2(sk
1 − sk

k) + ns(
nk−1

2k−1 − ∑k−2
i=0 2ink−2−i > 0

− 1)− ϵ > 0.

At this point we use the induction hypothesis; namely, the fact that every transfer that leads

(i2, j1) to form a complete-information block at wk
k−2 leaves j1 weakly worse-off at wk

k−1 = (5, 5 −

sk
k−1), with respect to the payoff she obtains with j2 and pϵ

wk
k−2

, which means that

2(5 − sk
k−1) + 10 − n(5 − sk

k−2)− p − ϵ ≤ 20,

where (the reader can easily check) sk
k−2 = nk−2

2k−1−∑k−2
i=0 2ink−2−i>0

. This inequality is equivalent to

2(sk
1 − sk

k−1) + ns(
nk−2

2k−1 − ∑k−2
i=0 2ink−2−i > 0

− 1)− ϵ ≤ 0.

Given the hypothesis above, we then have

ns
nk−1 − nk−2

2k−1 − ∑k−2
i=0 2ink−2−i

> 2(sk
k − sk

k−1)

⇔

nsk
k−1 − sk

k−1 > 2sk
k − 2sk

k−1

⇔

(n + 1)sk
k−1 > 2sk

k

⇔
nk + nk−1

2k − 2 ∑k−2
i=0 2ink−2−i

>
nk + nk−1

2k − ∑k−1
i=0 2ink−1−i + nk−1

⇔

2
k−2

∑
i=0

2ink−2−i + nk−1 >
k−1

∑
i=0

2ink−1−i.
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This last expression is equivalent to

2(nk−2 + 2nk−3 + ... + 2k−2) + nk−1 > nk−1 + 2nk−2 + 4nk−3 + ... + 2k−1,

which (the reader can easily check) is in turn equivalent to 0 > 0, a contradiction.

The proofs of Lemmas 3 and 4 conclude the proof of Proposition 2.

Proof of Lemma 3

I show this by induction. If k = 1, then

2k − ∑k−1
i=0 2ink−1−i + nk−1 = 2,

for every n ∈ (1, 2]. Let the inductive hypothesis say that the desired result holds for every value

k takes in {1, ..., x}, for some x > 1, but fails for k = x + 1. Then, it does so for n = (1 + ϵ), and

every ϵ > 0; i.e.,

2k −
k−1

∑
i=0

2ink−1−i = 2k −
k−2

∑
i=0

2ink−1−i − 2k−1nk−1−(k−1)

= 2k−1 −
k−2

∑
i=0

2i(1 + ϵ)k−1−i

= 2k−1 − (1 + ϵ)k−1
k−2

∑
i=0

2i(1 + ϵ)−i

=
2k−1

(1 + ϵ)k−1 − [1 +
2

(1 + ϵ)
+

22

(1 + ϵ)2 + ... +
2k−2

(1 + ϵ)k−2 ]

=
2x

(1 + ϵ)x − [1 +
2

(1 + ϵ)
+

22

(1 + ϵ)2 + ... +
2x−1

(1 + ϵ)x−1 ] ≤ 0,

where the second equality follows from the fact that n = 1 + ϵ, the fourth inequality from the

fact that ϵ > 0, and the last one from the assumption that k = x + 1. Hence,

2x

(1 + ϵ)x ≤ 1 +
2

(1 + ϵ)
+

22

(1 + ϵ)2 + ... +
2x−1

(1 + ϵ)x−1 . (3)

Since 2x−1

(1+ϵ)x−1 = 2x

(1+ϵ)x
2−1

(1+ϵ)−1 , it follows that

2x−1

(1 + ϵ)x−1 ≤ 1 +
2

(1 + ϵ)
+

22

(1 + ϵ)2 + ... +
2x−2

(1 + ϵ)x−2 , (4)
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for every ϵ, contradicting the inductive hypothesis.

Proof of Lemma 4

The claim is true for k = 2, because both inequalities are positive for every n. Indeed, when k = 2

2k − ∑k−1
i=0 2ink−1−i + nk−1 = 4 − (n + 2) + n = 2 > 0,

and

2k−1 − ∑k−2
i=0 2ink−2−i = 2 − 1 = 1 > 0.

Hence, suppose that the claim fails for some k > 1. Then,

2k −
k−1

∑
i=0

2ink−1−i + nk−1 = 2k−12 −
k−2

∑
i=0

2ink−1−i − 2k−1 + nk−1 > 0

⇔
2k−1 + nk−1

n
>

k−2

∑
i=0

2ink−2−i ≥ 2k−1

⇔

2k−1 + nk−1 > n2k−1

⇔

nk−1 > 2k−1(n − 1) > 2k−1

⇔

n > 2

where the second line uses n > 1 and the fact that the desired inequality fails for k > 1, the fourth

line uses n > 1 and k > 1, and the fifth one is obtained because k > 1. Since this contradicts that

n ∈ (1, 2], we are done.

8.3 Proof of Theorem 1

I first show that Assumptions 1 and 3 imply that every incomplete-information stable outcome

is positive assortative, and then argue that that implies, in turn, that they must also be efficient.

31



Assume first that the failure corresponds to worker assortativeness, so that there are two

workers, i and i′, with µi ̸= ∅, such that

wi′ > wi

fµi′ < fµi .

We can have either µi′ = ∅ or µi′ ̸= ∅. If µi′ = ∅, then (i′, µi) forms a complete-information

block at w, because otherwise

Swi′ fµi
≤ πw

i′ + πf
µi

= πf
µi

= Swifµi
− πw

i

where the second line uses the fact that the payoff of unmatched agents is zero, and the third the

fact that the sum of the payoffs of any two agents that are matched exhausts the surplus they

create. Since the surplus is strictly increasing in w, by Assumption 1, it follows that

πw
i ≤ Swifµi

− Swi′ fµi

< 0,

contradicting that the given allocation is individually rational. But if (i′, µi) forms a complete-

information block at w, one can invoke Lemma 1 to reach a contradiction. Hence, it must be

that µi′ ̸= ∅. At this point, one uses the fact that the surplus is strictly supermodular, given

Assumption 3, to argue that either (i, µi′) or (i′, µi) must form a complete-information block at

w. To see this, suppose not, so that

Swi′ fµi
≤ πw

i′ + πf
µi

and Swifµi′
≤ πw

i + πf
µi′

.

Adding up, side to side, one obtains

Swi′ fµi
+ Swifµi′

≤ Swi′ fµi′
+ Swifµi

,

which contradicts that the surplus is strictly supermodular, because wi′ > wi and fµi > fµi′ .

Yet (i′, µi) cannot form a complete-information block at w without contradicting either Lemma
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1 or the hypothesis that the given outcome belongs to ∑2. Thus, (i, µi′) must form a complete-

information block at w. Consider

pϵ
w := πw

i − νwifµi′
+ ϵ,

ϵ > 0. Intuitively, the reader should think of ϵ as being “small" and, thus, of pϵ
w as the “smallest"

blocking transfer between i and µi′ , at w. Since the outcome belongs to ∑1, there must be, for

every ϵ > 0, some w̃ ∈ Ω with (µ, p, w̃, f) ∈ ∑0 and w̃i′ = wi′ such that

ϕw̃ifµi′ − pϵ
wi

≤ ϕwifµi′
− pµi′ ,i′

and νw̃i ,fj + pϵ
wi

> νw̃ifµi
+ pi,µi

. (5)

Since Ω ⊆ W |I| and W is finite, we must in fact have some w̃ ∈ Ω with (µ, p, w̃, f) ∈ ∑0 and

w̃i′ = wi′ such that (5) is satisfied for every ϵ > 0. Notice that

ϕw̃i fµi′ − pϵ
wi

≤ ϕwi′ fµi′
− pµi′ ,i′

⇔

ϕw̃i fµi′ − πw
i + νwifµi′

− ϵ ≤ ϕwi′ fµi′
− pµi′ ,i′

⇔

ϕw̃i fµi′ − νwifµi
− pi,µi

+ νwifµi′
− ϵ ≤ ϕwi′ fµi′

− pµi′ ,i′

⇔

pµi′ ,i′
− pi,µi

− ϵ ≤ ϕwi′ fµi′
− ϕw̃ifµi′

+ νwifµi
− νwifµi′

.

For ϵ small enough, this last inequality is equivalent to

pµi′ ,i′
− pi,µi

≤ ϕwi′ fµi′
− ϕw̃ifµi′

+ νwifµi
− νwifµi′

. (6)

Since (µ, p, w, f) ∈ ∑2, we can assume, without loss of generality, that (µ, p, w̃, f) ∈ ∑1. Hence,

Lemma 1 implies that (i′, µi) cannot form a complete-information block at w̃; i.e.,

Sw̃i′ fµi
≤ πw̃

i′ + πf
µi

⇔

νw̃i′ fµi
− νw̃i′ fµi′

+ ϕw̃i′ fµi
− ϕw̃ifµi

≤ pµi′ ,i′
− pi,µi

,
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where the second line uses the fact that pµi′ ,i′
= pi′,µi′

and pi,µi
= pµi ,i. Since w̃i′ = wi′ , this is

equivalent to

νwi′ fµi
− νwi′ fµi′

+ ϕwi′ fµi
− ϕw̃ifµi

≤ pµi′ ,i′
− pi,µi

. (7)

If we put (6) and 7 together, we get

νwi′ fµi
− νwi′ fµi′

+ ϕwi′ fµi
− ϕw̃ifµi

≤ ϕwi′ fµi′
− ϕw̃ifµi′

+ νwifµi
− νwifµi′

.

Re-arranging, we obtain

νwi′ fµi
− νwi′ fµi′

+ νwifµi′
− νwifµi

+ ϕwi′ fµi
− ϕw̃ifµi

+ ϕw̃ifµi′
− ϕwi′ fµi′

≤ 0.

Clearly,

νwi′ fµi
− νwi′ fµi′

+ νwifµi′
− νwifµi

> 0,

because wi′ > wi and fµi > fµi′ , and νw f is strictly supermodular, by Assumption 3. Hence, we

must have

ϕwi′ fµi
− ϕw̃ifµi

+ ϕw̃ifµi′
− ϕwi′ fµi′

< 0.

Yet this contradicts that ϕw f is weakly supermodular, by Assumption 3, because wi′ > w̃i and

fµi > fµi′ . This completes the proof that all outcomes in ∑2 must be worker assortative.

If the failure of positive assortativeness is due to a failure of firm assortativeness, there would

be two firms, j and j′, with µj ̸= ∅, such that

fj′ > fj

wµj′ < wµj .

As before, we can have either µj′ = ∅ or µj′ ̸= ∅, but the latter would imply a failure of

worker assortativeness, so assume that µj′ = ∅ is the case.

The strict monotonicity of Sw f with respect to f imposed by Assumption 1 implies that (µj, j′)

must form a complete-information block at w. To see this suppose not; i.e., assume that
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Swµj fj′
≤ πw

µj
+ πf

j′ = πw
µj

,

where the equality follows from µj′ = ∅. Since πw
µj

= Swµj fj − πf
j , fj′ > fj, and Sw f strictly

increases with f , it follows that πf
j < 0, contradicting individual rationality.

We can now consider

pϵ
wµj

:= νwµj fj + pµj,j − νwµj fj′
+ ϵ.

Since (µ, p, w, f) ∈ ∑1, there must be, for every ϵ > 0, some w′ ∈ Ω, with (µ, p, w′, f) ∈ ∑0

such that νw’µj fj′
+ pϵ

wµj
> πw′

µj
and ϕw’µj fj′

− pϵ
wµj

≤ 0, because µj′ = ∅. Since Ω ⊆ W |I| and W is

finite, we must in fact have one such w′ for every ϵ > 0.

Notice that ϕw’µj fj′
− pϵ

wµj
≤ 0 implies that

ϕwµj fj′
> ϕw′

µj
fj′

, (8)

whereas the former implies that

νw′
µj

fj′
+ νwµj fj − νwµj fj′

− νw′
µj

fj ≥ 0. (9)

Given that fj′ > fj, the strict supermodularity of νw f granted by Assumption 3 implies that

(9) is satisfied if and only if w′
µj

≥ wµj . Yet (8) implies, by Assumption 1, that w′
µj

< wµj , a

contradiction.

As argued in Section 6, one can show that every (µ, p, w, f) ∈ ∑2 is efficient by using Lemma

2.

8.4 Proof of Proposition 3

Take any (µ, p, w, f) ∈ ∑1 such that pj′ ≥ pj for every j, j′ such that fj′ > fj, but suppose, contrary

to hypothesis that µ is not positive assortative at w. If there is a failure of worker assortativeness,

there are two workers, i and i′, with µi ̸= ∅, such that

wi′ > wi

fµi′ < fµi .
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We must have µi′ ̸= ∅, because otherwise the same argument made in the proof of Theorem 1

would lead to a contradiction with the assumption that the given outcome belongs to ∑1. As in

the proof of Theorem 1, it follows by Lemma 1 that, at w, (i, µi′) forms a complete-information

block, but (i′, µi) does not. Hence, we have

Swifµi′
> πw

i + πf
µi′

,

which is equivalent to

νwifµi′
− νwifµi

+ ϕwifµi′
− ϕwi′ fµi′

> pi,µi
− pµi′ ,i′

.

But since νw f is weakly increasing in f and ϕw f is weakly increasing in w, by Assumption 1, the

left-hand side of this strict inequality is weakly negative, contradicting that pi,µi
− pµi′ ,i′

, because

fµi > fµi′ .
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