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Summary

In labor markets in which workers’ types are private information, Liu

et al. (2014) show that stable matchings are positive assortative and effi-

cient within monotonic and supermodular domains. This paper shows that

these properties are obtained because within their domains most failures of

positive assortativeness and efficiency lead workers to select themselves fa-

vorably with respect to the firms, but proves a more general result, because

monotonicity can be weakened, that holds true regardless of how firms’ val-

ues depend on workers’ types. The generalization hinges more heavily on

firms’ higher-order inferences, and the weaker preference domain not only

maintains the sorting and efficiency of all stable matchings, but also enlarges

the set of transfers that support them.
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1 Introduction

Two landmarks in the theory of two-sided matching markets with transferable util-

ities are the equivalence between efficiency—surplus maximization—and stability

(see, e.g., Shapley & Shubik (1971)) and the positive assortativeness of efficient

matchings, when the match surplus is strictly supermodular and strictly increasing

in agents’ types (see e.g., Becker (1973)). Alas, these results rely on the presence

of complete information—i.e., on agents’ types being commonly known—so that

the scope of their conclusions is somewhat limited.

Interestingly, Liu et al. (2014) recently put forward a notion of stability for

markets in which workers are privately informed about their types—incomplete-

information stability—and show that all incomplete-information stable matchings

are positive assortative and efficient, when firms’ and workers’ values are increasing

in both types ([i]), and both match surpluses and workers’ values are strictly

supermodular ([ii]).

Incomplete-information stability presumes that once an array of workers’ types

is in place, and all agents commonly observe an individually rational allocation,

each firm is informed of the type of its own worker and agrees to participate in

a complete-information block—i.e., a blocking opportunity at the given array of

workers’ types—if and only if the block is profitable at every array of workers’ types

that accounts for the type of its own worker, the willingness to participate of the

blocking worker, and the fact that no other block takes place. Thus, incomplete-

information stability captures necessary conditions for stability.

Given that the set of incomplete-information stable matchings is a superset

of those under complete information, the search for positive assortativeness in

the presence of incomplete information must maintain the strict monotonicity

and strict supermodularity of the match surplus. Yet why does strengthening

monotonicity from surpluses to values, as required by [i], and adding the strict
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supermodularity of workers’ values to that of match surpluses, as demanded by

[ii], deliver assortativeness and efficiency, and to what extent is doing so necessary?

This paper addresses these two questions by means of two related contribu-

tions. The first one, Lemma 2, argues that [i] and [ii] imply that some complete-

information blocks, including those arising from most failures of positive assor-

tativeness and efficiency, lead the blocking workers to select themselves favorably

with respect to the blocking firms in the sense that a lower wage may only attract

types of workers that generate a lower value for the firms.1 The second, Proposi-

tion 2, refutes the natural, follow-up hypothesis whereby positive assortativeness

and efficiency are obtained only when workers’ selection is favorable by showing

that the result in Liu et al. (2014) continues to hold under—[ii] and—a weakening

of [i] that is silent about how firms’ values depend on workers’ types.

To understand why the presence of favorable selection—i.e., Lemma 2—drives

assortativeness and efficiency under [i] and [ii], consider the simplest failure of

positive assortativeness; namely, suppose that an incomplete-information stable

allocation were to prescribe that a worker is unmatched despite being of a higher

type than a worker who is matched. If the surplus increases with a worker’s type,

as implied by [i], there would be a blocking opportunity between the unmatched

worker and the given firm, regardless of what transfers are at play. Given the

incomplete-information stable nature of the allocation, there must be an alterna-

tive array of workers’ types, consistent with the firm’s information, at which every

blocking transfer is still profitable for the unmatched worker, but not for the block-

ing firm. Because [i] demands the worker’s value to increase with respect to her

own types, however, every blocking transfer at the original array is only profitable

to the unmatched worker at alternative arrays at which her type is higher. But

since firms’ values increase with respect to workers’ types, also demanded by [i],

1The term “favorable” was coined by Jovanovic (1982), but the literature often uses “advan-
tageous” as well (see, e.g., Ali et al. (2021)).
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the worker’s selection would then be favorable to the firm. Hence, the firm would

not be able to refuse, and the incomplete-information stability hypothesis would

be refuted. Intuitively, [i] implies that the “lowest” transfer the worker is willing

to accept decreases with her own type. Thus, “lower prices lead to higher quality.”

Proposition 2 notices that the incomplete-information stability hypothesis would

still be refuted without any assumption on how firms’ values vary with respect to

workers’ types, and thus without Lemma 2, because the ability all firms have

to draw higher-order inferences would lead the firm in question to infer what it

wanted to learn. Thus, neither how firms’ values depend on their own types and

on those of workers, nor how workers’ values depend on firms’ types, plays a role

that cannot be mimicked by the standard monotonicity of the surpluses and the

embedded presence of higher-order inferences. In a nutshell: We can replace [i]

with the weaker assumption that workers’ values are strictly increasing in their

own types and all match surpluses are strictly increasing in both dimensions ([iii]).

To be clear, Lemma 2 implies that, under [i] and [ii], most other failures of

positive assortativeness and efficiency also lead to favorable selection (Section

5.1), even though Proposition 2 reveals, once again, that that is not necessary

(Section 6). Further, Lemma 2 not only applies to complete-information blocks

that arise from the disassortative or inefficient nature of the underlying matching,

but also to those with respect to matchings that are both assortative and efficient.

Thus, replacing [i] with [iii] not only maintains the positive assortativeness and

efficiency of all incomplete-information stable matchings, but also enlarges the set

of transfers that supports them (Section 7.1). In fact, the content of Lemma 2,

namely that under [i] and [ii] workers select themselves favorably in some complete-

information blocks, does not change if one works with the variant of [i] where firms’

values are instead decreasing in workers’ types (Lemma 3).

By revealing that [i] can be substantially weakened, and thus generalizing the

main result in Liu et al. (2014), Proposition 2 offers a sharper understanding of
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when assortativeness and efficiency are obtained, pretty much regardless of the

stability notion one looks at. However, the real value of Proposition 2 might lie

in its conclusion that the presence of favorable selection does not, in fact, explain

why assortativeness and efficiency are obtained. That, indeed, assortaiveness and

efficiency are properties of incomplete-information stability in a wider set of envi-

ronments than those covered by Liu et al. (2014), including some that prescribe

adverse selection.2 If so, the reader might be thinking that an explanation for

why assortativeness and efficiency are obtained, under [ii] and [iii], is still called

for. After all, the efficiency of incomplete-information stable outcomes does not

seem to conform with how lemon markets work. Here the answer is actually well

known: The implicit dynamic nature of stability grants all firms, in the presence

of [ii] and [iii], a perfect, sequential screening ability (see Section 7.4).

The rest of the paper is organized as follows. Section 2 introduces the envi-

ronment and Section 3 the notion of incomplete-information stability introduced

by Liu et al. (2014). Section 4 introduces the notions of efficiency and positive as-

sortativeness, and Section 5 argues that the main assumptions in Liu et al. (2014)

lead to favorable selection, which explains why they deliver assortativeness and

efficiency. Section 6, on the other hand, contains the main result of the paper,

which implies that efficiency and positive assortativeness can be obtained under

adverse selection. Finally, Section 7 makes a few final remarks and offers a review

of the relevant literature.

2 The environment

There is a finite set of workers, I, and a finite set of firms, J , with i ∈ I and j ∈ J .

There is also a finite set of types of workers, W , and a finite set of types of firms,

2Given Lemmas 2 and 3, those environments must feature firms with non-monotonic prefer-
ences. The reader is invited to look at Examples 1 and 2, which feature firms with single-peaked
and single-dipped preferences, respectively.
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F , where W = {w1, w2, ..., wK} ⊆ R+, F = {f 1, f 2, ..., fL} ⊆ R+, and wk and f l

are increasing in their indices. Firms’ types are commonly known by workers and

firms. Thus, a state is a vector w ∈ W |I| of workers’ types. I write w ∈ W and

f ∈ F for generic elements of W and F , but also use wi and fj to denote the type

of worker i and firm j when the state is w and the array of firms’ types is f .

Value is generated by matches. Following Liu et al. (2014), I take as primitive

the agents’ premuneration values; namely, the aggregate match value each agent

receives in the absence of payments. Thus, a match between a worker of type

w ∈ W and a firm of type f ∈ F gives rise to a premuneration value νwf ∈ R for

the worker and a premuneration value φwf ∈ R for the firm. The sum of these

premuneration values, Swf := νwf + φwf , is the surplus of the match. I assume

that the premuneration value of unmatched agents is zero and use the notation

f∅ = ∅ = ω∅, with the convention that ∅ < w and ∅ < f for every ω ∈ W and

every f ∈ F .

Given a state w, a matching between worker i and firm j gives rise to payoffs

πw
i := νwifj + p and πf

j := φwifj − p,

where p ∈ R is the (possibly negative) payment from j to i.

A matching is a function µ : I → J ∪ {∅}, one-to-one on µ−1, that assigns

worker i to µ(i), where µ(i) = ∅ means that i is unmatched. Similarly, µ−1(j) de-

notes the assignment of firm j, where µ−1(j) = ∅ means that j is unmatched. I will

use µi and µj to denote the (possibly empty) assignments of i and j, respectively.

A payment scheme p associated with a matching µ is a vector that specifies a

payment pi,µi ∈ R for each i and a payment pµj ,j ∈ R for each j. I assume that

pi,∅ = p∅,j = 0.

An allocation is a pair (µ,p), consisting of a matching and a payment scheme,

and an outcome is a tuple (µ,p,w, f).

To capture firms’ uncertainty about workers’ types, I follow Liu et al. (2014)
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and assume that the true state is drawn from some distribution with support

Ω ⊆ W |I|.

3 Stability

3.1 Individual rationality

Definition 1. An outcome (µ,p,w, f) is individually rational if

νwifj + pi,µi ≥ 0 for every i ∈ I, and

φwifj − pµj ,j ≥ 0 for every j ∈ J .

I write
∑0 for the set of individually rational outcomes.

3.2 Complete information

The following definition describes the well-known notion of stability introduced

by Shapley & Shubik (1971) for environments with complete information (see also

Crawford & Knoer (1981).)

Definition 2. An outcome (µ,p,w, f) is complete-information stable if (µ,p,w, f) ∈∑0 and there is no complete-information block; i.e., there is no worker-firm pair

(i, j) and payment p ∈ R such that

νwifj + p > νwifµi + pi,µi and φwifj − p > φwµj fj
− pµj ,j.

Notice that (i, j) forms a complete-information block at (w, f) if and only if

Swifj > πw
i + πf

j .

3.3 Incomplete information

The following blocking notion, introduced by Liu et al. (2014), extends the no-

tion of complete-information block to markets in which workers’ types are private
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information, but no dissolution is observed.

Definition 3. Fix any nonempty set X ⊆
∑0. An outcome (µ,p,w, f) ∈ X is

X-blocked if there exists (i, j) and p ∈ R such that

1. νwi,fj + p > νwifµi + pi,µi, and

2. φw̃ifj − p > φw̃µj fj
− pµj ,j, for every w̃ ∈ Ω with (µ,p, w̃, f) ∈ X such that

w̃µj = wµj and νw̃i,fj + p > νw̃ifµi + pi,µi.

To understand Definition 3, let X =
∑0. An outcome (µ,p,w, f) ∈

∑0 is
∑0-

blocked by worker i and firm j if and only if (i, j) forms a complete-information

block at (w, f), and at every other state in Ω that is consistent with the signals j

receives; namely, with the type of its own worker, the individually rational nature

of the allocation, and i’s willingness to participate in the block.

Liu et al. (2014) assume that firms draw all possible inferences stemming from

observing not only that no match is dissolved, but also that no other complete-

information block is formed. Thus, they define, for every k ≥ 1, the sets

∑k := {(µ,p,w, f) : (µ,p,w, f) ∈
∑k−1 and (µ,p,w, f) is not

∑k−1 -blocked}.

The set of incomplete-information stable outcomes studied by Liu et al. (2014)

is given by
∑

=:
⋂
k≥1

∑k. Notice that the set of incomplete-information stable

allocations is nonempty regardless of the arrays of types; i.e.,
∑

(w, f) 6= ∅ for

every (w, f).

4 Assortativeness and efficiency

Like Liu et al. (2014), I will focus on the standard notions of sorting and efficiency.

Definition 4. A matching µ is positive assortative at (w, f) if
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1. for every i, i′ with µi 6= ∅ we have wi′ > wi ⇒ fµi′ ≥ fµi, and

2. for every j, j′ with µj 6= ∅ we have fj′ > fj ⇒ wµj′
≥ wµj .

I will refer to 1 and 2 in this definition as “worker assortativeness” and “firm

assortativeness,” respectively. The standard definition of efficiency is as follows:

Definition 5. A matching µ is efficient at (w, f) if
∑

i∈I Swifµi
= maxµ′

∑
i∈I Swifµ′

i

.

The main result in Liu et al. (2014) is concerned with preference domains that

satisfy the following two assumptions:

Assumption 1 (Monotonicity). Workers’ premuneration value νwf and firms’

premuneration value φwf are increasing in w and f , with νwf strictly increasing

in w and φwf strictly increasing in f .

Assumption 2 (Supermodularity). The worker premuneration value νwf and the

match surplus Swf are strictly supermodular in w and f .

With these two assumptions, Liu et al. (2014) prove the following result:

Proposition 1 (Proposition 3 in Liu et al. (2014)). Under Assumptions 1 and 2,

every incomplete-information stable outcome is efficient.

The proof provided by Liu et al. (2014) makes use of the following strong

link between efficiency and positive assortativeness in environments in which the

surplus is strictly increasing and strictly supermodular:3

Lemma 1. Suppose that the surplus is strictly increasing in w and f , and strictly

supermodular. Then, matching µ is efficient at (w, f) if and only if µ is positive

assortative at (w, f), Swifµi
≥ 0 for every i, and there is no (i, j) with µi = µj = ∅

such that Swifj > 0.

3The proof of Lemma 1 is omitted, but Liu et al. (2014) use a similar result, Lemma B.1,
which is however stronger than Lemma 1 because it uses Assumption 1, which imposes more
than the strict monotonicity of the surplus, and Assumption 2, which demands more than the
strict supermodularity of the surplus.
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Armed with Lemma 1, the proof of Proposition 1 in Liu et al. (2014) first shows

that Assumptions 1 and 2 imply that all incomplete-information stable match-

ings are positive assortative, and then uses that to conclude that all incomplete-

information stable matchings must be efficient, because they satisfy Swifµi
≥ 0 for

every i and Swifj ≤ 0 for every pair (i, j) with µi = µj = ∅.4

5 Favorable selection

This section argues that Assumptions 1 and 2 deliver assortativeness and efficiency

in Proposition 1 because they lead workers to select themselves favorably with

respect to the firms in a class of complete-information blocks that includes those

arising from most failures of assortativeness and efficiency.

The following result says that not every complete-information block is consis-

tent with incomplete-information stability, under Assumptions 1 and 2:

Lemma 2. Suppose that Assumptions 1 and 2 hold, and fix any (µ,p,w, f) ∈
∑1.

If (i, j) is a complete-information block at w, then µi 6= ∅ and fµi ≥ f j.

The proof of Lemma 2 can be found in the Appendix, but it states that

incomplete-information stability is not consistent with complete-information blocks

that involve either an unmatched worker or a worker that is matched to a firm

with a type that is lower than the type of the blocking firm, independently of the

number of inferences firms can make.5 The reason, plainly, is that in all of those

complete-information blocks the assumption that firms’ values are increasing in

workers’ types—embedded in Assumption 1—makes the selection of the blocking

worker favorable to the blocking firm. Thus, the blocking firm is not able to refuse.

To illustrate this, and understand why the presence of favorable selection drives

Proposition 1, a sketch of the proof of Lemma 2 might prove helpful.

4The reader can look, respectively, at their Lemma B.5, and their argument in page 583.
5This result is not stated in Liu et al. (2014), but their Lemma 2 contains the same insight.
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Suppose that an outcome (µ,p,w, f) is complete-information blocked by a pair

(i, j) that features µi = ∅, and consider the transfer

pεwi := −νwifj + ε,

where ε > 0. When ε is small, this is the “smallest” blocking transfer that i

is willing to accept. The fact that the outcome is incomplete-information stable

implies that there must be some w0 with w0
i = wi at which the matching is

individually rational and the block involving pεwi is still profitable to i, but not to

j, for every ε > 0. The latter implies that

φwifj > φw0
i fj
, (1)

and the former is equivalent to

νw0
i fj
− νwifj ≥ 0. (2)

Intuitively, (1) is necessary for j to say “no,” and (2) is necessary for i to say

“yes,” to pεwi , at w0. Thus, the reader should think of (2) as the selection con-

straint faced by firm j. Since νwf is strictly increasing in w, by Assumption 1,

(2) delivers wi ≤ w0
i , which means that only types that are higher than wi would

select themselves to say “yes.” But since φwf is increasing in w, also required by

Assumption 1, it follows that i’s selection is favorable to j. Thus, j cannot say

“no.” Indeed, the assumption that φwf is increasing in w implies that (1) delivers

wi > w0
i . Intuitively, lower “prices” drive the “quality” up, not down, because (2)

is equivalent to pεwi > pε
w0
i
, so that the “smallest” transfer i is willing to accept

decreases with her type. As a consequence, j cannot refuse.

A similar argument can be made if (µ,p,w, f) ∈
∑0 is complete-information

blocked by a pair (i, j) that features µi 6= ∅ and fj > fµi . To see why, notice that

in this case the “smallest” transfer that i is willing to accept at w is

13



pεwi := νwifµi + pi,µi − νwifj + ε.

As before, j says “no” only if wi > w0
i and i says “yes” only if w0

i ≥ wi, because

i is willing to accept pεwi , at w0, if and only if

νw0
i fj
− νwifj + νw0

i fµi
− νwifµi ≥ 0, (3)

which implies that w0
i ≥ wi, because fj > fµi and νwf is strictly supermodular, by

Assumption 2. Intuitively, i select herself favorably with respect to firm j, because

pεwi > pε
w0
i
, so that the smallest transfer i is willing to accept again decreases with

her type. As a consequence, j cannot say “no.”

In a nutshell: The strict supermodularity and strict monotonicity—with re-

spect to w—of νwf govern the selection of matched and unmatched workers, re-

spectively, which guarantees that every—and thus the “minimum”—wage a given

type of worker is willing to accept is also, but only, accepted by higher or lower

types, respectively, depending on whether the firm making the offer is better or

worse than the worker’s firm. If firms’ values increase with respect to workers’

types, as Assumption 1 requires, the former means that the worker’s selection is

favorable with respect to the given firm.

5.1 Liu, Mailath, Postlewaite, and Samuelson

It is not hard to see that Lemma 2 is the key driving force in Proposition 1. If

worker assortativeness fails, we have i and i′, with µi 6= ∅, such that

wi′ > wi

fµi′ < fµi .

We can have either µi′ = ∅ or µi′ 6= ∅. Since Assumption 1 implies that the

surplus is strictly increasing in w, the former implies that (i′, µi) must form a

complete-information block, contradicting Lemma 2. If µi′ 6= ∅, instead, then the
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strict supermodularity of the surplus, granted by Assumption 2, implies that either

(i′, µi) or (i, µi′) must form a complete-information block. The former contradicts

Lemma 2, because fµi′ < fµi , but a complete-information block by (i, µi′) does not

(see See Section 5.2 below).

Similarly, a failure of firm assortativeness would say that there are two firms,

j and j′, with µj 6= ∅, such that

fj′ > fj

wµj′
< wµj .

As before, we can have either µj′ = ∅ or µj′ 6= ∅, but the latter would imply

a failure of worker assortativeness and can therefore be dealt with using the same

arguments described above. If µj′ = ∅, then the strict monotonicity of Swf with

respect to f embedded in Assumption 1 implies that (µj, j
′) must form a complete-

information block at w. This contradicts Lemma 2, because fj′ > fj.

Given that incomplete-information stability delivers positive assortativeness,

Lemma 1 implies that an incomplete-information stable matching µ fails to be

efficient if and only if there is some (i, j) with µi = µj = ∅ such that Swifj >

0. If that’s the case, however, (i, j) must form a complete-information block,

contradicting, again, Lemma 2.

5.2 Higher-order inferences

The reason Lemma 2 is not contradicted when (i, µi′) above forms a complete-

information block is that the worker’s selection is adverse to the firm. Indeed,

both (1) and (3) would demand w0
i < wi, when µi′ takes the place of j. But

then, how does one reach the desired contradiction when dealing with failures of

positive assortativeness (and efficiency) that only lead to a complete-information

block involving the low-low pair? This is where one invokes the higher-order

inferences of the low-type firm, because w0
µi′

= wµi′
and w0

i < wi imply that the
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failure of worker assortativeness carries over to w0. At w0 the whole argument

can be repeated, so that, again, (i, µi′) is the only complete-information block

that does not contradict Lemma 2. The resulting unraveling eventually informs

the low-type firm that the true type of i, the low-type worker, must be wi. The

next figure illustrates this:

wn
i = ... = w0

i′ = wi′ > wi > w0
i > ... > wn

i

fµi′ < fµi .

Figure 1: The failure of worker-assortativeness at w unravels, with (i, µi′) being
the only complete-information block at w and at wn, for every K ≥ n ≥ 0.

6 Main result

Consider the following weakening of Assumption 1:

Assumption 3 (Weak Monotonicity). Workers’ premuneration value νwf is strictly

increasing in w, and the match surplus Swf is strictly increasing in w and f .

The label “Weak Monotonicity” in Assumption 3 intends to emphasize that

Assumption 3 is weaker than Assumption 1. Indeed, Assumption 1 implies that

the match surplus is strictly increasing in w and f , but Assumption 3 is silent

on how firms’ values depend on w and f , or how workers’ values vary with f .

Arguably, Assumption 3 is substantially weaker than Assumption 1.

The following result, which constitutes the main contribution of the paper,

generalizes Proposition 1:

Proposition 2. Under Assumptions 2 and 3, every incomplete-information stable

outcome is efficient.

The proof of Proposition 2 can be found in the Appendix, but Sections 6.1,

6.2, and 6.3 below provide sketches that the interested reader might find helpful.
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The key difference between Propositions 1 and 2 is that the latter is not driven

by Lemma 2, because Lemma 2 does not necessarily hold under Assumptions 2

and 3. Thus, the presence of favorable selection is unnecessary to achieve assor-

tativeness and efficiency.

Plainly, Proposition 2 shows that firms’ ability to make higher-order inferences

allows one to dispense with any monotonicity assumption on φwf . Intuitively, one

can let the incomplete-information stability hypothesis, together with the strict

supermodularity and strict monotonicity of νwf (with respect to w), which govern

the selection of workers, dictate whether the alternative array—imagined by any

blocking firm—features a higher or lower type for the blocking worker. This is all

that we need to ensure that firms’ ability to draw higher-order inferences leads

them to infer what they need to know about the true array.

Example 1 below illustrates that Proposition 2 does not hinge on Lemma 2 by

providing an outcome, (µ,p,w, f), that is not positive assortative but belongs to∑1 even though there is a complete-information block by the high-high pair.

Example 1. There are two workers and two firms, I = {i1, i2} and J = {j1, j2}.

The set of types are W = {2, 3, 4, 5} and F = {2, 3}. Firms’ premuneration values

are independent of f , and depend on w as follows:

φw =



6 if w = 3

5 if w = 4

3 if w = 5

2 if w = 2

Thus, firms’ values are neither increasing nor decreasing on w. Workers’ premu-

neration values are described in the following table, where ε̄ > 0:
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2 3 4 5
2 2 4 6− ε̃ 8
3 3 6 9− ε̃ 12

Figure 2: Workers’ premuneration values.

Notice that workers’ values are strictly increasing in their own types, and

strictly supermodular, for ε̃ > 0 small enough.6 The following three tables de-

scribe three different outcomes, differing only in their state, w, w′, and w′′:

6Workers’ values can be written as

νwf =

{
wf − f if w 6= 4

wf − f − ε̃ if w = 4

where ε̃ > 0 should be taken to be “small.” Notice that the resulting surplus is strictly super-
modular. The reason to include ε̃, instead of simply considering νwf = wf − f for every w, is
to ensure that the surplus is strictly increasing in workers’ types. The following table describes
the match surpluses:

2 3 4 5
2 4 10 11− ε̃ 11
3 5 12 14− ε̃ 15

Figure 3: Match surpluses.
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Worker indices: i1 i2
Workers’ payoffs, πw: 7− ε̃ 6
Workers’ types, w: 4 3

Transfers, p: 1 0
Firm types, f : 2 3

Firms’ payoffs, πf : 4 6
Firms’ indices: j1 j2

Worker indices: i1 i2
Workers’ payoffs, πw′ : 9 6
Workers’ types, w′: 5 3

Transfers, p: 1 0
Firm types, f : 2 3

Firms’ payoffs, πf : 2 6
Firms’ indices: j1 j2

Worker indices: i1 i2
Workers’ payoffs, πw′′ : 9 3
Workers’ types, w′′: 5 2

Transfers, p: 1 0
Firm types, f : 2 3

Firms’ payoffs, πf : 2 2
Firms’ indices: j1 j2

Figure 4: Three different outcomes, with states w, w′, and w′′.

Notice that (µ,p,w, f) is complete-information blocked by (i1, j2), because (9−

ε̃) + 5 > 13 − ε̃, but not by (i2, j1), because 4 + 6 ≤ 10. Yet (µ,p,w, f) ∈
∑1,

because at w′ the transfer pεwi1 = 7 − ε̃ − (9 − ε̃) + ε = −2 + ε is still profitable

to i1, but not to j2, for every ε > 0. Indeed, 12 + (−2 + ε) = 10 + ε > 9 and

3− (−2 + ε) = 5− ε ≤ 6.

Similarly, (µ,p, f) is complete-information blocked at w′ by (i2, j1), because

4 + 6 > 8, but not by (i1, j2), because 12 + 3 ≤ 15. Yet (µ,p,w′, f) ∈
∑1, because

at w′′ the transfer pεw′i2
= 6 − 4 + ε = 2 + ε is still profitable to i2, but not to

j1.Indeed, 2 + (2 + ε) = 4 + ε > 3 and 2− (2 + ε) = ε ≤ 2.

Notice that (µ,p,w′′, f) is complete-information blocked by (i1, j2), because 12+

3 > 11, but not by (i2, j1), because 2 + 2 ≤ 5. However, the highest worker-type is

5. Thus, (µ,p,w′′, f) 6∈
∑1. Hence, (µ,p,w, f) 6∈

∑
.
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The example illustrates that Assumptions 2 and 3 do not necessarily give rise to

favorable selection. In fact, the example features adverse selection: The minimum

transfer that gives rise to the complete-information block formed at w, namely,

pεwi1 , is accepted by i1 at w′, when i1’s type is higher (5 > 4), but less preferred

by j2. Similarly, the minimum transfer that gives rise to the complete-information

block formed at w′, namely, pεw′i2
, is accepted by i2 at w′′, when i2’s type is smaller

(2 < 3) and less preferred by j1.

It is easy to see that if firms values are instead increasing in w, as required

by Assumption 1, incomplete-information stability (in fact,
∑1) is not consistent

with the complete-information block by the high-high pair at w, by Lemma 2.

6.1 Worker assortativeness

Suppose that worker assortativeness fails, so that there are two workers, i and i′,

with µi 6= ∅, such that

wi′ > wi

fµi′ < fµi .

6.1.1 i′ is unmatched:

If µi′ = ∅, then—Assumption 3 implies that—(i′, µi) must form a complete-

information block. Yet this does not contradict incomplete-information stability

anymore, because under Assumption 3 it turns out that (1), namely φwi′ fµi
>

φw0
i′ fµi

, does not deliver w0
i′ < wi′ , but instead the weaker w0

i′ 6= wi′ . Since (2),

i.e., νw0
i′ fµi
≥ νwi′ fµi , implies that w0

i′ ≥ wi′ , we have w0
i′ > wi′ , and so the failure

of worker assortativeness carries over to w0. As a consequence, the same argument

can be repeated, because the pair (i′, µi) would form a complete-information block

over and over again. The next figure illustrates this:
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wn
i′ > ... > w0

i′ > wi′ > wi = w0
i = ... = wn

i

∅ < fµi .

Figure 5: The failure of worker-assortativeness at w unravels, when µi′ = ∅.

In the end, the resulting unraveling informs µi, given its ability to make higher-

order inferences, that the true type of worker i′ must indeed be wi′ . As a conse-

quence, the complete-information block would have to take place.

Notice that the argument in Liu et al. (2014) handles this case without invok-

ing µi’s higher-order inferences, because the presence of favorable selection—i.e.,

Lemma 2—makes them unnecessary.

6.1.2 i′ is matched:

If µi′ 6= ∅, then either (i′, µi) or (i, µi′) must form a complete-information block,

and now the former does not contradict incomplete-information stability anymore.

The reason, again, is that under Assumption 3 we have that (1), i.e., φwi′ fµi
>

φw0
i′ fµi

, no longer delivers w0
i′ < wi′ , but instead w0

i′ 6= wi′ . Since (3), i.e.,

νw0
i′ fµi

+ νwi′ fµi′ − νwi′ fµi − νw0
i′ fµi′
≥ 0,

implies that w0
i′ ≥ wi′ , because of Assumption 2, we have w0

i′ > wi′ , and so

the failure of worker assortativeness carries over to w0. Thus, the argument can

be repeated, with again either (i′, µi) or (i, µi′) forming a complete-information

block. The following figure illustrates the case in which the pair that forms a

complete-information block alternates:

21



... = w2
i′ > w1

i′ = w0
i′ > wi′ > wi = w0

i > w1
i = w2

i > ...

fµi′ < fµi .

Figure 6: The failure of worker-assortativeness at w unravels, when µi′ 6= ∅, with
only (i′, µi) forming a complete-information block at w and at wn, for odd n, and
only (i, µi′) forming a complete-information block at wn, for even n.

In the configuration illustrated in Figure 6, the ability of both µi and µi′

to make higher-order inferences implies that the resulting unraveling will inform

one of them the true type of worker of the other. As a consequence, one of the

complete-information blocks would have to take place. Notice, then, that this

case requires firms to be able to make higher-order inferences about (the type of

worker of) each other. This is precisely the main feature of Example 1 above.

This possibility cannot arise in Liu et al. (2014), because Lemma 2 implies that in

every array of every sequence like {w,w0,w1, ...} the only complete-information

block is (i, µi′).

6.2 Firm assortativeness

If the failure of positive assortativeness is due to a failure of firm assortativeness,

there are two firms, j and j′, with µj 6= ∅, such that

fj′ > fj

wµj′
< wµj .

If µj′ 6= ∅, then we have a failure of worker assortativeness, and so can be dealt

with using the same arguments described above. If µj′ = ∅, then (µj, j
′) forms

a complete-information block. However, this no longer contradicts incomplete-

information stability. This is so, as before, because under Assumption 3 we have

that (1), namely φwµj fj′
> φw0

µj
fj′

only implies that wµj 6= w0
µj

. Since (3), i.e.,
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νw0
µj

fj′
+ νwµj fj − νwµj fj′ − νw0

µj
fj ≥ 0, (4)

implies that w0
µj
≥ wµj , because of Assumption 2, it follows that w0

µj
> wµj , so

that the failure of firm assortativeness carries over to w0. The same argument can

be repeated, thus leading to the situation illustrated by the following figure:

fj′ > fj

∅ < wµj < w0
µj
< ... < wn

µj
.

Figure 7: The failure of firm-assortativeness at w unravels, when µj′ = ∅.

In the end, the resulting unraveling informs j′, given its ability to make higher-

order inferences, that the true type of worker µj must indeed be wµj . As a

consequence, the complete-information block would have to take place. Notice,

again, that this argument does not rely on the presence of favorable selection, i.e.,

on Lemma 2, like the argument in Liu et al. (2014), but instead on the ability of

firms to make higher-order inferences.

6.3 Efficiency

Armed with positive assortativeness, Lemma 1 implies that a matching µ that is

incomplete-information stable fails to be efficient if and only if there is some (i, j)

with µi = µj = ∅ such that Swifj > 0. Thus, (i, j) form a complete-information

block. However, this no longer contradicts incomplete-information stability. To

see this, notice that under Assumption 3 inequality (1), namely φwifj > φw0
i fj

, does

not deliver w0
i < wi, but instead the weaker w0

i 6= wi. Since (2), i.e., νw0
i fj
≥ νwifj ,

implies that w0
i ≥ wi, we have w0

i > wi, and so the failure of efficiency carries

over to w0. As a consequence, the same argument can be repeated at w0. The
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next figure illustrates this:

wn
i > ... > w0

i > wi > ∅
∅ < fj.

Figure 8: The failure of efficiency at w unravels, when µ is positive assortative.

In the end, the resulting unraveling informs j, given its ability to make higher-

order inferences, that the true type of worker i must indeed be wi. As a conse-

quence, the complete-information block would have to take place.

Notice, once more, the key difference with Liu et al. (2014): Under Assumption

3, the selection of i is not necessarily favorable to j, at w, and at wn, for every

n ≥ 0. Indeed, only types that are higher than wi (resp. wn
i , for every n ≥ 0)

would be willing to accept pεwi (resp. pεwn
i
, for every n ≥ 0), but those types might

be less preferred than wi (resp. wn
i , for every n ≥ 0), by j.

7 Discussion

7.1 Stable transfers

It is easy to see that Lemma 2 holds true regardless of whether µ is assortative

and efficient or not. Thus, Assumptions 1 and 2 might also lead to favorable

selection in certain complete-information blocks when the underlying matching is,

in fact, assortative and efficient. This is not the case under Assumptions 2 and

3. Thus, weakening Assumption 1 by replacing it with Assumption 3 not only

maintains the efficiency and positive assortativeness of all incomplete-information

stable matchings, but also enlarges the set of transfers that supports them. These

observations are illustrated by the following example.

Example 2. There are two workers and two firms, I = {i1, i2} and J = {j1, j2}.

The set of types are W = {3, 4, 5} and F = {2, 3}. Workers’ premuneration values
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are given by νwf = wf .7 Suppose, first, that firms’ premuneration values are also

given by φwf = wf , so that Assumptions 1 and 2 are satisfied, and consider the

following outcome:

Worker indices: i1 i2

Workers’ payoffs, πw: 6 19

Workers’ types, w: 3 5

Transfers, p: 0 4

Firm types, f : 2 3

Firms’ payoffs, πf : 6 11

Firms’ indices: j1 j2

The underlying matching is both efficient and positive assortative, but not

complete-information stable. In particular, (i1, j2) is the only complete-information

block. Thus, by Lemma 2, the outcome is not incomplete-information stable.

Suppose, now, that firms’ premuneration values are independent of f , and

depend on w as follows:

φw =


11 if w = 5

5− ε̄ if w = 3

3 if w = 4,

where ε̄ > 0. Thus, firms’ values are neither increasing nor decreasing in w.

Notice, in particular, that Assumptions 2 and 3 are satisfied.8 Thus, the previous

outcome becomes:

7These premuneration values satisfy Assumptions 2 and 3, but they also increase with f . The
latter plays no role, but simplifies the exposition.

8The reason to include ε̃ is to ensure that the surplus is strictly increasing in workers’ types.
The following table describes the match surpluses:
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Worker indices: i1 i2

Workers’ payoffs, πw: 6 19

Workers’ types, w: 3 5

Transfers, p: 0 4

Firm types, f : 2 3

Firms’ payoffs, πf : 5− ε̄ 7

Firms’ indices: j1 j2

As before, the outcome is not complete-information stable. In particular, (i1, j2)

is the only complete-information block, where pεwi1 = −3 + ε, for ε > 0. Consider

the following outcome, describing the same allocation, but another state, w′:

Worker indices: i1 i2

Workers’ payoffs, πw′: 8 19

Workers’ types, w′: 4 5

Transfers, p: 0 4

Firm types, f : 2 3

Firms’ payoffs, πf : 3 7

Firms’ indices: j1 j2

Notice that pεwi1 = −3+ε is still accepted by i1, but not by j2, because 12−3+ε >

8 and 3 + 3 − ε = 6 − ε ≤ 7. Thus, (µ,p,w, f) ∈
∑1. In fact, (µ,p,w, f) ∈

∑
,

because (µ,p,w′, f) is complete-information stable.

3 4 5
2 11− ε̄ 11 21
3 14− ε̄ 15 26

Figure 9: Match surpluses.

26



7.2 Nonmonotonic values

The main takeaway of Lemma 2, namely the rise of favorable selection in certain

complete-information blocks, cannot be avoided by assuming that φwf is instead

decreasing in w. Consider the following variant of Assumption 1, and the result

that follows:

Assumption 4. Workers’ premuneration value νwf is increasing in f and strictly

increasing in w, and firms’ premuneration value φwf is strictly increasing in f and

decreasing in w.

Lemma 3. Suppose that Assumptions 2 and 4 hold, and fix any (µ,p,w, f) ∈
∑1.

If (i, j) is a complete-information block at w, then fµi ≤ f j.

The proof can be found in the Appendix, but the intuition goes along the

same lines than that for Lemma 2. Notice, however, that Lemma 3 does not

obtain µi 6= ∅, like Lemma 2, because that is not longer necessary. To see this,

suppose that µi = ∅. By (2), and the fact that νwf increases in w, it follows that

w0
i ≥ wi. Yet this no longer contradicts (1), because φwf now decreases with w.

It follows that Assumptions 2 and 4 also deliver assortativeness and efficiency, but

prescribe “less” favorable selection than Assumptions 1 and 2.

Like Lemma 2, Lemma 3 is not necessarily true under Assumptions 2 and 3.

This can be seen by going back to Example 1, because at w′ the only complete-

information block is the one formed by the pair (i2, j1), but (µ,p,w′, f) ∈
∑1, so

that Lemma 3 does not bite.

What does it follow from Lemmas 2 and 3? At the heart of the matter rests the

idea that incomplete-information stability is not consistent with the existence of

favorable selection. In the presence of Assumption 2, however, Assumptions 1 and

4 imply that certain complete-information blocks (including, but not only, those

that arise from failures of efficiency and positive assortativeness) lead to favorable

selection, and are therefore inconsistent with incomplete-information stability. To

27



avoid reaching a contradiction with incomplete-information stability because the

given complete-information block leads to favorable selection, firms’ values must

be neither increasing nor decreasing. This is the key feature of Examples 1 and 2,

which feature, respectively, firms with single-peaked and single-dipped preferences.

7.3 Tightness

Liu et al. (2014) show by example (p. 557) that Proposition 1 does not necessarily

hold when Assumption 1 is satisfied and Swf is strictly supermodular, but νwf

exhibits constant differences. Since Assumption 3 is weaker than Assumption 1,

the strict supermodularity of νwf is also necessary to guarantee Proposition 2.

Moreover, a similar argument can be made if νwf does not depend on w, given

that in that case workers’ values would exhibit constant differences.

The argument in Sections 6.1.1 and 6.1.2 shows that the underlying reason for

the necessity of Assumptions 2 and 3 is the selection of workers. Plainly, if νwf

does not depend on w or, more generally, exhibits constant differences, the role

played by firms’ higher-order inferences in Proposition 2 can be disrupted. To

see this, notice that (2) and (3) are satisfied regardless of whether w0
i is higher or

lower than wi whenever νwf does not depend on w or exhibits constant differences,

respectively. Thus, any firm involved in a complete-information block that arises

from a failure of worker assortativeness might be able to say “no” by means of an

array at which the given matching is positive assortative. Indeed, the underlying

matching in Sections 6.1.1 and 6.1.2 could be positive assortative at w0, if w0
i′ <

wi′ . Hence, the incomplete-information stability hypothesis would not fail.

7.4 Why do we obtain sorting and efficiency?

At first glance, the efficiency of every incomplete-information stable matching

delivered by Proposition 1 should be somewhat surprising. After all, it is well
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known that the presence of incomplete information tends to create inefficiencies

(see, e.g., Akerlof (1970)). The surprise seemed to vanish, given that Assumptions

1 and 2 imply that the selection of workers involved in most complete-information

blocks that arise from failures of positive assortativeness and efficiency is favorable

to the given firms (see Lemma 2), but that was not really so because Proposition

2 implies—and Example 1 illustrates—that assortativeness and efficiency can be

obtained even in the presence of adverse selection. How come, then, incomplete-

information stable outcomes are efficient?

A natural move is to try and scrutinize the underlying assumptions. For ex-

ample, in the standard model of lemons the outside option of the seller (the coun-

terpart of workers) depends on the quality of the car she owns (the counterpart

of workers’ types). That’s not the case in this paper, since the payoff of every

worker that is unmatched (the counterpart of a seller who does not trade) is zero,

and thus does not vary with her own type. It is possible to relax the assump-

tion that unmatched agents receive no payoff, but doing so will not change the

efficiency of incomplete-information stable outcomes. To see this, imagine that

there is one firm and one worker, with types w and f and premuneration values

φwf = νwf = wf , who are unmatched. Let the outside option of the firm be

zero no matter its type, but assume that the outside option of the worker is given

by O(w) = 3w. Thus, the worker’s value of being unmatched increases with her

own type. Since Swf > 0, the worker and the firm form a complete-information

block. Indeed, efficiency demands “trade.” Let f = 2, and consider the “smallest”

transfer the worker would be willing to accept; i.e.,

pεw == 3w − 2w + ε = w + ε.

Now the smallest transfer the worker is willing to accept increases with her type,
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so that only types that are lower than w would accept pεw.9 Thus, if the value of

the firm increases with the worker’s type, the selection of the worker is adverse to

the firm. Moreover, if the surplus created by the firm and the lower-type worker is

positive again, they would form a complete-information block once more, and the

same argument could be repeated. It follows that if the surplus is positive for every

pair of types—so that there are gains of trade at every state—the firm will eventu-

ally infer the true type of the worker, and the original complete-information block

would take place. This is the same unraveling that occurs in a standard lemons

market, in the sense that the presence of adverse selection drives the worker’s type

“down,” but here one ends up with efficiency, as there is “trade at every state.”

The surprise really disappears when one notices the implicit dynamic nature of

stability. An insightful discussion is given in Liu (2020) (p. 2644), but a context-

specific framing is provided below, for the interested reader. Plainly, Assumptions

2 and 3 allow firms to screen for any given worker’s type, upon failures of assorta-

tiveness or efficiency, because stability allows them to make more than one offer.

Thus, firms can keep making offers for as long as the worker says “no.”

Consider, first, the failure of worker assortativeness described in Section 6.1.1,

and imagine that firm µi makes the following offers to worker i′, based on pεwi′ =

−νwi′ fµi + ε: It offers first pεwK , the minimum wage the highest possible type would

be willing to accept. If—and only if—the offer is rejected, the firm offers pεwK−1 , the

minimum wage the second-highest possible type would be willing to accept, and

so on. The key observation here is that no type would accept the offer intended

for a type that is higher whenever Assumption 3 is in place. That is, offer pεwK is

rejected by every w < wK , offer pεwK−1 is rejected by every w < wK−1, and so on.

To see why, take any k and suppose that, being of type w < wk, worker i′ were to

say “yes.” Thus, we would then have

9Notice that if O(w) is weakly decreasing in w, then pεw will be decreasing in w, whenever
νwf is increasing in w. It follows that if φwf increases in w, the worker’s selection would be
favorable to the firm. See Jovanovic (1982).
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νwfµi + pεwk > 0⇔ νwfµi − νwkfµi + ε > 0⇔ νwfµi − νwkfµi ≥ 0.

Since the last inequality contradicts Assumption 3, because w < wK , it follows

that pεwK is accepted if and only if i′ is in fact of type wK . If the offer is accepted,

firm µi would infer that the type is wK and the complete-information block would

take place. If, instead, the offer is rejected, stability grants firm µi the ability to

counteroffer pεwK−1 , which would only be accepted by wK and wK−1. But since

pεwK has been rejected, the firm can infer, if pεwK−1 is accepted, that the type of

i′ must be wK−1. As a consequence, the complete-information block would again

take place. The underlying reason is simple: Assumption 3 implies that pε
wk

is

decreasing in k, and so ensures that no type would accept an offer meant for a

type that is higher. By offering this sequence of contingent transfers, the firm is

thus—eventually—able to infer what she wanted to learn.

It is not hard to see that the exact same argument—replacing i′ with i and µi

with j—can be used to deal with the failure of efficiency described in Section 6.3.

If worker i′ is instead matched, as in Section 6.1.2, a similar argument can be

made because Assumption 2 implies, again, that the offer the firm is making is

decreasing in k. To see this, suppose that (i′, µi) forms a complete-information

block, and notice that the relevant offers is pεwi′ = νwi′ fµi′ + pi′,µi′ − νwi′ fµi + ε.

Take any k and suppose that i′ says “yes” to pε
wk

, being of type w < wk. Then,

νwfµi + pεwk > νwfµi′ + pi′,µi′ ⇔ νwfµi + νwkfµi′
+ pi′,µi′ − νwkfµi + ε > νwfµi′ + pi′,µi′ ,

which is equivalent to

νwfµi + νwkfµi′
− νwkfµi ≥ νwfµi′ .

This last inequality contradicts the strict supermodularity of νwf , because wk >

w and fµi > fµi′ . Notice that a similar argument would work, in turn, with failures
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of firm assortativeness, as in Section 6.2.

If (i, µi′) is instead the pair that forms the complete-information block, the

same argument goes through, although the order of the offers needs to be reversed.

Indeed, the strict supermodularity of νwf now entails that pε
wk

is increasing in k.

So, now the blocking firm—µi′—would start with pεw1 , the minimum wage the

second-lowest possible type would be willing to accept. As before, however, the

selection of workers’ types enables the firm to perfectly screen them. Now pεw1

is only accepted by w1, pεw2 is only accepted by w1 and w2, etc. Thus, each

subsequent rejection informs the firm of the type of the worker, at the moment of

acceptance.

Notice, however, that these arguments do not work if the underlying matching

is efficient and positive assortative. Thus, the screening ability granted by stability

“bites” only in the presence of Assumptions 2 and 3 and some failure of efficiency

or positive assortativeness. To see why, suppose that wi′ > wi, as before, but

now fµi′ > fµi . Imagine that transfers are such that (i′, µi), say, forms a complete-

information block. Firm µi would like to perfectly screen the type of i′ as before,

by using the same “mechanism” described above. This not possible, however,

because Assumption 2 does not imply that pε
wk

decreases with k anymore. Indeed,

pε
wk

now increases. Thus, the very first offer µi would make—pεwK—would not only

be accepted by wK , but also by every other type.

7.5 Higher-order inferences

The assumption that firms can draw higher-order inferences plays an important,

but somewhat limited role in Proposition 1, because of Lemma 2. Indeed, Sections

5.1 and 5.2 reveal that the only failure of assortativeness and efficiency that invokes

firms’ higher-order inferences are those in which both workers are matched and

(the transfers are such that) the only complete-information block is formed by the
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low-low pair. Thus, the resulting unraveling would only involve the higher-order

inferences made by the low-type firm, about the type of the low-type worker.

Instead, Proposition 2 makes use of firms’ higher-order inferences in every

failure of assortativeness and efficiency. In particular, under Assumptions 2 and

3 both the low-low and high-high type pairs can form a complete-information

block, under failures of assortativeness in which both workers are matched, and

so the resulting unraveling might involve a sequence of arrays that alternate the

blocking pair that takes place (see Example 1 and Figure 6). This observation

points not only to the need for a somewhat different argument in proving that

these failures of assortativeness contradict incomplete-information stability, but

also, and perhaps more importantly, to a discussion of how sophisticated firms

must be. This discussion is outside the scope of the present paper, but is the

focus of a companion paper (Peralta (2024)).

7.6 Related literature

The literature on matching under incomplete information is far from new. To my

knowledge, the earliest attempt to embed incomplete information in the theory

of matching markets goes back to Roth (1989), who studies stable mechanisms in

the presence of preference uncertainty (see also Ehlers & Massó (2007)). Unlike

the private values model analyzed by Roth (1989), Chakraborty et al. (2010)

examine a one-sided incomplete-information model with interdependent values

and show that the existence of a stable—and strategy-proof—mechanism depends

on whether the mechanism makes the allocation public or not. Both of these

papers analyze stability in centralized markets. In contrast, the present paper

belongs to the set of recent papers that seek to understand what constitutes a,

and what are the properties of, stable matching in decentralized markets.

Also motivated by the seminal contribution of Liu et al. (2014), a recent set
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of papers have analyzed matching and stability in decentralized markets with

incomplete information, transfers, and interdepedent values.10 These papers an-

alyze variations in either the environment or the stability notion, or offer “foun-

dations” for incomplete information. For example, Chen & Hu (2023) extend

incomplete-information stability to markets with two-sided uncertainty—first an-

alyzed in Bikhchandani (2014) for markets without transfers—and Liu (2020) pro-

poses a Bayesian notion of stability (see also Alston (2020)). Closer to the spirit

of this paper, Chen & Ho Cher Sien (2020) investigate what conditions deliver

assortativeness and efficiency in markets with two-sided uncertainty. In terms of

foundations, Pomatto (2022) offers a non-cooperative counterpart to incomplete-

information stability and Chen & Hu (2019) show that market allocations must

“eventually” be incomplete-information stable.

This paper goes back to the environment and stability notion introduced by Liu

et al. (2014) to revisit the question of when stable matchings satisfy the standard

properties of positive assortativeness and efficiency. Since incomplete-information

stability captures necessary conditions for stability, the analysis and results in

this paper shed light on when these properties are satisfied, in markets with one-

sided uncertainty, by—pretty much—every stability notion. On the other hand,

however, Peralta (2024) reveals that Assumption 1 and 2 deliver efficiency and

assortativeness only if firms can draw an arbitrarily large number of inferences,

but shows that only second-order inferences suffice within well known preference

domains.

10There is also a literature that analyzes markets without transfers. See, e.g., Bikhchandani
(2017), Jeong (2019), and Peralta (2022).
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8 Appendix

8.1 Proof of Lemma 2

Take any (µ,p,w, f) ∈
∑1, and any (i, j) that forms a complete-information block

at w. If µi = ∅, then consider

pεwi := −νwifj + ε,

where ε > 0. Since unmatched agents get a payoff of 0, the reader should interpret

pεwi , when ε is “small,” as the “smallest” transfers for which (i, j) forms a complete-

information block at w. Since (µ,p,w, f) ∈
∑1, there must be, for every ε > 0,

some w′ ∈ Ω with (µ,p,w′, f) ∈
∑0 and w′µj = wµj such that

νw′ifj + pεwi > 0 and φw′ifj
− pεwi ≤ φwµj fj

− pµj ,j,

where the first inequality makes use of the fact that unmatched agents get a payoff

of 0, and the second inequality uses the fact that w′µj = wµj . Since W is finite, and

Ω ⊆ W |I|, we can assume, without loss of generality, that these two inequalities

are true, at w′, for every ε > 0. Thus, the inequality on the left holds if and only

if νw′ifj − νwifj ≥ 0, which is true if and only if w′i ≥ wi, by Assumption 1.

On the other hand, the fact that (i, j) forms a complete-information block at

w is equivalent to

νwifj − νwifµi + φwifj − φwµj fj
> −pj,µj ,

because pµi,i = 0. Thus, given the weak inequality on the right above, it follows

that

φwifj > φw′ifj
,

which holds true, by Assumption 1 if and only if w′i < wi, a contradiction. Thus,
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∑1 implies that we must have µi 6= ∅ in every complete-information block (i, j).

Suppose now that µi 6= ∅, but fj > fµi , and consider

pεwi := νwifµi + pi,µi − νwifj + ε.

Since (µ,p,w, f) ∈
∑1, there must be, for every ε > 0, some w′ ∈ Ω with

(µ,p,w′, f) ∈
∑0 and w′µj = wµj such that

νw′ifj + pεwi > πw′
i and φw′ifj

− pεwi ≤ φwµj fj
− pµj ,j,

Again, because W is finite, and Ω ⊆ W |I|, we can assume without loss that these

two inequalities are true, at w′, for every ε > 0. The inequality on the right again

implies that w′i < wi, by Assumption 1, and the inequality on the left is equivalent

to

νw′ifj + νwifµi + pi,µi − νwifj + ε > πw′
i .

It is not hard to see that this inequality is true for every ε > 0 if and only if

νw′ifj + νwifµi − νwifj − νw′ifµi ≥ 0.

Since fj > fµi and νwf is strictly supermodular, because of Assumption 2, it follows

that w′i ≥ wi, a contradiction.

8.2 Proof of Lemma 3

Take any (µ,p,w, f) ∈
∑1, and any (i, j) that forms a complete-information block

at w. Suppose, contrary to hypothesis, that µi 6= ∅ and fµi > fj, and consider

pεwi := νwifµi + pi,µi − νwifj + ε.

Since (µ,p,w, f) ∈
∑1, there must be, for every ε > 0, some w′ ∈ Ω with

(µ,p,w′, f) ∈
∑0 and w′µj = wµj such that
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νw′ifj + pεwi > πw′
i and φw′ifj

− pεwi ≤ φwµj fj
− pµj ,j,

As before, because W is finite, and Ω ⊆ W |I|, we can assume without loss that

these two inequalities are true, at w′, for every ε > 0. The same argument made

above shows that the inequality on the right implies w′i > wi, by Assumption 4.

Since the inequality on the left is equivalent to

νw′ifj + νwifµi − νwifj − νw′ifµi ≥ 0,

and we have fj < fµi , we reach a contradiction with Assumption 2, which demands

νwf to be strictly supermodular.

8.3 Proof of Proposition 2

Given Lemma 1, the proof starts starts with positive assortativeness, and pro-

ceeds by contradiction. Suppose that (µ,p,w, f) ∈
∑

, but µ fails to be positive

assortative at (w, f).

Worker assortativeness

If the failure corresponds to worker assortativeness, there two workers, i and i′,

with µi 6= ∅, such that

wi′ > wi

fµi′ < fµi ,

where either µi′ = ∅ or µi′ 6= ∅.

i′ is unmatched: If µi′ = ∅, then (i′, µi) forms a complete-information block

at w, because otherwise

Swi′ fµi
≤ πw

i′ + πf
µi

= πf
µi

= Swifµi
− πw

i
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where the second line uses the fact that the payoff of unmatched agents is zero,

and the third the fact that the sum of the payoffs of any two agents that are

matched exhausts the surplus they create. Since the surplus is strictly increasing

in w, by Assumption 3, it follows that

πw
i ≤ Swifµi

− Swi′ fµi

< 0,

contradicting that the given allocation is individually rational. Hence, (i′, µi)

forms a complete-information block at w. For “small” ε > 0, the transfer pεwi′ :=

−νwi′ fµi + ε should be interpreted as the “smallest” transfer that i′ is willing to

accept to match with µi, at w. Since (µ,p,w, f) ∈
∑

, there must be, for each

ε > 0, some w′ ∈ Ω, with (µ,p,w′, f) ∈
∑0 and w′i = wi, such that the block

involving pεwi′ is still profitable to i′, but not to µi; i.e., such that

φw′
i′ fµi
− pεwi′ ≤ φwifµi

− pµi,i and νw′
i′ fµi

+ pεwi′ > 0, (5)

where the right-hand side of the first inequality makes use of w′i = wi, and the

right-hand size uses the fact that the payoff of unmatched agents is zero. SinceW is

finite, and Ω ⊆ W |I|, there must in fact be one such w′ satisfying both inequalities

in (5) for every ε > 0. The fact that (i′, µi) forms a complete-information block

at w is equivalent to:

νwi′ fµi + φwi′ fµi
− φwifµi

> −pµi,i,

because pi′,µi′ = νwi′∅ = 0. Thus, given the weak inequality on the left above, it

follows that

φwi′ fµi
> φw′

i′ fµi
. (6)
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Hence, (6) delivers wi′ 6= w′i′ . The fact that the right inequality in (5) must be

true for every ε > 0 delivers νw′
i′ fµi
≥ νwi′ fµi , which implies that w′i′ ≥ wi′ , by

Assumption 3. Thus, w′i′ > wi′ . Here we use induction. If, as base case, we

assume that wi′ = wK , then the complete-information block would take place and

the incomplete-information stability hypothesis would fail. Suppose that the same

conclusion is obtained if wi′ ∈ {wr, ..., wK}, for some 1 < r < K, and consider the

case in which wi′ = wr−1. Given that (i′, µi) forms a complete-information block,

the argument above implies that w′i′ ≥ wi′ we would have w′i′ ∈ {wr, ..., wK}.

Thus, the inductive hypothesis delivers the desired contradiction.

i′ is matched: If µi′ 6= ∅, then the strict supermodularity of Swf implies that,

at w, either (i′, µi) or (i, µi′) must form a complete-information block. Suppose

not. That is, suppose that

Swi′ fµi
≤ πw

i′ + πf
µi

and Swifµi′
≤ πw

i + πf
µi′

.

Adding up, and using πw
i + πf

µi
= Swifµi

and πw
i′ + πf

µi′
= Swi′ fµi′

, we get

Swi′ fµi
+ Swifµi′

≤ Swifµi
+ Swi′ fµi′

.

Since wi′ > wi and fµi > fµi′ , we contradict the strict supermodularity of Swf .

If the complete-information block is formed by (i′, µi), consider

pεwi′ := νwi′ fµi′ + pi′,µi′ − νwi′ fµi + ε.

Since (µ,p,w, f) ∈
∑

, there must be, for each ε > 0, some w′ ∈ Ω, with

(µ,p,w′, f) ∈
∑0 and w′i = wi, such that

νw′i′ fµi + pεwi′ > πw′

i′ and φw′i′ fµi
− pεwi′ ≤ φwifµi

− pµi,i, (7)

where the right-hand side of the inequality on the right uses the fact that w′i = wi.

Since W is finite, and Ω ⊆ W |I|, there must in fact be some such w′ at which both
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inequalities in (7) are satisfied for every ε > 0. Hence, the inequality on the left is

equivalent to

νw′
i′ fµi

+ νwi′ fµi′ − νwi′ fµi − νw′i′ fµi′ ≥ 0.

Given that fµi′ < fµi , the strict supermodularity of νwf granted by Assumption

2 implies that this inequality is satisfied if and only if w′i′ ≥ wi′ . The fact that

(i′, µi) forms a complete-information block at w is equivalent to:

νwi′ fµi − νwi′ fµi′ + φwi′ fµi
− φwifµi

> pi′,µi′ − pµi,i.

Hence, the inequality on the right in (7) delivers, once again, the strict inequality

(6). Hence, wi′ 6= w′i′ . Thus, once more, w′i′ > wi′ .

If the complete-information block is instead formed by (i, µi′), we can consider

pεwi := νwifµi + pi,µi − νwifµi′ + ε.

Since (µ,p,w, f) ∈
∑

, there must be, for each ε > 0, some w′′ ∈ Ω, with

(µ,p,w′′, f) ∈
∑0 and w′′i′ = wi′ , such that

νw′′ifµi′ + pεwi > πw′′

i and φw′′ifµi′
− pεwi ≤ φwi′ fµi′

− pµi′ ,i′ , (8)

where the inequality on the right uses w′′i′ = wi′ . Since W is finite, and Ω ⊆ W |I|,

there must in fact be some such w′ at which both inequalities in (8) are satisfied

for every ε > 0. Thus, the inequality on the left is equivalent to

νw′′i fµi′ + νwifµi − νwifµi′ − νw′′i fµi ≥ 0.

Given that fµi′ < fµi , the strict supermodularity of νwf granted by Assumption 2
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implies that this inequality is satisfied if and only if w′′i ≤ wi. On the other hand,

the reader can easily check that the fact that (i, µi′) forms a complete-information

block at w, given the inequality on the right of (8), implies that φwifµi′
> φw′′i fµi′

.

Hence, it follows that w′′i < wi.

At this point, one can use double induction on the type of both i and i′.

Let (wi′ ,wi) = (wn, wm), where n > m. The two base cases are, respectively,

(wK , wm) and (wn, w1), and both can be shown by induction.

Induction on (wK , wm): If m = 1, then we reach a contradiction because

regardless of whether (i′, µi) or (i, µi′) forms a complete-information block at

(wK , w1) the incomplete-information stability hypothesis would fail. Suppose,

as induction hypothesis, that incomplete-information stability fails whenever m ∈

{1, ..., r}, for some 1 < r < K, and let m = r + 1. Clearly, (i′, µi) cannot

form a complete-information block at (wK , wr+1), for otherwise the incomplete-

information stability hypothesis would fail. Hence, (i, µi′) must form a complete-

information block at (wK , wr+1). But then, the argument above implies that

w′′i ∈ {w1, ..., wr}. Thus, the induction hypothesis delivers the desired contradic-

tion.

Induction on (wn, w1): If n = K, then again we reach a contradiction

because regardless of whether (i′, µi) or (i, µi′) forms a complete-information block

at (wK , w1) the incomplete-information stability hypothesis would fail. Suppose,

as induction hypothesis, that incomplete-information stability fails whenever n ∈

{x, ...,K}, for some 1 < x < K, and let n = x − 1. Clearly, (i, µi′) cannot

form a complete-information block at (wx−1, w1), for otherwise the incomplete-

information stability hypothesis would fail. Hence, (i′, µi) must form a complete-

information block at (wx−1, w1). But then, the argument above implies that w′i′ ∈

{wx, ..., wK}. Thus, the induction hypothesis delivers the desired contradiction.
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Suppose, as induction hypothesis on the double induction argument, that

incomplete-information stability fails at (wn, wm), whenever m ∈ {1, ..., r}, for

some 1 < r < K, and at (wn, wm), whenever n ∈ {x, ...,K}, for some 1 < x <

K, and consider (wx−1, wr+1). If (i′, µi) forms a complete-information block at

(wx−1, wr+1), then the argument above implies that w′i′ ∈ {wx, ..., wK}. Thus,

the induction hypothesis delivers the desired contradiction. If, instead, (i, µi′)

forms a complete-information block at (wx−1, wr+1), then the argument above im-

plies that w′′i ∈ {w1, ..., wr}. Thus, the induction hypothesis delivers the desired

contradiction.

Firm assortativeness

If the failure of positive assortativeness is due to a failure of firm assortativeness,

there would be two firms, j and j′, with µj 6= ∅, such that

fj′ > fj

wµj′
< wµj .

As before, we can have either µj′ = ∅ or µj′ 6= ∅, but the latter would imply

a failure of worker assortativeness and can therefore be dealt with using the same

arguments described above.

If µj′ = ∅, then the strict monotonicity of Swf with respect to f imposed by

Assumption 3 implies that (µj, j
′) must form a complete-information block at w.

To see this, suppose not; i.e., assume that Swµj fj′
≤ πw

µj
+ πf

j′ = πw
µj

, where the

equality follows from the assumption that unmatched agents receive zero payoff.

Since πw
µj

= Swµj fj
− πf

j and Swf strictly increases with f , it follows that πf
j < 0,

contradicting individual rationality. We can now consider

pεwµj := νwµj fj + pµj ,j − νwµj fj′ + ε.
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Since (µ,p,w, f) ∈
∑

, there must be, for each ε > 0, some w′ ∈ Ω, with

(µ,p,w′, f) ∈
∑0 such that

νw′µj fj′ + pεwµj > πw′

µj
and φw′µj fj′

− pεwµj ≤ 0, (9)

where the right-hand side of the inequality on the right uses the fact that the

payoff of unmatched agents is zero. Since W is finite, and Ω ⊆ W |I|, there must

in fact be some such w′ at which both inequalities in (9) are satisfied for every

ε > 0. Thus, the former is equivalent to

νw′µj fj′ + νwµj fj − νwµj fj′ − νw′µj fj ≥ 0,

which implies that w′µj ≥ wµj , because fj′ > fj and νwf is strict supermodular,

by Assumption 2. Since (µj, j
′) forming a complete-information block at w is

equivalent to νwµj fj′ + φwµj fj′
− νwµj fj > −pµj ,j, the inequality on the right in

(9) implies that w′µj 6= wµj . Hence, we must have w′µj > wµj . At this point

one can use induction. As base case, notice that if wµj = wK then incomplete-

information stability fails. Suppose, as induction hypothesis, that incomplete-

information stability fails whenever wµj ∈ {x, ...,K}, for some 1 < x < K, and

suppose that wµj = wx−1. Hence, (µj, j
′) must form a complete-information block.

But then, the argument above implies that w′µj ∈ {x, ...,K}. Hence, the induction

hypothesis leads to the desired contradiction.

Efficiency

Fix any outcome (µ,p,w, f) ∈
∑

such that µ is positive assortative. Then,

Lemma 1 implies that µ fails to be efficient if and only if there is some (i, j) with

µi = µj = ∅ such that Swifj > 0. Hence, (i, j) forms a complete-information block

at w. Notice that pεwi = −νwifj + ε. Since (µ,p,w, f) ∈
∑

, there must be, for
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each ε > 0, some w′ ∈ Ω, with (µ,p,w′, f) ∈
∑0 such that

νw′ifj + pεwµj > 0 and φw′ifj − pεwµj ≤ 0, (10)

where the right-hand side in both inequalities uses the fact that the payoff of

unmatched agents is zero. Since W is finite, and Ω ⊆ W |I|, there must in fact

be some such w′ at which both inequalities in (10) are satisfied for every ε > 0.

Hence, the inequality on the left of (10) implies, because νwf is increasing in w,

by Assumption 3, that w′i ≥ wi. The fact that (i, j) forms a complete-information

block at w, together with the inequality on the right in (10), implies that w′i 6= wi.

Hence, it follows that w′i > wi. Once again, we can use induction. If wi = wK ,

incomplete-information stability clearly fails. Suppose, as induction hypothesis,

that incomplete-information stability fails whenever wi ∈ {x, ...,K}, for some

1 < x < K, and suppose that wi = wx−1. Since (i, j) forms a complete-information

block, the argument above implies that w′i ∈ {x, ...,K}. Thus, the inductive

hypothesis leads to the desired contradiction.
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