
Physics 514 – Basic Python Intro, Part II

Emanuel Gull

September 14, 2015

1 Introduction

This is part II of the python introduction. By now you should have installed
Python on your computer and know how to use python as a pocket calculator.
Today we will introduce some more syntax and conclude with some exercises.
Next week we will have a look at some of the useful scientific libraries.

2 Flow Control (if, for, while)

2.1 Booleans and Comparisons

Boolean values (true, false) are another built-in data type:

>>> 1<4

True

>>> 5<4

False

>>>

We can use Booleans for comparison:

>>> a=5

>>> b=3

>>> a==b

False

>>> b=5

>>> a==b

True

Note here that the double == sign is a comparison operator, different from the
single = sign which is an assignment operator. There is also an operator is for
comparison. Note that is is subtly different from ==: while == tests if the values
are equal (value equivalence), is tests if the objects are identical. (Think of it
like this: == checks if the value is the same, is if the memory address is the
same). Example:

1

>>> L=[1,’x’,4.]

>>> Q=[1,’x’,4.]

>>> L==Q

True

>>> L is Q

False

>>> P=Q

>>> P is Q

True

>>> P is L

False

>>>

2.2 Conditional Statements: if and else

With this we have enough for a simple conditional statement. Python uses
indentation (rather than brackets) to align code, so please pay attention that
your code is always properly indented!

if x:

if y:

print z

else:

print q

else:

print r

2.3 while loop

The statement for a while loop is:

x=10

while (x<20):

print x

x=x+1

Another example:

>>> x=’spam’

>>> while x:

... print x,

... x=x[1:]

...

spam pam am m

>>>

There is no do ... while statement. Three additional keywords exist: break, if
found inside a loop, exits the loop. continue jumps back to the top of the loop,
and pass does nothing at all: it is an empty placeholder.

2

Advanced: write an example of a loop that uses break, continue, and pass.

2.4 for loops

The python for loop is:

for <target> in <object>:

<statements>

for example:

>>> for x in [’spam’, ’eggs’, ’ham’]:

... print x,

...

spam eggs ham

This also works with strings, tuples, and so on:

>>> for x in ’lumberjack’:

... print x,

...

l u m b e r j a c k

The same, in one line:

>>> for x in [1,2,3,4]: print x**2,

...

1 4 9 16

In this context, the range function is very useful:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> for i in range(5): print i,

...

0 1 2 3 4

Exercise: Program the sieve of Eratosthenes:

Input: an integer n > 1

Let A be an array of Boolean values, indexed by integers 2 to n,

initially all set to true.

for i = 2, 3, 4, ..., sqrt(n) :

if A[i] is true:

for j = i2, i2+i, i2+2i, ..., n:

A[j] := false

Now all i such that A[i] is true are prime.

3

Exercise: Estimate cos(x) by using the Taylor series to various orders.
create a table of x and cos(x)values, compare them against the cos(x) function,
make a plot in your favorite plotting program.

3 Functions and Copying

functions in python are defined as follows:

def <name>(arg1, arg2, ..., argN):

<statements>

In case of a return statement:

def <name>(arg1, arg2, ..., argN):

<statements>

return <value>

Here are some examples:

>>> def square(x):

... return x**2

...

>>> square(3)

9

You can return tuples (more later):

>>> def square_and_cube(x):

... return x**2,x**3

...

>>> square_and_cube(2.)

(4.0, 8.0)

The intersection of two strings:

>>> s1="SPAM"; s2="SPQM"

>>> def intersect(seq1, seq2):

... res=[]

... for x in seq1:

... if x in seq2:

... res.append(x)

... return res

...

>>> intersect(s1,s2)

[’S’, ’P’, ’M’]

>>> set(s1) & set(s2)

set([’P’, ’S’, ’M’])

4

The last two lines compute an intersection using the built-in set type and the
& operator, help(set) will give more information.

Function calls in Python are calls ‘by reference’ (by assignment, strictly,
which creates a reference). A consequence of this is:

>>> def mysort(L):

... L.sort()

...

>>> Q=[’a’,’x’,’r’,’t’]

>>> Q

[’a’, ’x’, ’r’, ’t’]

>>> mysort(Q)

>>> Q

[’a’, ’r’, ’t’, ’x’]

>>>

This is different from e.g. C++, where a function call by default is a ‘call by
value’:

egull$ cat call.cc -o call

#include<iostream>

#include <algorithm>

#include<vector>

void mysort_by_value(std::vector<double> v){ std::sort(v.begin(), v.end());}

void mysort_by_reference(std::vector<double> &v){ std::sort(v.begin(), v.end());}

int main(){

std::vector<double> v(3); v[0]=3.; v[1]=1; v[2]=2;

mysort_by_value(v);

std::cout<<v[0]<<" "<<v[1]<<" "<<v[2]<<std::endl;

mysort_by_reference(v);

std::cout<<v[0]<<" "<<v[1]<<" "<<v[2]<<std::endl;

}

egull$ g++ -o call call.cc

egull$./call

3 1 2

1 2 3

egull$

If you want to make sure that you pass a copy, you can use the copy command:

>>> import copy

>>> Q=[’a’,’x’,’r’,’t’]

>>> mysort(copy.copy(Q))

>>> Q

[’a’, ’x’, ’r’, ’t’]

>>>

5

Advanced: If you know the difference between shallow and deep copy: copy does
a shallow copy, use deepcopy for a deep copy Note you can’t just assign another
variable first:

>>> Q=[’a’,’x’,’r’,’t’]

>>> P=Q

>>> mysort(P)

>>> Q

[’a’, ’r’, ’t’, ’x’]

The first = creates a reference of Q, which is then changed in the function. In
other words: P and Q always point to the same memory!

4 Tuples

Tuples are very similar to lists. The only difference is that tuples are immutable,
whereas lists are mutable. As a consequence: tuple assignments are not possible:

>>> 1,2,5,4,3

(1, 2, 5, 4, 3)

>>> z=1,2,5,4,3

>>> z

(1, 2, 5, 4, 3)

>>> z[2]

5

>>> z[2]=4

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: ’tuple’ object does not support item assignment

>>>

This may be useful when you want to make sure that a list is not changed when
it is being passed to a function. A const keyword does not exist in python.
You can use the usual conversion routines to change lists to tuples and back:

>>> z=(1,2,3,4,5,6); print z

(1, 2, 3, 4, 5, 6)

>>> p=list(z); print p

[1, 2, 3, 4, 5, 6]

>>> q=tuple(p); print q

(1, 2, 3, 4, 5, 6)

>>>

You do not really need the brackets, here is a definition just with commas:

>>> z=3,2,5,4,6; print z

(3, 2, 5, 4, 6)

6

5 Files

Python contains the standard set of functions to access files on your hard drive:
open, read, write, and close. read(N) reads the next N bytes, readline a
line, including the end of line character; write and writeline are analogous to
the read commands. seek(N) changes the file position offset to N, and flush

writes all data to disk (without closing the file). Some examples:

5.1 writing

>>> myfile=open(’myfile’, ’w’)

>>> myfile.write(’hello text file\n’)

>>> myfile.close()

Writing numbers to file:

>>> F=open(’datafile.txt’, ’w’)

>>> F.write(’%s,%s,%s\n’ %(43,44,45))

>>> F.close()

the file now looks like this:

egull$ cat datafile.txt

43,44,45

5.2 reading

>>> myfile=open(’myfile’, ’r’)

>>> myfile.readline()

’hello text file\n’

>>> myfile.readline()

’’

>>>

One way of reading back the set of numbers: read a string, remove the trailing
\n,then split it:

>>> G=open(’datafile.txt’)

>>> L=G.readline().strip().split(’,’)

>>> L

[’43’, ’44’, ’45’]

5.3 pickling objects

Python has a built-in storage routine called ’pickle’. Pickle can handle any
native data type, e.g. dictionaries:

7

>>> import pickle

>>> D={’a’:1, ’b’:4, ’c’:7}

>>> H=open(’pickle.txt’,’w’)

>>> pickle.dump(D, H)

>>> H.close()

The file is not really human readable:

egull$ cat pickle.txt

(dp0

S’a’

p1

I1

sS’c’

p2

I7

sS’b’

p3

I4

s.

...but the data can easily be loaded again:

>>> H=open(’pickle.txt’)

>>> J=pickle.load(H)

>>> J

{’a’: 1, ’c’: 7, ’b’: 4}

>>>

Binary storage is especially useful for large numerical data:

>>> import random

>>> J=[random.random() for x in xrange(1000)]

>>> K=open(’pickle’, ’wb’)

>>> pickle.dump(J,K, protocol=2)

>>> K.close()

The ’protocol=2’ flag switches to binary pickling. Loading works as with ASCII
pickling.

6 Modules

6.1 creating and loading modules

We already know how to write functions, and how to write programs into file
and run them from the command line. It is often convenient to split up a project
into multiple files. These files then have to be imported when functions in them
are needed. Modules can have any name, but usually they end in .py. Here is
a first example of a module, stored in file module1.py:

8

egull$ cat module1.py

def printer(x)

print x

Within python, that module can be imported and functions called as follows:

>>> import module1

>>> module1.printer("hello, world!")

hello, world!

>>>

We can already check the functions available in this module:

>>> dir(module1)

[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’, ’printer’]

>>>

So far only the one function printer shows up, along with some auxiliary
variables:

>>> print module1.__file__

module1.py

>>> print module1.__name__

module1

>>> print module1.__doc__

None

>>> help(module1)

Instead of importing the entire module1 we can import just the one function
printer, which then shows up as printer, instead of module1.printer:

>>> from module1 import printer

>>> printer("hello, world!")

hello, world!

A typical usage scenario is the math library:

>>> from math import pi,e,cos,sin,tanh

>>> sin(pi/2)

1.0

importing all functions into the current namespace saves some typing:

>>> from math import *

>>> log(2.)

0.6931471805599453

There are various pitfalls, most of which can be avoided in if the namespaces
are not collapsed (see e.g. the module gotchas in the book).

9

7 Classes

Object oriented programming is a large and important topic in computer science.
We will not introduce the concept in detail and we will skip most of the defining
aspects (no polymorphism, inheritance, information hiding, ...). If you know
about these topics, chapter V will be useful. Otherwise regard a class as a
container for data and functions. This defines a class with two public member
functions:

>>> class FirstClass:

... def setdata(self, value):

... self.data=value

... def display(self):

... print self.data

The line self.data=value sets the member variable data of the class to value.
Note that these member variables need not be declared (unlike in C++!). The
keyword self refers to the current instance of the class (*this in other lan-
guages). We then create two instances:

>>> x=FirstClass()

>>> y=FirstClass()

...and call their member functions to assign and print values:

>>> x.setdata("King Arthur")

>>> y.setdata(random.random())

>>> x.display()

King Arthur

>>> y.display()

0.426646841786

We can use classes like structs in C: as data fields without functions. The
keyword pass is needed to specify that the class has no member functions:

>>> class rec: pass

>>> A=rec()

>>> A.data

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: rec instance has no attribute ’data’

>>> A.data=2

>>> A.data

2

8 Exercises

• Write a rectangular integration function. Integrate cos from zero to pi.

10

• Write a trapezoidal and a Simpson rule. Show that the convergence of
the trapezoidal rule is O(1/N2), the one of the Simpson rule is O(1/N4),
where N is the number of integration points. Produce a plot with log-log
axes showing the polynomial scaling as a function of N .

• Write a class func implementing a function f . Change your Simpson
integration to use func.f ; test your integration function with a class
that implements f for complex and real functions.

• Advanced: Use inheritance to pass arbitrary functions by deriving from
func and overloading f .

• Advanced: Overload the bracket () operator and use this one instead of f
(check __call__).

• Advanced: Instead of calling a class member function, pass the function
to be integrated as an argument to your integration routine and test it for
sin and cos.

11

