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S U M M A R Y
We propose a simple method where the inversion of synthetic data, corresponding to a zero-
mean random input vector, is used to infer the average horizontal and vertical resolution lengths
of tomographic models. The method works well if the resolution operator has a diagonally
dominant structure. This assumption, although often verified in seismic tomography, can be
tested by simply cross-correlating the input with the output of the synthetic simulation. The
method is as efficient as a single checkerboard test, but reveals more easily interpretable
information.
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1 I N T RO D U C T I O N

Most geophysical inverse problems rely on iterative linear model
updates, where iterations proceed until a suitable convergence cri-
terion is satisfied. While many inverse methods exist (e.g. Parker
1994; Tarantola 2005), usually little attention is devoted to the as-
sessment of the quality of the solution. This assessment requires
us to evaluate the contributions from two competing terms. One of
these terms involves the resolution which is a clearly defined oper-
ator for a strictly linear problem (solved iteratively or not), and a
formal analysis allows us to write (e.g. Snieder & Trampert 1999)
that

m̃ − m = (I − R)(m0 − m) + Lε , (1)

where G is the linear forward operator relating the data d to the tar-
get (or true) model m via d = Gm + ε, ε representing unmodelled
signal. m̃ = m0 + L(d − Gm0) is the estimated model obtained by
applying a linear inverse operator L to the data, and m0 is some op-
tional starting model. The resolution operator is defined by R = LG
and I is the identity matrix. Expression (1) shows indeed that the
estimated model deviates from the target model via two terms: a
contribution from an imperfect resolution (deviation from the iden-
tity matrix) and a contribution from unexplained data due to an
imperfect modelling or data uncertainties.

The concept of resolution cannot easily be extended to non-linear
problems. However, in case that an iterative Gauss–Newton method
is used (e.g. eq. 3.51 in Tarantola 2005), at convergence, say step
n, the estimated model mn is linearly close to the target model m
similar to the expression in eq. (1). An interesting consequence
is that for Newton-type schemes, only the linearized resolution at
step n needs to be known for the assessment stage. For other non-
linear inverse schemes, the concept of linearized resolution might

not be so useful. For instance in conjugate gradient-based meth-
ods, the Hessian should be used instead (e.g. Fichtner & Trampert
2011).

In most realistic inverse problems, the evaluation of the res-
olution operator is numerically more demanding than the er-
ror propagation term. We propose here a method which effi-
ciently provides its essential characteristics rather than the complete
matrix.

The calculation of the resolution matrix corresponding to small
linear systems is computationally simple. The difficulty arises when
the system becomes large [O(106) data and unknowns]. Although
Soldati et al. (2006) showed that supercomputers can handle such
calculations, it remains a challenge to visualize and interpret a
matrix with more than a million-square entries. Usually, the inter-
pretation is done rowwise or columnwise. A row of the resolution
matrix informs us on how an estimated parameter is linearly re-
lated to the target parameters. This is known as the averaging kernel
and was first introduced by Backus & Gilbert (1968). The column
of the resolution matrix describes the blurring of an input delta-
function by the inverse operator. In optics, this is known as the
point-spread function and in seismic tomography as the spike-test
(Spakman 1991). While it does not matter of course if one analyses
the resolution matrix by row or by column, for high dimensional
problems, it is still a challenge to inspect as many rows or columns
as there are model parameters. Therefore synthetic resolution tests
are very popular. The idea is to invert synthetic data corresponding
to a few known input structures and compare the results to these
input models. The goal is to learn something about resolution, but
Lévêque et al. (1993) have shown that it is not easy to interpret
linear combinations of the columns.

The essential information of the resolution matrix of large seis-
mic tomography studies, is found along diagonals (e.g. Soldati et al.
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2006) rather than rows and columns. The main diagonal indicates
how well we recover the amplitude of the individual model param-
eters. The next diagonal informs us on how a model parameter is
linearly related to its adjacent and so on. These secondary diago-
nals are usually small, if data coverage is good, unless we arrive
at the diagonal representing the same parameter but at a different
depth level. We suggest to apply matrix probing techniques to infer
the characteristics of the essential diagonals of the resolution ma-
trix. We will show below that the main diagonal informs us on the
average horizontal resolution, whereas the other diagonals on the
average vertical resolution.

Matrix probing is a collective term for randomized algorithms
designed to analyse matrices. They are most useful when explicit
representations of the matrix are unknown or too expensive to be
computed, but the application of the matrix to a vector is relatively
straightforward. A low rank approximation of a matrix can effi-
ciently be computed by applying it to random vectors (Halko et al.
2011). These techniques share many ideas with compressive sam-
pling algorithms (e.g. Candès & Wakin 2008). If a matrix (or more
interestingly its inverse) can be approximated by a linear combina-
tion of a small number of given basis matrices, the corresponding
coefficients can easily be found by multiplying the matrix with a few
random vectors (Chiu & Demanet 2012; Demanet et al. 2012). An
(2012) used a similar idea and parametrized the resolution matrix
rowwise as Gaussians. The application to several random vectors ef-
ficiently provides the coefficients of the Gaussians. The diagonal of
an unknown matrix can also be found by applying it to successive
random vectors (Bekas et al. 2007). This technique has success-
fully been used by MacCarthy et al. (2011) to find the diagonal
of the resolution matrix and is a generalization of the method to
estimate the trace of an unknown matrix (Hutchinson 1990; Avron
& Toledo 2011). We will use a variant of the latter to find the trace
of the resolution matrix with one random probe. Too often authors
cite computational limitations as the reason for not performing a
resolution analysis. Our emphasis is therefore on a single matrix
probe for reasons of computational efficiency. Of course if more
probes are used, a better estimate will be found (Avron & Toledo
2011).

2 M E T H O D

The trace of a matrix R may be found by calculating the average
of successive evaluations of the quadratic form xtRx, where x are
zero-mean random vectors:

xtRx =
∑

i

Rii x
2
i +

∑

i

∑

j �=i

xi Ri j x j . (2)

Hutchinson (1990) showed that by applying independent and iden-
tically distributed Rademacher vectors (i.e. vectors whose entries
are independent random signs) and averaging the corresponding
quadratic forms, the second term on the right-hand side of (2) will
vanish. Convergence can be slow though and Avron & Toledo (2011)
determined the number of probes needed to obtain an estimation
of the trace within a specified error. Clearly, for a general matrix, a
single probe will not be sufficient, although xi and xj are two inde-
pendent random numbers drawn from a zero-mean distribution. In
the case of seismic tomography, the resolution matrix usually has
fast decaying off-diagonal elements (e.g. Fig. 1 and figures in Sol-
dati et al. 2006). Bekas et al. (2007) showed that, in that case, much
less probes are needed. In the ideal case, where Rij = δij, the second
term on the right-hand side of (2) is identically zero. In the non-ideal
but tomography-relevant case, most of the off-diagonal values of Rij

are small (Fig. 1) and the summation of products of independent
zero-mean random numbers xi and xj with Rij will not add very
constructively. We demonstrate below that it is sufficient to use one
single zero-mean random vector for the normalized expression (2)
to converge towards

xtRx/xtx ≈
M∑

i=1

Rii x
2
i /

M∑

i=1

x2
i . (3)

This is the weighted average (or mathematical expectation) of the
elements of the diagonal of R. Multiplying this average by the
dimension M of the matrix is then a good approximation of the
trace of R or

tr(R) ≈ M · xtRx/xtx. (4)

Figure 1. Diagonal and row 1682 of the resolution matrix corresponding to model S40RTS (Ritsema et al. 2011). The inset shows the diagonal of the
corresponding submatrix R34.
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In seismic tomography, the Earth is parametrized by N horizon-
tal and K vertical basis functions, where N · K = M. Because the
vertical smearing usually dominates over the horizontal one, the res-
olution matrix appears to have K dominant diagonals, where usually
K � N. The principal diagonal indicates how well we recover the
amplitude of a given parameter. After N horizontal entries along a
row, the next diagonal indicates how much a parameter at a given
horizontal position is correlated with the one at the same horizontal
position but at the following depth index and so on. Fig. 1 shows an
example for the seismic tomography model S40RTS (Ritsema et al.
2011) which is parametrized horizontally with spherical harmonics
up to degree 40 (N = 1681 coefficients) and vertically using K =
21 cubic splines. The dominant entries are along the main diagonal
and decay with increasing spherical harmonic degree. This is due
to the applied horizontal smoothing constraint. For a specific row of
the resolution matrix, the off-diagonal terms are small, except for
the same horizontal parameter at different depths. A similar struc-
ture of the resolution matrix was found by Soldati et al. (2006) for
a different tomographic model and parametrization. This structure
suggests that we can partition the random input vector x into K sub-
vectors and R into K · K submatrices. The vector product of an input
subvector xl with an output subvector (Rx)m, where superscripts l

and m are subvector indexes, will be a sum of bilinear forms

K∑

n=1

(xl)t(Rmn)(xn) =
∑

n

∑

i

(Rmn)i i (x
l )i (x

n)i

+
∑

n

∑

i

∑

j �=i

(xl )i (Rmn)i j (x
n) j . (5)

Each submatrix Rmn also has a decaying diagonal because of the
horizontal smoothing constraint (i.e. an increasing index i corre-
sponds to a higher spherical harmonic degree which is increasingly
damped) and small off-diagonal elements (Fig. 1). Terms involving
off-diagonal elements of each subresolution matrix will not con-
tribute for the same reason as those in eq. (2) for the resolution
matrix as a whole. (xl)i and (xn)i are different zero-mean random
numbers, and because all diagonal elements of the submatrix (Rmn)ii

have the same sign, the only significant contribution to the sum will
be from terms where n = l. We are therefore left with

(xl)t(Rx)m/(xl)t(xl) ≈
N∑

i=1

(Rml )i i (x
l )2

i /

N∑

i=1

(xl )2
i . (6)

The right-hand side of (6) is simply the weighted average of the
diagonal elements Rml, and multiplied by the number of horizontal
elements N, a good approximation of the trace of this submatrix or

tr(Rml) ≈ N · (xl)t(Rx)m/(xl)t(xl). (7)

We emphasize that we don’t have to know the resolution matrix
explicitly to use the proposed analysis. If the matrix has a few
dominant diagonals, it is sufficient to generate one random zero-
mean vector and calculate the corresponding synthetic data. The
inversion of the latter with the same regularization parameters as
used for the real data, will directly give Rx, and vector product (3)
or (6) will provide the desired traces for resolution analysis.

3 R E S U LT S

Model S40RTS is built with 8000 independent parameters. To test
if the resolution matrix is diagonally dominant, we evaluate the full
cross-correlation between a random input vector x, uniformly drawn
between −1 and 1, and the corresponding output vector Rx (Fig. 2).
The cross-correlation at position 1 corresponds to expression (3)
and is scaled to give the total trace of the resolution matrix. We find
8009, whereas the exact trace for this particular inversion is 8007
(we calculated the exact resolution matrix explicitly for this model).
The cross-correlation at position 2 corresponds to the sum of the
next diagonal and so on. They are small, indicating that the matrix
is indeed diagonally dominant. The next significant diagonal is at
position 1682 telling us that there is a correlation with the following
depth layer. Eventually the modulo-1681 diagonals also disappear
in the noise (i.e. background oscillations in the cross-correlation) of
the cross-correlation. The background noise has a root-mean-square
value of 70 which we take to be the overall precision with which we
can evaluate the sum of a particular diagonal of the full resolution
matrix. The number of consecutive modulo-1681 sums above the

Figure 2. Cross-correlation of the total random input vector with the total output vector.
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noise, renders a good indication of the average vertical resolution
(4 spline knots in this case).

Rather than evaluating the cross-correlation of full random vec-
tors, we take Expression (7) to estimate the traces of the K · K
submatrices Rml. Fig. 3 shows the traces of the corresponding sub-
matrices. The average number of independent parameters resolved
for a given depth index are along the diagonal. For instance at spline

knot 12 (corresponding to depth of 951.3 km) the trace is 706. This
corresponds to an average horizontal resolution of spherical har-
monic degree L = 25.6 (L = √

tr − 1), or 783 km (6371 · π/L).
The peaks are not perfect delta functions but have a certain width.
We measure the width of each peak where it drops below the noise
level. For all submatrix estimations the root-mean-square of the
noise is 15 (Fig. 4), which is about 70 for the full cross-correlation

Figure 3. Traces of the 21 × 21 submatrices for model S40RTS.

Figure 4. Difference between the traces of the exact resolution submatrices and those calculated using Expression (7).
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Table 1. Average horizontal and vertical resolution for S40RTS,
in brackets are values for increasing the weight of the surface
waves by a factor of 10.

Spline Depth Horizontal resolution Vertical resolution
knot (km) (km) (km)

1 24.4 2112.3 (1543.1) 271.5 (610.0)
2 74.4 990.6 (732.3) 250.0 (315.0)
3 129.4 1207.2 (884.2) 248.5 (175.0)
4 189.9 1357.9 (1000.0) 284.5 (248.0)
5 256.4 1532.6 (1173.8) 312.0 (263.5)
6 329.7 1598.8 (1267.3) 338.5 (293.0)
7 410.2 1609.5 (1303.8) 357.0 (303.5)
8 498.8 1568.8 (1385.8) 331.5 (315.0)
9 596.3 1358.5 (1294.8) 312.5 (374.0)
10 703.6 990.8 (1052.9) 277.0 (392.0)
11 821.5 800.9 (870.4) 209.0 (239.5)
12 951.3 783.1 (861.4) 169.5 (186.0)
13 1094.1 804.8 (897.6) 185.5 (200.0)
14 1251.2 853.0 (967.7) 203.0 (217.0)
15 1424.0 896.3 (1029.0) 227.0 (239.0)
16 1614.1 971.5 (1136.3) 254.0 (263.5)
17 1823.2 1034.8 (1225.7) 278.0 (286.5)
18 2053.3 1082.2 (1290.9) 302.5 (309.5)
19 2306.3 1131.9 (1355.7) 314.5 (318.0)
20 2584.8 1243.3 (1495.1) 318.5 (316.0)
21 2891.0 1128.8 (1342.1) 281.0 (281.0)

divided by
√

K . At knot 12, we find an average depth resolution, de-
fined as the half-width of the corresponding peak measured at twice
the noise level, of 169.5 km. Table 1 gives the average horizontal
and depth resolution for the other depths.

4 C O N C LU D I N G R E M A R K S

Fig. 3 reveals that S40RTS has significantly lower vertical and hor-
izontal resolution in the mantle transition zone despite the use of
many high-quality overtone surface wave data. The reason for this
is probably a specific choice for the weighting parameters. We pro-
duced another model with 8000 independent parameters, for which
the weights of the surface waves compared to the body waves and
normal mode data are higher by a factor of 10. The vertical and hor-
izontal resolution is now much more uniform throughout the whole
mantle (Table 1). Although the different data sets have slightly dif-
ferent misfits, the overall variance reduction is similar which makes
the choice of a particular model subjective. It is not our purpose to
discuss this new model, however our exercise serves as a reminder
that even if millions of high-quality data enter a tomographic model
construction, the details of resolution are still largely dependent on
damping choices. The technique we proposed in this paper is very
efficient to estimate the average horizontal and vertical resolution.
we suggest that it can be used to identify desired properties in a
model quickly and adjust the regularization accordingly.

In full waveform inversion, based on conjugate gradient methods,
the Hessian plays the same role as the resolution in Newton-type
algorithms (e.g. Fichtner & Trampert 2011). A similar analysis to
that above for average horizontal and vertical resolution can thus be
done using the Hessian instead of the resolution operator. Again we
don’t need to know the Hessian explicitly, but we only need to be
able to estimate Hx efficiently. If x is a random zero-mean vector,
expressions (3) or (6) can be used where R is replaced by H.

In summary, the recipe is as follows. Draw a zero-mean random
vector x and evaluate the corresponding data using the forward op-
erator, giving d = Gx. Invert those data with the linear inverse op-
erator to find x̃ = Rx = Ld. First evaluate the full cross-correlation
between x and x̃ which should look similar to that on Fig. 2. If the
resolution operator is indeed dominated by a few diagonals only, the
random vector and resolution can be partitioned, and Expression (6)
can be used to evaluate the average horizontal and vertical resolution
lengths. If the cross-correlation looks significantly different to that
of Fig. 2, a more time-consuming analysis is needed, for instance
based on the parametrization of the resolution operator (Fichtner
& Trampert 2011; An 2012), matrix probing using more random
vectors (MacCarthy et al. 2011) or a full calculation (Soldati et al.
2006).
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