
 ON A NON-VANISHING CONJECTURE OF KAWAMATA
 AND THE CORE OF AN IDEAL

 By Eero Hyry and Karen E. Smith

 Abstract. We show, under suitable hypotheses which are sharp in a certain sense, that the core of an
 m-primary ideal in a regular local ring of dimension d is equal to the adjoint (or multiplier) ideal of
 its d-th power. This generalizes the fundamental formula for the core of an integrally closed ideal in
 a two-dimensional regular local ring due to Huneke and Swanson. We also find a generalization of
 this result to singular (nonregular) settings, which we show to be intimately related to the problem
 of finding nonzero sections of ample line bundles on projective varieties. In particular, we show
 that a graded analog of our formula for core would imply a remarkable conjecture of Kawamata
 predicting that every adjoint ample line bundle on a smooth variety admits a nonzero section.

 1. Introduction Let / be an ideal in a commutative ring. By definition, the
 core of / is the intersection of all sub-ideals having the same integral closure
 as /. Because the notion of integral closure is so fundamental, the core is a
 natural and interesting object. Originally defined by Rees and Sally in [37], the
 first substantial progress in understanding core is due to Huneke and Swanson
 in [22], who proved that the core of an integrally closed m-primary ideal / in a
 two-dimensional regular local ring is equal to the adjoint (or multiplier) ideal of
 I2. Since then, the algebraic properties of core have been thoroughly studied; see,
 for example, [6] and [7]. Our own interest in the core is motivated by seemingly
 unrelated geometric concerns: the core of a certain ideal governs whether or
 not an ample line bundle on a projective algebraic variety has a nonzero global
 section.

 The purpose of this paper is two-fold. On the algebraic side, we find structure
 theorems for the core naturally generalizing the Huneke-Swanson results to the
 higher dimensional and singular case. On the geometric side, we show how a
 sufficiently good understanding of the core of a certain ideal in a very special kind
 of graded ring would settle a remarkable conjecture of Kawamata predicting that
 "adjoint" nef divisors are always effective. In particular, our higher dimensional
 singular version of the Huneke-Swanson formula for core can be viewed as a local

 analog of Kawamata's conjecture. Our work shows that commutative algebraists
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 1350  E. HYRY AND K. E. SMITH

 and algebraic geometers, working completely independently of each other and
 motivated by very different problems, both discovered and conjectured different
 facets of the same beautiful?and still largely buried? mathematical diamond.

 It is perhaps no surprise that multiplier (adjoint) ideals arise in the search
 for nonvanishing theorems for nef line bundles. In recent years, multiplier ideals
 have found many rich applications to algebraic geometry, particularly to issues of
 effectiveness; see [8], [42]. Originally defined as ideals of holomorphic functions
 belonging to a certain weighted L2-space, multiplier ideals can also be developed
 purely algebraically (see [34]) or algebro-geometrically (see [9] or [31]). Recently,
 multiplier ideals have been used to prove surprising new results in commutative
 algebra as well; see [10] and [11].

 1.1. The motivating geometry. Let X be a complex smooth projective
 variety and let L be an ample line bundle on X. Being ample, the line bundle

 Ln = L <g> L <g> <g> L
 v-v-'

 n times

 has many global sections for large enough n. On the other hand, L itself need
 not have any sections at all. A fundamental unanswered question in algebraic
 geometry is this: what n is large enough so that Ln has even one nontrivial global
 section?

 As stated, there is no general answer to this question; there is no uniform n
 that works for all line bundles on a given variety X. So we must restrict attention
 to particular classes of bundles. For example, suppose that L is an adjoint bundle,
 that is, that L is of the form Kx?H where H is some ample line bundle and Kx is
 the canonical bundle of X. The Kodaira vanishing theorem implies that the higher
 cohomology groups of L must all vanish, but as pointed out by Ambro in [2], not
 a single example is known in which the zeroth cohomology group also vanishes.
 In fact, even for numerically effective ("nef") line bundles L of the form Kx<S>H
 where H is ample, the celebrated theorem of Shokurov guarantees that Ln has
 many sections for sufficiently large n [40]; again, in all known examples, L itself
 already has a nonzero section.

 In [25], Kawamata conjectured that every numerically effective line bundle
 L adjoint to an ample line bundle must have a nonzero global section: that is,
 if L is of the form Kx ? H for some ample H, then Ln has a nonzero section
 for every n > 1. More generally, Kawamata stated his effective nonvanishing
 conjecture in a singular, logarithmic version, indeed, under the same general
 hypothesis of Shokurov's nonvanishing theorem (or of the "Base Point Free
 Theorem") [25]:

 Conjecture 1.1.1. Let D be any numerically effective ( "nef") Cartier divisor
 on a normal projective variety X. If there exists an effective R-divisor B such
 that the pair (X, B) is Kawamata log terminal and such that the R-Cartier divisor
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 ON A NON-VANISHING CONJECTURE OF KAWAMATA AND THE CORE OF AN IDEAL 1351

 D ? (Kx + B) is big and nef, then the line bundle Ox(D) has a nonzero global
 section.

 (Note: One can get interesting, but less technical statements by taking B to
 be zero and X to be Gorenstein: then the condition that (X, B) is Kawamata log
 terminal amounts to X having rational singularities. For the basic terminology
 of singularities of pairs used here, we recommend [29] or [30] as a general
 reference.)

 This remarkably strong conjecture was first raised as a question by Ambro
 in [2]. For curves it is trivially true and for surfaces it can be shown using a
 Riemann-Roch argument [25, Theorem 3.8], but in higher dimensions it seems
 quite surprising. For example, Conjecture 1.1.1 predicts that the linear system
 of every nef divisor on a smooth Fano variety is nonempty; in particular, every
 Fano variety admits an effective anti-canonical divisor. For smooth varieties for
 which Kx is trivial, Conjecture 1.1.1 asserts that every big and nef line bundle
 has a nonzero section; in particular, every ample line bundle on a Calabi-Yau
 manifold admits a nontrivial global section. At the opposite extreme, Conjecture
 1.1.1 guarantees the existence of nonzero sections for the bi-canonical bundle on
 a smooth minimal model of general type.

 1.2. From geometry to algebra. Kawamata has shown that in order to prove
 Conjecture 1.1.1, it suffices to prove the case where D is ample [25, Theorem 2.2].
 This opens up the possibility of using commutative algebra.

 Given a pair (X, D) consisting of a normal projective variety X and an ample
 divisor D, consider the section ring

 S=@H?(X,Ox(nD)),
 neN

 a normal, finitely generated graded ring whose associated projective scheme re
 covers X. As we describe in detail in Section 6, Kawamata's Conjecture leads
 naturally to an equivalent statement about the graded core of a certain submodule
 of the canonical module us of S. This statement takes its simplest form in the
 case where D = ?Kx is the anti-canonical bundle on a smooth Fano variety. In
 this case, the section ring S is Gorenstein and the line bundle ?Kx will have a
 nonzero section if the formula

 (1) gradedcore (I) = adj (Id), where d = dimS,

 holds for the integrally closed ideal / = S>n generated by elements of degrees at
 least n, for some (equivalently, every) fixed large n. Here the graded core of /
 is the intersection of all homogeneous subideals whose integral closure is /, and
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 1352  E. HYRY AND K. E. SMITH

 adj (Id) is the adjoint ideal (or multiplier ideal) of Id. (The definition is recalled
 in Section 5.3).

 For more general pairs (X, D), the section ring S will not be Gorenstein, so
 the usual notion of a multiplier ideal need not be defined. However, we overcome
 this difficulty by using an alternate construction of adjoint module; this adjoint

 module is a submodule of us rather than an ideal of S, agrees with the adjoint
 ideal for local Gorenstein rings after fixing an isomorphism ujs = S, but seems
 better suited for working on singular varieties. (The point is that its definition
 does not require the existence of a relative canonical divisor.) In this more general
 setting, we show that D has a section if

 (2) gradedcore (Icjs) = adj (IduJs)^ where d = dim S,

 holds for the ideal / = S>?, n ^$> 0, where gradedcore (Iojs) is the intersection
 of the submodules Jujs in cus, as / ranges over all homogeneous ideals J whose
 integral closure is /, and adj (Idu>s) is the adjoint module, as defined in Remark
 6.0.7.

 Thus it may be possible to prove Kawamata's Conjecture by proving formulas
 (1) or (2) for section rings of divisors D satisfying the conditions of Kawamata's
 hypothesis. Such section rings are very special: for example, in the Fano case
 above, the Rees ring S[It] turns out to be Cohen-Macaulay and even to have
 rational singularities; even for more general pairs, the Rees ring S[It] still has
 the very strong property that its irrelevant ideal is a Cohen-Macaulay module.
 Under the strong conditions imposed by the geometric hypothesis, we hope to
 eventually prove formula (2) and hence Kawamata's Conjecture. What we do in
 the current paper is a local version of just that.

 1.3. The main algebraic results. Guided by the conjectural formulas (1)
 and (2), we prove formulas for the core of an ideal / in a local ring A satisfying
 hypotheses satisfied by the ideal / = S>n in the special section rings S arising
 from a pair (X,D) satisfying the assumptions of Conjecture 1.1.1. For example,
 a special case of our main theorem produces the following higher dimensional
 (and singular) version of the Huneke-Swanson formula for core mentioned in the
 opening paragraph:

 Theorem 1.3.1. Let (A, m) be a Gorenstein local ring of dimension d essentially
 of finite type over afield of characteristic zero, and let I be an m-primary ideal of
 A. If the Rees ringA[It] of I has rational singularities, then

 (3) core(/) = adj(A

 where adj (Id) denotes the adjoint (or multiplier) ideal of the ideal Id.

 Although the assumption above that the Rees ring has rational singularities is
 quite strong, it is quite natural for two reasons. First, it is satisfied when S is the
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 section ring of the anti-canonical divisor on a Fano variety and / = S>n, n ? 0.
 Thus Theorem 1.3.1 can be viewed as a "local version" of (1) and hence a local
 version of (a special case of) Kawamata's Conjecture. Second, it always holds
 whenever / is an integrally closed ideal in a two-dimensional regular local ring,
 the setting of the Huneke-Swanson formula. In fact, we also show that under
 some further restrictions, rational singularities of A[It] is necessary and sufficient
 for formula (3) to hold (see Theorem 5.3.1).

 Passing away from the Gorenstein (and even Cohen-Macaulay) case, as we
 must in order to prove Kawamata's Conjecture in full generality, we arrive at a
 similar result inside the canonical module:

 Theorem 1.3.2. Let (A, m) be a local ring essentially of finite type over afield
 of characteristic zero, and let I be an m-primary ideal such that the irrelevant ideal
 of the Rees ring A[It] is a Cohen-Macaulay A[It]-module. Then ifY = ProjA[/?]
 has rational singularities,

 core (Iuja) = adj (IduA) := T(Y,IdujY)

 as submodules of??A where d is the dimension of A.

 Theorem 1.3.2, then, can be interpreted as a local version of (2), and so a local
 analog of Kawamata's Conjecture. Indeed, its hypothesis is precisely satisfied by
 a section ring S of a pair (X,D) satisfying the hypothesis of Conjecture 1.1.1.
 Therefore, for such a section ring, Theorem 1.3.2 implies that

 (4) core (I?js) = adj (Idus)

 where / = S>n is the ideal generated by the elements of degrees at least n ? 0
 and d is the dimension of 5. We conjecture that furthermore

 (5) gradedcore (lus) = adj (Idus)

 holds, which, as we show in Section 6, implies Conjecture 1.1.1. The difference
 between (4), which we prove to be true, and (5), which implies Kawamata's
 Conjecture, is that in the latter we are intersecting over only homogeneous ideals
 /. On the other hand, since both intersections are actually finite and there are
 plenty of homogeneous reductions, it is reasonable to expect that perhaps equality
 holds. This, however, seems to be a very subtle question.

 Our formulas for core also elucidate the relationship between the core and
 the coefficient ideals of Aberbach and Huneke (see Corollary 5.4.1), and support
 some very general conjectures of Corso, Polini and Ulrich, which built on the
 Huneke-Swanson work; see [7]. For example, we prove:

 Theorem 1.3.3. Let (A,m) be a Cohen-Macaulay local ring containing the
 rational numbers and let I be any equimultiple ideal of positive height. If the Rees

This content downloaded from 99.9.115.68 on Mon, 26 May 2025 15:38:20 UTC
All use subject to https://about.jstor.org/terms



 1354  E. HYRY AND K. E. SMITH

 algebra A[It] is Cohen-Macaulay, then

 core/ = 7r+1 : f forr^>0,

 where J is any minimal reduction of I.

 This formula for core is conjectured in more general settings in [7].
 The format of the paper is as follows. Section 2 summarizes some back

 ground material and conventions, while recording various technical lemmas for
 later use. Section 3 forms the technical heart of this paper. Here we prove our

 main technical theorem, Theorem 3.0.2, describing the core module coreos)
 of an ideal in the canonical module as an "adjoint-type" module. Theorem 3.0.2
 requires a certain Brian?on-Skoda-type hypothesis, and in Section 4, we identify
 some natural classes of rings and ideals for which these hypotheses are satisfied.
 In Section 5, we pull together these results to deduce our main local results,
 including Theorems 1.3.1 and 1.3.3. Finally, in Section 6, we show how Kawa

 mata's Conjecture reduces to a purely algebraic statement about the graded core
 analogous to our main results in the local case.

 Throughout this paper, all rings and schemes are assumed Noetherian, and
 are assumed to possess a dualizing complex. The notation (A, m) denotes a local
 ring whose unique maximal ideal is named m. For an affine scheme Spec A, we
 frequently abuse terminology by deliberating blurring the difference between a
 quasi-coherent sheaf of modules on Spec A and the corresponding A-module of
 its global sections.

 2. Algebraic Preliminaries. This section summarizes some definitions,
 tools and conventions we will use. With the exception of the definition of core
 and graded core in Subsection 1 and a few technical results (likely to be well
 known to experts), nearly all of this material can be unearthed from the sources
 [19], [17], and [35]. Readers may prefer to skip this section and refer back only
 as necessary.

 2.1. Integral closure, reductions, and the core. Let / be an ideal in a
 Noetherian ring A. The integral closure of / is defined as the set of all elements
 z in A satisfying a polynomial equation

 zn + aizn-x + ---+an = 0,

 where a? G /'. The integral closure 7 of / is an ideal of A containing / and
 contained in the radical of /. In the case where / is a homogeneous ideal of a
 graded ring, 7 is also homogeneous.
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 A reduction of / is any sub-ideal of I having the same integral closure.
 Equivalently, J is a reduction of / if there is a positive integer r such that

 r+l = jr.

 The smallest such r is called the reduction number of the pair (I, /). Equivalently,
 a sub-ideal / is a reduction if and only if the corresponding inclusion of Rees
 Rings

 Ae/e/2---cAe/e/2

 is integral.
 A minimal reduction of an ideal 7 is a reduction that does not properly contain

 any smaller reduction of I. Every ideal admits minimal reductions. If I is an m
 primary ideal in a local ring (A, m) of dimension d, then any reduction generated
 by d elements is a minimal reduction of I. Conversely, if the residue field A/m
 is infinite, then every minimal reduction is generated by d elements.

 See [19, ?4, ?10] for more information on integral closures and reductions.

 Definition 2.1.1. The core of an ideal is the intersection of all its reductions.
 If the ideal is a homogeneous ideal in a graded ring, then its graded core is the
 intersection of all its homogeneous reductions.

 Remark 2.1.2. Obviously, core/ C gradedcore (/) for any homogeneous ideal
 in a graded ring, but the inclusion can be strict in general, even when / has many
 homogeneous reductions; see Remark 6.4.2.

 Our main interest from the point of view of Kawamata's conjecture is the
 ideal of elements of degrees at least ?in a graded ring. In this case we have
 the following simple descriptions of integral closure, reductions, and the graded
 core.

 Proposition 2.1.3. Let S be an N-graded reduced ring finitely generated over
 an infinite field So = k. Suppose that the set of elements of S of degree n generate a
 cofinite ideal I (that is, that S/I is finite dimensional over k). Then:

 (1) 7 = S>n, the ideal generated by all elements of degrees at least n.

 (2) Every minimal homogeneous reduction of I is generated by a system of
 parameters for S consisting of elements of degree n.

 (3) The graded core of 7 is the intersection of all homogeneous systems of
 parameters consisting of elements of degree n.

 Proof. Suppose that I is generated by elements of degree n and let w be a
 homogeneous element of 7. Then w satisfies a homogeneous equation of integral
 dependence

 wt + a\w*~l + + at-\ w + at = 0
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 where a\ G T. Since P is generated by elements of degree in, we see that the
 degree of w must be at least n: otherwise the homogeneity forces all a? = 0 and
 so w would be nilpotent. Thus no element of degree less than n can be in 7.

 On the other hand, fix any system of parameters {x\,...,Xd} consisting of
 elements of degree n. Then we have a finite integral extension of graded rings

 A = k\x\,... ,Xd\ ?^ S,

 and so every homogeneous element w of S satisfies a homogeneous equation of
 integral dependence

 w* + a\w*~x + + at-\w + at = 0,

 where a? E A. Now if w has degree at least n, the elements a? have degree at
 least in. Thus a; G (x\,... ,x?)1, and w is integral over (x\,... ,jc?/).

 Let J be any minimal homogeneous reduction of / (or of 7). From the above
 arguments, / is necessarily generated by degree n elements, and since the ground
 field is infinite, these generators form a system of parameters. This completes the
 proof.

 2.2. Canonical sheaves and trace. A general reference for the material in
 this section is [17]. See also [5].

 A canonical sheaf for a Noetherian scheme of dimension d is defined to
 be the coherent sheaf given by the ? d-th cohomology of a normalized dualiz
 ing complex for the scheme, when such a dualizing complex exists. When the
 scheme is Cohen-Macaulay, the canonical sheaf is a dualizing sheaf in the sense
 of Grothendieck. Dualizing complexes exist for any equidimensional scheme es
 sentially of finite type over an affine Gorenstein scheme; see [17, p. 299, p. 306].

 The canonical sheaf of a scheme Y is not uniquely determined up to isomor
 phism in general. However, in many situations, there is a canonical choice for the
 canonical sheaf. For example, if F is a normal algebraic variety, then the usual
 notion of the canonical sheaf (namely, the unique reflexive sheaf that agrees with
 the sheaf of top differential Kahler forms on the smooth locus; see (6.1)) provides
 a natural, "truly canonical" choice for cjy. More generally, when all schemes are
 equidimensional and essentially of finite type over a fixed ground scheme Spec A
 that admits a residual complex, there is a functorial procedure ("upper shriek,"
 denoted "!") for constructing natural dualizing complexes on them from the given
 one on A. In this paper, all schemes will be of essentially finite type over a fixed
 local ground scheme possessing a dualizing complex (a field in the geometric
 settings), with respect to which all canonical sheaves will be constructed.

 For affine schemes, we also use the terminology canonical module. The
 canonical module of a local ring (A, m) can be described as a finitely generated
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 module whose dual is the top local cohomology module 77m(A), where d = dimA
 (with the duality as described in Subsection 2.3).

 2.2.1. The canonical sheaf and Cohen-Macaulayness. The canonical sheaf
 of a Cohen-Macaulay scheme is itself a Cohen-Macaulay sheaf of the same di
 mension. Even for non-Cohen-Macaulay schemes, the canonical sheaf retains a
 bit of its Cohen-Macaulayness: the canonical sheaf satisfies Serre's S2 condi
 tion. In particular, the canonical sheaf of a scheme Y of dimension at most two

 is a Cohen-Macaulay sheaf, even if Y itself is not Cohen-Macaulay. The ba
 sic properties of canonical modules over (non-Cohen-Macaulay) local rings are
 summarized, with references, in [20, Section 2].

 2.2.2. Trace. Fix a proper map

 Y -U Spec A,

 where Spec A is an equidimensional local scheme of dimension d with fixed
 normalized residual complex TV. Letting TI* :=/!^? be the corresponding nor
 malized residual complex for Y, Grothendieck's general theory of trace provides
 a map

 KT(Y9K?)?>TV',

 see [17, p. 318] for details on/! and [17, p. 383] for more on trace. In particular,
 when A and Y have the same dimension d, we can take the ? d-th cohomology,
 and we get a natural map of A-modules

 T(Y,??Y) ?>uja,

 which we call the trace map. The dual of the trace map is the natural map of
 local cohomology modules

 Hdm(A) ?> Hdz(0Y),

 where m is the unique maximal ideal of A and Z =/_1({m}) (with the duality
 as discussed below in Subsection 2.3).

 The most important case for us is when Y ?> Spec A is proper and birational,
 specifically, a blowup along an ideal in Spec A. In this case, the trace map turns out

 to be injective; dually, the natural map of local cohomology modules 77m(A) ?
 Hz(Oy) is surjective. See, for example, [36, p. 103]. Throughout this paper, we
 will always identify F(Y, ujy) with a submodule of ua using this trace morphism
 when Y ? Spec A is projective and birational.
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 In geometric situations, the meaning of the trace map is often clear. For
 f

 example, if both Y and Spec A are normal and Y ?> Spec A is the blowing up
 of some closed subscheme W C Spec A of codimension at least 2, then there is
 a natural inclusion

 T(Y,ujy) ^o?a

 obtained by restricting a global section of uoy to Y \f~x(W) = Spec A \ W and
 then extending uniquely to a section of oja

 2.2.3. Adjunction. Let ? be a subscheme of a Cohen-Macaulay scheme Y
 defined locally by a nonzerodivisor. Let Oy( ? E) denote the ideal sheaf of E,
 so that Oy(E) denotes its dual. Then the "upper shriek" construction in which a
 canonical module on Y determines one on E is easy to describe. Explicitly,

 lue :=?xtxOY(0E,uY).

 In particular, uoy and lue are related by the following exact sequence

 0 -> buy - Uy(E) -> Cue -> 0,

 obtained from the long exact sequence that arises by applying the functor
 Tiomoy (?,cjy) to the exact sequence 0 ?> Oy( ? E) ?> Oy ?> Oe ? 0.

 If Y fails to be Cohen-Macaulay but is proper over a local scheme, and E is
 locally defined by a nonzerodivisor, then we still have an exact sequence

 0 - L?y - Uy(E) -> UJe,

 but exactness on the right can fail in general.

 2.3. Duality. Throughout this paper, the term "duality" always refers to the
 following version of Grothendieck duality combining global and local duality as
 developed in [17]. For a careful proof of this form of duality, see [33, p. 188].

 Let (A, m) be a local ring that is a homomorphic image of a Gorenstein ring

 (for example, essentially of finite type over a field). Let Y ?> Spec A be a proper
 morphism and let Z =/_1({m}) denote its closed fiber. If Y is Cohen-Macaulay
 of equidimension d, then for any coherent CV-moduIe T, there exist A-module
 isomorphisms for all /

 (6) Hlz(Y, T) ^ HomA ( Extf"' (T, uoY), EA(A/m)),

 where Ea(A/vci) is an injective hull of the residue field of A, and Hlz(Y, T) denotes
 the local cohomology module of T with supports in Z. In particular, if T is
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 invertible, then

 Ifz(Y, T) is dual to Hd~\Y, T~x ? uY).

 Note that this duality includes Serre duality as a special case. Indeed, if Y is
 a projective variety over a field k, then applied to the proper map Y ? Spec k
 (so that Y = Z and Ea(A/xo) = k), we recover the standard statement of Serre
 duality (as in [18, p. 243]). At the other extreme, taking/ to be the identity map
 Spec A ?> Spec A, we recover the standard local duality familiar to commutative
 algebraists (as in [4, p. 133]).

 When Y is not Cohen-Macaulay, the isomorphism (6) holds as stated only for
 / = d. To get duality for all /, one must replace uy in the statement of (6) by the
 normalized dualizing complex for Y. We will not need such general formulations
 of duality in this paper. See [33, p. 188].

 2.4. Rees rings and associated graded rings. Let I be an ideal in a Noethe
 rian ring A. The Rees ring of A with respect to A is the N-graded ring

 A[it] := a ? / e i2 ? i3 ? ,

 and the associated graded ring or form ring is the N-graded ring

 gr7 A := A/7 ? 7/72 ? 72/73 ? 73/74 ? .

 In both cases, the "multiplication" is the one naturally induced by multiplication
 in A. If the ideal I has positive height, then the Rees ring has dimension d + 1,
 where d = dim A, and the associated graded ring has dimension d. (See e.g. [19,
 Theorem 9.7]).

 Now let R and G be the Rees and associated graded rings, respectively, for
 A with respect to some ideal 7 of positive height. Set Y = Proj R. By definition,
 the natural projection Y -^-> Spec A (induced by the inclusion of A in R) is the
 blowing up morphism of the ideal 7. The ideal sheaf IOz is invertible, and defines

 the scheme theoretic pre-image of the subscheme of Spec A defined by 7. Thus
 this pre-image is a divisor, E, called the exceptional divisor of ir. (Caution: If 7
 has height one, the actual exceptional set for the map tt may not be a divisor
 at all, but a proper subset of Ered.) The natural isomorphism R ?? A/7 ?> G
 identifies E with Proj G, so there is a fiber diagram

 Z -> ?:=ProjG - Y :=ProjR

 i i i
 Spec (A/m) -> Spec (A/I) -> Spec A,
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 where Z is the scheme-theoretic fiber over the closed point m of Spec A. In
 this diagram, the horizontal maps are all closed embeddings whereas the vertical

 maps are all proper. If 7 is an m-primary ideal, the schemes Z and E share the
 same reduced subscheme. The invertible sheaves In?y can be identified with the
 coherent sheaves Oy(n) arising from the graded /^-modules R(n) (where R(n)m =
 Rn+m). This justifies our use of the notations

 rOy, Oy(n), and Oy(-nE)

 interchangeably, even when n is negative.

 2.4.1. Arbitrary filtrations. More generally, Rees rings and associated
 graded rings can be defined with respect to an arbitrary filtration of a Noetherian
 ring A. Let {7?}w(En be a filtration of A, that is, a descending sequence of ideals
 satisfying 7?7m c In+m for all n,m G N and /o = A. Then the Rees ring and
 associated graded rings are defined by

 A ? 7i ? h ? and A/h 0 h/h ? h/h 0 ,

 respectively. The standard Rees and associated graded rings of the previous para
 graph correspond to the filtration {7?} = {7"}. In general, the Rees ring and
 associated graded ring of an arbitrary filtration need not be Noetherian. However,
 if they are Noetherian and I\ has positive height, then the dimensions are d+1 and
 d, respectively, where d is the dimension of A, just as for filtrations by powers
 of ideals.

 Given any filtration {In} and a fixed natural number k, there is a Veronese
 sub-filtration whose n-th member is 7?w. In this case, the corresponding Rees
 ring is the k-th Veronese subring of the Rees ring for {In}. (The effect on the
 associated graded ring is more subtle.) Because every finitely generated graded
 algebra has a Veronese sub-ring generated in degree one, any filtration giving
 rise to a finitely generated Rees ring admits a Veronese sub-filtration consisting
 of powers of an ideal 7?.

 The only type of filtration we use in this paper (other than powers of 7) is
 the "natural" filtration in a graded ring: If S is a Noetherian N-graded ring, then
 set In = S>n to be the ideal generated by elements of degrees at least n. In this
 case, the Rees ring, denoted S\ is Noetherian and the associated graded ring is
 naturally isomorphic to S.

 2.4.2. The a-invariant. Let H be an arbitrary Noetherian graded ring over
 a local ring, and let 371 denote its unique homogeneous maximal ideal. The a
 invariant of TZ is defined as

 a(K) = max{[7/^(ft)]? ^ 0}.
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 The a-invariant of a Rees ring is always ? 1 while the a-invariant of the associated
 graded ring carries subtle information about the singularities of A and R (see 2.5
 below). The term "a-invariant" is due to Goto and Watanabe; see [14].

 2.5. The Sancho de Salas sequence. Let

 R = R0 ? R\ ? Ri ?

 be an arbitrary graded ring over a ring Ro = A, and let m be an arbitrary ideal
 of A. Set Y = Proj/? and Z=Y xspeCA SpecA/m. Then for any graded /?-module
 N = 0wG^ A^?, there is a degree-preserving long exact sequence:

 ?<EZ n<EZ

 where m# = m ? R\ ? R2 ? and Afn denotes the quasi-coherent Oy-module
 corresponding to the graded /?-module N(n). This very useful sequence was in
 troduced in [38] in a special case, and later developed by Lipman in [35].

 2.5.1. Local vs. global cohomology. For example, consider the extreme
 case where m = 0. Then Y -Z and because Hl0(N) = 0 for i > 0, the Sancho de
 Salas sequence degenerates to the long exact sequence

 0 ? H?R>0(N) ?+N-^ 0"fl?(r,Mn) ? HXR>0(N) ? 0,
 nez

 where /?>o = Ri ? R2 ? is the "irrelevant ideal" of the graded ring R, and the
 graded isomorphisms

 ?^HXYMn) = H?X0(N) for / > 1.
 n(EZ

 This is the familiar identification between sheaf cohomology on a projective
 scheme and the corresponding local cohomology with supports in the irrelevant
 ideal.

 2.5.2. The case of Rees rings. Let R be the Rees ring of a local ring (A, m)
 of dimension d with respect to a Noetherian filtration of ideals /? of positive
 height. In this case, m# = m?/?i ?/?2 ? is the unique homogeneous maximal
 ideal 9JIr of R. For the case N = R, the Sancho de Salas sequence is

 - H^iR) ? 0i5&(/i?) ? 0#z(r> Oz(n)) ? H^R(R) ? . neN nez
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 This exact sequence can be used to quickly deduce many useful well-known facts,
 including:

 (1) As graded A-modules, H*g(R) = ?n<0H%(Y,OY(n)). This is because
 the maps Hm(In) ? 77|(y, Oy(n)) are surjective for all n > 0 (see, e.g. [36,
 p. 103]).

 (2) If R is Cohen-Macaulay, then WZ(Y, Oy(n)) = 0 for all n < 0 and all
 i < d. By duality, this is the same as Hl(Y,o?y(n)) = 0 for all n > 0 and all i > 0.

 (3) If 7 is m-primary and both A and R are Cohen-Macaulay, then also

 H^(Y,Oy(n)) = 0 for all n > 0 and all 1 < i < d. The dual statement is
 77/(F,u;y(rc)) = 0 for all n < 0 and all 0 < i < d - 1.

 (4) If A is Cohen-Macaulay, then R is Cohen-Macaulay if and only if G is
 Cohen-Macaulay with negative ^-invariant [13], [35].

 (5) If G is Cohen-Macaulay, then 77?(F, Oy) = 0 for all i < d. Dually,
 77<(y,u;y) = 0 for all / > 0 [38], [35].

 To deduce the above statements involving Cohen-Macaulayness, use the fact that
 a module M over a local (or graded) ring (11, AI) is Cohen-Macaulay if and only
 if the local cohomology modules HlM(M) vanish for all / < dimM.

 2.6. The graded canonical module. Let R = ?ne^Rn be an N-graded
 ring finitely generated over a local ring Rq = A, where (A, m) is a homomorphic
 image of a Gorenstein local ring. Let 9Jt# = m ? R\ ? /?2 ? denote the unique
 homogeneous maximal ideal of R. Then R admits a graded canonical module,
 which by definition, is a finitely generated graded /^-module such that

 UomA(??R,EA(A/m)) * H^RR(R),

 where Ea(A/x?i) is an injective hull of the A-module A/m and the notation Horn
 denotes "graded homomorphisms", namely

 HomA(uR,EA(A/xn)) = 0HomA ([uR]_n,EA(A/m)).
 nez

 In other words, a graded canonical module is a finitely generated graded /?-module
 whose "graded Matlis dual" is isomorphic, as a graded /?-module, to the top local
 cohomology module with supports in the unique homogeneous maximal ideal of
 R. The graded canonical module is uniquely determined up to degree preserving
 homomorphism. Furthermore, it is a canonical module for R in the nongraded
 sense as well. For details and generalities on graded canonical modules and related
 material, see [19], Chapter VII, especially Section 36, or [4], Section 3.6, or the
 original paper of Goto and Watanabe [14].

This content downloaded from 99.9.115.68 on Mon, 26 May 2025 15:38:20 UTC
All use subject to https://about.jstor.org/terms



 ON A NON-VANISHING CONJECTURE OF KAWAMATA AND THE CORE OF AN IDEAL 1363

 2.6.1. The canonical module for rings graded over a field. Let S be an N
 graded ring over a field k = A, and let X = Proj S be the corresponding projective
 scheme. By definition, the graded pieces of the graded canonical module lus are

 dual to the graded pieces of H^S(S). In the case where X has dimension at least
 one (so 5 has dimension at least two), this latter module can be identified with
 (see 2.5.1)

 ^H^x(X,Ox(n)).
 nez

 So, we use duality (which holds at the top spot even when X is not Cohen
 Macaulay) to conclude that

 us = @H?(X,u;y(n))
 nez

 is a graded canonical module for S.

 2.6.2. The canonical module for R. In the case where R is a Rees ring of
 an ideal of positive height in a local ring (A, m), we have

 UR = @H?(Y,LJY(n)),
 n>0

 where uoy is the canonical module on Y - Proj R constructed from the fixed one

 on A. Indeed, its dual is 0rt<o#|(F, Oy( - n)), which is identified with H^XR(R)
 as a graded module, by 2.5.2 (1). More generally, this argument shows that for
 any graded ring R over a local ring A, [ujR\n = H?(Y, LOy)n) for positive n, where
 y = Proj/?.

 2.6.3. The canonical module for G. Likewise, there is a similar choice for
 the associated graded ring G of an m-primary ideal, at least when d > 2, namely

 ??G = ^H?(E,ujE(n)),
 nez

 where lue is the canonical module on E = Proj G constructed from the fixed
 one on A. Indeed, its dual is @neZHd~x(E,?E( - n)), which is identified with
 H^jig(G) as a graded module, by the identity (2.5.1) above. In dimension one,
 these arguments give only that

 [LJG]n=H?(E,u;E(n))

 for positive n. The non-positive pieces of loq are more complicated to describe
 (and are of crucial importance in our arguments). These will be treated later in
 Lemma 3.2.1.
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 2.6.4. The effect of killing a parameter. Let uq be the graded canonical
 module of a Cohen-Macaulay graded ring G over a local ring Go, and let x be
 any homogeneous nonzerodivisor. Set G to be the graded ring G/xG. Then

 XUG

 as graded modules, where n is the degree of x. Here recall that for a graded
 module M, the notation M(n) denotes the same module with the degree shifted
 so that [M(n)]t = [M]n+t. This is well known and easy to prove; see, for example,
 [4, Corollary 3.6.14].

 More generally, even when G is not Cohen-Macaulay, we often have useful
 statements along these lines. For example, we will make use of the following
 proposition:

 Proposition 2.6.1. Let G be an N-graded ring of dimension d > 0, finitely
 generated over an Artin local ring Go, and let x be any homogeneous element of
 degree n. Then there is a natural degree-preserving injection

 vg , v
 -(n) *-+ uj?, xuG

 where G denotes the ring G/xG, whenever the dimension of Anno (x) (as a G
 module) is strictly less d.

 Proof Consider the four term exact sequence of degree preserving maps

 0 ? AnnG (jc) ?>G(-n)^G ? G/xG ?> 0.

 Breaking this up, the short exact sequence

 0 ?> AnnG (jc) ?>G(-n)-^xG ? 0

 induces an isomorphism

 HdmG(G)(-n)^HdmG(xG),

 since 77^ ( AnnG (jc)) = 0. So the sequence

 0 ?>xG ? G ? G/xG ? 0

 gives rise to the exact sequence

 H^iQ/xG) ? /4G(G( - ")) -^ Hlnc(G) ?> 0.
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 Dualizing (that is, applying the graded Matlis dual functor; see 2.6) yields an
 exact sequence

 0 ? ujg -^ uc(n) ?> uG/xG,

 which provides the natural inclusion

 -(n) *-+ Luc. u XLJG

 3. The main technical theorem. This section forms the technical heart of
 this paper. Here we prove Theorem 3.0.2, which will later be used to deduce
 the higher dimensional versions of the Huneke-Swanson formulas for core, our
 "local version" of Kawamata's conjecture, a formula for core conjectured by
 Corso, Polini and Ulrich, the results linking core and coefficients ideals, and
 other properties of core in Sections 5 and 6.4.

 Recall that if Y - Proj A [It] ?> Spec A is the blow-up of Spec A along an
 ideal /, then the A-module H?(Y, uy) can be naturally identified with a submodule
 of l?a (see 2.2.2). Likewise, the modules H?(Y,InL?y) for n > 0 can be identified
 with submodules of l?a, denoted by Q?.

 Theorem 3.0.2. Let I be an xn-primary ideal in a local ring (A, m) of positive
 dimension d containing the rational numbers. Assume that for any reduction J of I,

 (7) Juja n Od-i = J(Qd-2 n wA),

 as submodules of lo a- Then

 core (Ilu a) C Q?

 as submodules of l?a, where core Ilja denotes the intersection in loa of the submod
 ules Jlja as J ranges through all reductions of I.

 Remark 3.0.3. Note that if d > 2, then Qd-2 is contained in l?a in any case;
 the intersection with u>a is relevant only when d = 1.

 Remark 3.0.4. For ideals / of reduction number at most one, the assumption
 that A contains the rational numbers is unnecessary; see Remark 3.4.7.

 Remark 3.0.5. In the geometric setting, the module H?(Y,IdL?y) is closely
 related to the adjoint ideal (or multiplier ideal) of Id, at least when Y happens to
 be smooth (or have rational singularities). See Remark 6.0.7.

 As we will see in the next section, the hypothesis (7) of Theorem 3.0.2 is
 a type of "Brian?on-Skoda" statement, and it is satisfied in many nice situa
 tions. For example, we will show that (7) holds whenever A and the Rees ring
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 A[It] are Cohen-Macaulay, or more generally even if A is not Cohen-Macaulay
 provided that the irrelevant ideal of the Rees ring A[It] is a Cohen-Macaulay mod
 ule. This latter condition arises naturally in the geometric setting that motivates
 us.

 The proof of Theorem 3.0.2 will occupy this entire section. The main point is
 that Lemma 3.3.1 reduces us to a related statement about the intersection of the

 corresponding submodules of the canonical module ujq of the associated graded
 ring G. This statement about ujq is then proved by induction on the dimension,
 with the hard part being the case where d = 1. For all these steps, we need a rather
 delicate understanding of the structure of the canonical module for G?especially
 how its graded pieces are related to the adjoint-type modules ?ln. Thus we begin
 in Subsection 3.1 with a detailed study of the modules Q?.

 3.1. The filtration by Adjoint-type modules. We fix some notation to
 be used throughout the rest of this section. We let (A,m) denote a local ring
 of dimension d > 1 which is assumed to have an infinite residue field (and
 as always, possesses a canonical module). Let 7 denote a proper ideal in A of
 positive height. Let R and G denote the Rees ring and the associated graded ring
 with respect to 7, respectively. We set Y = Proj/? and let Y -^> Spec A denote the
 natural blowing up morphism. As always, we identify rc^uy with a submodule of
 (jJa (see Subsection 2.2.2).

 We first establish some elementary properties of the "adj oint-type" A
 modules

 iln:=T(Y,Fujy),

 where n G Z. First note that:

 (1) Each Q? is a finitely generated A-module.

 (2) If n > m, then Q? C Qm.

 (3) For all n G Z, we have Iiln C Qw+i.

 (4) There are natural identifications Qn = Honu (Ip, ??+p) for all n e Z and
 all p > 0.

 The first property is immediate from the properness of Y ?> Spec A, while the
 next two properties follow immediately from the definition. The fourth property
 follows from the useful but elementary general fact: Let T be a coherent Oy
 module such that the local generator for I?y is a nonzerodivisor on T at each
 point of Y. Then Homr (Joy, T) = HomA (J, T(Y, T))for any ideal J C A. (This
 fact is easy to prove; see, for example, Lemma 2.1 of [24].)

 Our proof of Theorem 3.0.2 will exploit the following relationship between
 the Qn and the graded pieces of l?g
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 Lemma 3.1.1 (Cf. [24], Theorem 2.2e). Let I be an m-primary ideal in a local
 ring (A, m) of positive dimension d. Then there is a natural inclusion

 0 ?2?_i/Q? ^l?g
 n>\

 of graded G-modules. This inclusion is an isomorphism if Y is Cohen-Macaulay,
 the a-invariant a(G) < 0 and HX(Y, ujy(n)) = Ofor all n > 1, for example, if both
 R and A are Cohen-Macaulay.

 Proof. Consider the adjunction sequence

 0 - L?y - L?y( ? 1) - Lue,

 which is exact also on the right if Y is Cohen-Macaulay. Tensoring with Oy(n)
 and computing cohomology we get an exact sequence of cohomology

 0 ? H?(Y,L?Y(n)) ? H?(Y,L?y(n - 1)) ? H?(E,LJE(n)).

 Thus there is a natural injection

 0??-iM <- ?H?(E,u>E(n))
 nez nez

 for all n G Z. Since ljg and @neZH?(E,L?E(n)) agree in positive degrees (see
 2.6.3), the first claim is proven.
 If Y is Cohen-Macaulay, then we have an exact sequence

 0 ? H?(Y,Ljy(n)) ? H?(Y,LJY(n - 1)) ?-+ H?(E,ujE(n)) ? Hx(Y,ujY(n)),

 so the inclusion is a bijection in degree n if Hx(Y,ujy(n)) = 0. When R and A
 are both Cohen-Macaulay, the scheme Y = Proj/? is Cohen-Macaulay, and this
 vanishing holds (see 2.5). The lemma is proved.

 Remark 3.1.2. The proof of Lemma 3.1.1 shows that if d > 2, the inclusion
 ?nez Qn-i/Qn ^ ^g holds for all n, not just positive n. A nice consequence
 is that, for dimension > 2, the increasing chain of modules

 c ??2 c fii c Qo c Q-i c Q-2

 must stabilize for ?n < ?a, where a is the a-invariant of G. In fact, it stabilizes
 to LOa>

 Lemma 3.1.3. Let I be an m-primary ideal in a local ring (A, m) of dimension
 at least two. Then

 ?-n = Ua

 for all n > a(G).
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 Proof Fix n > 0. To verify that uA C Q_w, recall that Q_? = HomA (P, O,0).
 So it will suffice to show that for n ? 0, Puja C Qo (then each/ in a;^ determines
 the element "multiplication by/" in fl_w = Hom^ (P,Q,o).) Because the blowup

 map restricts to an isomorphism away from the closed set Spec (A/7), the trace
 map ?2o C ua becomes an identity after localizing at any element of 7. So some
 power of 7 annihilates uja/Qo, and Pu a C Qo for large n, as needed.

 To check the reverse inclusion, consider the exact sequence of A-modules

 0 ? uA ? ?-w ? Q ?> 0

 where, because 7 is m-primary, the module Q is supported at m. There is an
 induced sequence of local cohomology

 J?? (O-*) ? H?m(Q) ?+ Hlm(o?A).

 The right term above vanishes because ??a is S2 while the left term vanishes
 because Q_? = Honu (??, ?o) C Hom? (Qw, ?j?)9 so no element can be killed by
 any parameter in A. Thus H^(Q) = 0, and since Q is supported only at m, Q = 0
 as well.

 In dimension one, the picture is somewhat different: although it is still true
 that uja C Q-n for large n, we do not get stabilization.

 Lemma 3.1.4. 7f 7 is integral over a principle ideal, then Qn = x?ln-\ for all
 n G Z, where x generates a minimal reduction for I. This holds in particular when
 I is an m-primary ideal in a local ring of dimension one.

 Proof. In this case, Y = Proj A[It] is affine, so

 Q? = In??y = jfujy = jc(7n-1o;r) = jcQ?_i

 for all n.

 The next lemma refines our understanding of the modules Qn for the case of
 nonnegative n.

 Lemma 3.1.5. Let (A, m) be a local ring and let I be a proper ideal ofA ofheight

 greater than one. Then Qn+\ \UA I = ilnforalln > 0. In fact, Q,n+p -u)A Ip = Qnfor
 all n > 0 and all p > 1. This also holds for ideals of height one that are integral
 over a principle ideal.

 Proof Recall that Qn = Hom? (F, ?w+p). Clearly each element w of Qn+P ^
 F gives rise to an element of iln, namely, the "multiplication by w map" in
 HoniA (F, ?ln+p). We need to show that every A-module map from F to Q,n+P
 arises this way.
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 We treat the height greater than one case first. Because P contains a regular
 sequence of length two on l?a, we have Hom^ (P, l?a) = wa- Since Hom^CF,

 ??+p) C HoniA (P, l?a), this implies that every element of Hom^ (P, ?ln+p) arises
 by multiplication by some element of l?a, as needed.

 Now suppose / has a reduction generated by one element, say x. By Lemma
 3.1.4, we have Q?+i = xQ,n for all n G Z. So also Qrt+/7 = x??in for all n > 0
 and all p > 1. Take any u G ?ln = Hom^ (P, Qn+P). Then u(xP) = xPl? for
 some l? G ?in C l?a- We claim now that u is the map "multiplication by cj."
 To check this, take any a G F. We get xPu(a) = au(xP) = axPu, so because
 jc^ is a nonzerodivisor on l?a, we conclude that u(a) = au. This shows that

 Qn = HoniA (P, Qn+p) C ?w+p ^ Z*7. The proof is complete. D

 3.2. The canonical module l?g in the dimension one case. Because our
 strategy for proving Theorem 3.0.2 is to reduce to the one-dimensional case, we
 need to understand l?g in the case d = 1. In dimension one, if R and G are both

 Cohen-Macaulay, it is easy to see that

 n>0 "w

 However, our reduction to the dimension one case will destroy the Cohen
 Macaulayness of R (even when it is assumed at the start), so the following
 lemma is crucial.

 Lemma 3.2.1. Let (A,m) be a one-dimensional local ring. Let I C A be an
 m-primary ideal. Then

 f Q?_i/Q? forn>0

 Here, for n < 0, the intersection is carried out in Hom^ (I~n+X, l?a) which naturally
 contains both Q?_i = Hom^ (I~n+X, ?o) and HoniA (I~n, l?a).

 To understand the lemma, note that for n < 0, the module Q,n can be consid
 ered as a submodule of Hom^ (I~n, l?a) via the injection Q? = Honu (I~n, Qo) ?
 Honu (I~n,u?A) induced by the inclusion ?o C l?a- Also, there is a natural inclu
 sion of HoniA (I~n, l?a) in Honu (I~n+X, o? a), induced as the dual of the inclusion

 rn+x c /-*, since HomA (rn/rn+x,L?A) = 0.
 Proof. Consider the long exact sequence (see 2.5.1) relating cohomology

 for G and Proj G:

 0 ? H$nG(G) ? G ? 0H?(E, 0E(n)) ? HxMg(G) ? 0. nez
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 Applying duality for the proper map E ? Spec A/1, we get an exact sequence

 0 ? uG ? 0 H?(E, uE(n)) ? 0 HomA// (Gn,EA/I) = EG,
 nez neZ

 where EA/i denotes the injective hull of the residue field of the zero dimensional
 ring A/7 (and Eg is by definition the graded injective hull of the residue field of
 G; see [19, p. 293]). For n > 0, [Ec]n = 0, so there are natural isomorphisms

 [uG]n = H?(E,ujE(n))

 for all n > 0, whereas for ? n < 0, we have

 [uG]-n = ker [H?(E,uE( - n)) ? HomA (P/P+l,EA/I)].

 Note that Y is always Cohen-Macaulay: Away from E, Y is isomorphic to the
 zero-dimensional scheme Spec A \m, whereas since E is defined by a nonzerodi
 visor locally in Y, the Cohen-Macaulay property of the zero-dimensional scheme
 E lifts to Y. So we have a twisted adjunction sequence

 0 ?> ujy(n) ?> ujy(n ? 1) ? uE(ri) ? 0.

 Because Y is affine, we have a corresponding sequence of global sections

 0 ? Q? ? Q?_i ?> H?(E,??E(n)) ? 0.

 Hence Q,n-\/iln = H?(E,??E(n)) for all n e Z. So for n > 0, we conclude that

 [i?Gln = ??-l/??,

 as needed.
 It remains to treat the case n < 0. Because the case n = 0 is the only one we

 actually need later, we write down the argument carefully only in this case for the
 sake of clarity. However, the same exact argument "twisted" by ?(n) produces
 the result for any n < 0.

 Consider the case n = 0. Because uja/i is an injective hull of the residue field
 for the zero-dimensional local ring A/7, we have that

 [cjg]o = ker [H?(E, uE) -^ HomA (A/7, uja/i) = va/iI

 We need to understand the map rj. Being dual to the natural map

 A/7 = H?m(A/I) ? H?e(Oe) = Oe,
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 the map 77 is in fact the trace map for the proper map of zero dimensional schemes

 E ?> Spec A/7. (Note that the functors Hom^i?,uA/i) and HomE(?,ujE) are
 identical on (9^-modules by the adjointness of tensor and Horn.)

 To understand rj, we consider the commutative diagram of A-modules, whose
 existence we will justify momentarily:

 0 - Horn^ (A, u>^) - Hom^ (/, u;^) - Exrj. (A/1, ujj^) = u>^ /j - 0

 0 - Hom^, (Oy, wy) - Hom^, (IOY, wy) - Ext^ (Oe, u>Y) = uE - 0.

 In this diagram, the first two upward arrows are injective (note the first one is the
 trace map for Y ?> Spec A), and it is the kernel of the rightmost upward arrow
 that we want to understand. Knowing that [cjg]o = ker 77, a look at this diagram
 shows that there is a natural identification

 _ Hornby (IOy, uy) Pi HoniA (A, uja) _ ?-i H uA
 Home>F (Oy, uoY) Q0

 as claimed. This will complete the proof in the case where n = 0; the proof for
 arbitrary negative n is essentially the same, just "twisted" by n. It remains only
 to justify this commutative diagram.

 Finally, to justify the diagram is easy. (One can do this abstractly, using the
 point of view of [17], but we prefer a hands-on verification.) It is induced from the
 diagram of long exact sequences arising from the natural diagram of A-modules

 0 -> I - A -> A/I -> 0

 0 - IOy - Oy -> 0E - 0,

 where the downward arrows are the natural inclusions. (Recall that Y and E are
 affine, so we abuse notation, identifying Oy and ?E with their corresponding
 rings of global sections.) The existence of a natural induced map between the
 corresponding long exact Ext-sequences is a very general fact holding for any
 diagram of short exact sequences over any commutative rings R ? S. Indeed,
 say M and P are ?-modules, and N and Q are 5-modules. Given ?-module maps

 M ?> N and Q ?> P, there are naturally induced functorial maps

 Extls(N,Q)-^ExtiR(M,P)
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 for each i G N. These maps can be viewed as the composition of three natural
 maps of /?-modules:

 Ext? (N, Q) ? Extjj (N, Q) ? Extfc (N, P) ? Ext^ (M, P).

 The first arrow above is naturally induced by the "forgetful functor." (An in
 jective resolution Q ?> / of Q as an 5-module can be viewed as an exact
 sequence of /?-modules; then for any injective resolution Q ?> J9 of Q as an
 7?-module, there will be an induced /?-module map of complexes / ? P. This
 induces an 7?-module map of complexes Horn/? (N,P) ?> Horn/? (N,Jm), which
 can be pre-composed with the map that forgets the 5-structure Horns (N,/#) ?
 Horn/? (N,P). This map of complexes induces a unique map on the level of co
 homology, and this is the natural map of Ext groups we have in the first arrow
 above.) The second arrow is the natural covariantness of the functor Ext in the
 second argument, and the third arrow is the natural contravariantness in the first
 argument.

 The proof of Lemma 3.2.1 is complete, at least for n > 0. The proof for
 arbitrary negative n is essentially the same as the proof for n = 0, just "twisted"
 by n. (We will use this lemma only in the cases n = 0 and n = 1.)

 3.3. Reduction to the associated graded ring. We now state and prove
 the key lemma which provides the crucial step of reducing Theorem 3.0.2 to a
 related statement about the canonical module of the associated graded ring.

 Lemma 3.3.1. (Key Lemma) Let / be an m-primary ideal in a local ring
 (A, m) of positive dimension d. Let TZ be any nonempty set of minimal reductions
 of /. As in Theorem 3.0.2, assume that

 Jl?a n Q,d-\ = J(&d-2 n l?a)

 for all reductions / G TZ. Then

 p| (xi,...,xd)uuAcQd
 {xl9...*d}en

 if

 n [(xi,...,x*d)L?G]d=o,
 {xi,...jcd}efc

 where x* denotes the degree one element of G given by the class of x? modulo
 I2. The converse also holds if Y is Cohen-Macaulay and both Hx(Y,uy(d)) and
 Hx(Y,L?Y(d- 1)) vanish.
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 Proof Set

 W= p| (xi,...,xd)uA.
 {xi,...?cd}eii

 We already know that ?ld C W, because of our assumption that ?ld C Juja for
 all reductions J. Let x G W \ Qd. Since the only associated prime of cc?4/Q? is
 m, we may assume that x G ?ld :UA m c ?j ^ 7. But then x G ?2?-i by Lemma
 3.1.5, and its class in Q,d-i/Qd determines a nonzero element of [o;g]j under
 the natural inclusion Qd-\/Q,d ^ i^G\d guaranteed by Lemma 3.1.1. Because
 JuA H Q?/_i = J(Qd-2 H o;a) for any minimal reduction J of I (by hypothesis),
 we see that

 x G p| (xi , . . . , Xd)(Q,d-2 H LUA).
 {xi,...?cd}eii

 By Remark 3.1.2 and Lemma 3.2.1, we conclude that the class of x is in

 f] [(x*,...9x?)ujG]d,
 {x\,...jcd}en

 and hence is zero by assumption. So in light of the inclusion Qd-i/?ld C (jug,
 the element x must have been in Qd after all. The proof that the second condition
 implies the first is complete.

 For the converse, consider a degree d element in

 p| (xl,...,x*d)uG.
 {*i,...,.x?}e7?

 Our additional hypotheses imply that [uG\d - Qd-i/Qd, so this element is rep
 resented by some x in ?ld-\. Likewise, since [uiGh-i - (&d-2 n ??A)/Qd-i and
 ?ld C Jujaj we can assume with out loss of generality that

 x e(x\,... ,xd)(Qd-2 n (jja\

 for any (x\,...,xd) G TZ. Since such x in is (^{xu^.^yen^i^ >*dX<?4, our
 hypothesis ensures that it is in Qd, so that x represents the zero class in ujg. This
 implies that

 f] [(x*x,...,x*d)ujG]d = 0.
 {xi,...?cd}en D

 3.4. The proof for c?g. In light of the Key Lemma 3.3.1, the next result
 will complete the proof of Theorem 3.0.2.
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 Theorem 3.4.1. Let (A, m) be a local ring containing the rational numbers.
 Let I be any m-primary ideal. Then

 p| [(x*i,...,x*d)??G]d = 0,
 {X\,...yK?)CK

 where TZ is the set of all minimal reductions of I. Furthermore, if A is the local
 ization of a finitely generated N-graded domain S and I is the expansion to A of a
 homogeneous ideal of S generated by elements of all the same degree n, then the
 set TZ can be taken to be the set of all reductions of I generated by elements of
 degree n.

 We will prove Theorem 3.4.1 by induction on d. The hard part will be to
 deal with the case where d = 1. The inductive step looks slightly technical
 also, because of the necessity of dealing with non-Cohen-Macaulay associated
 graded rings. We isolate most of these technicalities in the following lemma,
 which compares the canonical modules of two graded rings closely related to G.
 The reader is advised to think about the case where G is Cohen-Macaulay on a
 first read through, as this simplifies the arguments and is sufficient for our main

 algebraic results (but not for Kawamata's Conjecture).

 Lemma 3.4.2. Let (A, m) be a local ring of dimension d > 2, and let G be the

 associated graded ring of A with respect to an m-primary ideal I. Let y G I \ /2
 be a general element of I, and let y* =y + I2 denote the corresponding degree one
 element in G. Then:

 (1) (y) nin= yln~l for all n ? 0.
 (2) There is a natural degree preserving surjection

 _ A 7 72
 G/y*G ?>G:=T?zo0zTe..., i r r

 where G denotes the associated graded ring of A = A/yA with respect to the image
 ideal 7 = I A, which becomes an bijection in degrees n^> 0.

 (3) This surjection induces a degree preserving isomorphism

 ??q ?> uG/y*G.

 Remark 3.4.3. When the associated graded ring G is Cohen-Macaulay (as it
 is in our main applications), the equality holds in (1) for all n > 0 and the map
 in (2) is an isomorphism, making (3) obvious.

 Proof. Condition (1) is easy to prove and well known: the point is to choose
 y so that y* avoids the relevant associated primes of G. (Such an element y is
 called "filter regular.") See, for example, [44, Lemma 3.2].
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 Condition (2) follows immediately. Indeed, one simply verifies that in degree
 n, this map looks like

 F P
 Xin-l+jn+l ' (x)nln+In+X'

 This is obviously surjective for all n, and becomes an isomorphism when n ? 0.
 To prove (3), note that the kernel of the natural degree preserving surjection

 G/y*G ? G

 is nonzero in only finitely many degrees, and therefore has finite length. In par
 ticular, the kernel K is a zero dimensional graded G/j*G-module. As both graded
 rings above have dimension (d ? 1), the corresponding long exact sequence of
 local cohomology induces an isomorphism

 since fla??(#) = 0.
 Dually (after applying the graded Matlis dual; see Subsection 2.6), we have

 the desired degree preserving isomorphism

 L?c - UG/y*G

 Proof of Theorem 3.4.1. We first carry out the inductive step. Assume that
 d > 1 and that the theorem has been proven for rings A of dimension d ? 1.
 Suppose that

 uje p| [(x*X,...,Xd)L?G]d.
 (xi,...yxd)eiz

 We will construct a sequence y\, y2 ... of elements of / (of degree n in the graded
 case) such that the corresponding elements y\,y\ of Gi are nonzerodivisors
 on l?g with the property that

 for all ? > 1. This will imply the claim, because then l? g l?g would be divisible by
 elements of arbitrarily large degree, which is impossible since l?g is Noetherian,
 and hence vanishes in sufficiently negative degrees.

 To construct the sequence of y ?'s, we proceed inductively. Assuming that
 y 1,... ,yt-\ have already been constructed, choose a general yt G / (of degree n
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 in the graded case) such that {y\ y*_i,;y*} is part of a sequence of parameters
 for G. This is possible, since the elements x* with jc G 7 (of degree n) generate an

 OJ?G-primary ideal. We must verify that uo is divisible by the product y* y*_iy*.
 Consider the class of a; modulo y*u?G> This is an element of uo/y*UG ?f

 degree d, so in light of the injection provided by Proposition 2.6.1, it determines
 an element of degree d ? 1 in uj_g_ . By Lemma 3.4.2, therefore, we can interpret

 it as an element in

 where G is the associated graded ring of the ring A/ytA with respect to the image
 of 7.

 Now any minimal reduction of 7 in A, say (xf,... ,x?Tf), lifts to a minimal
 reduction (xi, ... ,xd-\,yt) of 7, because, again by Lemma 3.4.2, for all r ? 0,

 Ir+l C (xu ... ,^_07r + (yt) H Ir+l C (xi,... ,x?_i)7r + ytF.

 It thus follows that

 ^? P| [(^T*,.-.,^^T*)^Gk-i =0,

 where x?,... ,xdZ\ ranges through the set of all minimal reductions of 7 in A. (In
 the graded case, we assume the x;'s all to have degree n.)

 By the inductive hypothesis, we can assume the result is true for the (d ? 1)
 dimensional ring G, which is the associated graded ring for an m-primary ideal
 in a ring of dimension d ? 1. So we have cJ = 0. In other words u G (y*)(^G
 This means that u G (y\ y*_x)uG D (y*)oJG- Because the two element set
 {yi - - -y*-\, y?} is an c^G-regular sequence, this means that u G (y\ -y*)o?c as

 wanted. This completes the proof of the inductive step.
 It remains only to prove the case where d = 1. For this, we will invoke the

 careful description of ujg in the one dimensional case proved in Lemma 3.2.1.
 We will also need the following two lemmas. The first is a modification of [7,
 Lemma 2.2], which in turn is inspired by [22, Lemma 3.8]. The second is a
 one-dimensional version of [24, Proposition 2.3] valid also in the non-Cohen
 Macaulay case.

 Lemma 3.4.4. Let (A, m) be a local ring and let N C N' C M be A-modules. Let
 x,y G A, with x a nonzerodivisor on M. Suppose that yN C xN. Let u\,...,um G
 A be units of A whose images are distinct modulo m, and assume that m ? 0
 (specifically, m > dim? (Af :#' m)/N, where k = A/m). Then

 m

 x(N :M m) p P (x + uty)(N :N* m) C xN'.
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 Proof Suppose that w = xs = (x + u\y)s\ = ... = (x + umy)sm where
 s E N :m m and s? G (N :#' m) for each / = 1,..., m. For all r G N \m tn, let r
 denote the class r + N in N \m m/N. Also let a denote the class <z + m G A/m for
 all a G A. The elements ?\J\,... ,11^1^ G (Af :#> m)/Af are linearly dependent,
 since m exceeds the dimension of this space. By replacing m by a possibly smaller
 positive integer, we will assume henceforth that every proper subset of the set

 is linearly independent, but that the full set itself is dependent. Clearly m > 1 ;
 otherwise, all s? are in N and so (jc + uty)s? G xN c xN' as needed.

 There exist units A,..., Am G A such that

 m

 (8) ^XiWiYi = 0.

 This implies

 m m

 y^ A/Mj-j,- G ?V, so that ( ^ A?ii,-j,-)y yN c xN.
 i=i i=i

 Hence
 m

 ( ^ A/ii/^Oy = ?x
 i=i

 for some ? G iV. Set

 m

 1=1

 Then

 m m m m

 Asx = ^ A/5/(x + uty) = ]T V;* + ]C ^'"?V = XI ^'x + tx'

 As x is M-regular, this implies that

 m

 Xs = ^ A?s? + ?.
 i=i
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 Now A G m would imply As G N and so

 m

 1=1

 In this case, we can solve

 m?\ T"

 sm - ? ?^ T-^'
 i=l Am

 and plug into equation (8) above. Because the ??,-'s are pairwise distinct, this
 produces a nontrivial linear relation on the set

 {?iSi,...,?mSm-\},

 a contradiction. This forces A to be a unit in A, and so

 m

 i=l

 The proof of Lemma 3.4.4 is complete.

 Lemma 3.4.5. Let I be an m-primary ideal in a local ring (A, m) of dimension
 one. Let (x) be any minimal reduction of I. Then

 Q0 = i^ujA :cja I*)

 for all t ? 0.

 Proof Note that the blowup of Spec A along / is the affine scheme Y =

 Spec A[^]. So the proper map Y ? Spec A corresponds to a finite map of rings
 A-^AV-l Thus

 ?o = uqy = HomA (Oy, l?a).

 To compute Qo, note that without loss of generality, the A-module generators

 for the ring Oy may be assumed of the form ^ where z G V, for some fixed
 t > 0. We claim that Q0 = (*'^a :Wa 70 for this fixed t.

 To check the inclusion Qo C (x*l?a '.ua 70, take any/ G HomA (Oy, l?a).
 Then the restriction of / to A is given by multiplication by f(\) G l?a- Because

 f(^) G l?a for any z G V, one readily verifies that/(z) G x?l?a and so f (1)1* G
 (x*)l?a. Then the map/ >->/(l) gives the natural inclusion Qo C (x*lua '-u>a 70

 For the reverse inclusion, take any w G (x?cja '-ua 70- F?r z G 7', we have
 wz = x*u for some u G cja- Set/W( ^) = u. Using the fact that x is a nonzerodivisor
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 on u>a, one easily checks that the association w *->fw gives a well-defined injection
 (x'cja -lja 70 C HomA (Oy,uA) inverse to the map in the previous paragraph.

 We now prove the dimension one case of Theorem 3.4.1, which will complete
 its proof, and hence the proof of the main technical theorem, Theorem 3.0.2.

 Let d = 1. Suppose that uo G [x*ujg]i for all x G 7 which generate a minimal

 reduction of 7 (of degree n in the graded case). As x is not in any minimal prime of
 A, the element x forms a system of parameters for A and so x is nonzerodivisor

 on the A-module uoA. By Lemma 3.2.1 we know that [ujg\\ = ?o/^i- So we
 represent to by some for some wEilo? modulo Q\. We want to prove that u = 0,
 which is the same thing as proving that w G ?i.

 Because the module [uog\\ - ?o/?i is an Artinian A-module, we might as
 well assume that mo; = 0. In other words, we can assume that w G ?i :qq m.
 Again by Lemma 3.2.1, we know that [ujg]o = (?-i H uja)/CIq. So, using also
 that ?i = x?o by Lemma 3.1.4 we can write w = sx for some s G ?_i D u?a
 Since

 rasx = mw G ?i = x?o,

 we have that

 ms G ?o,

 as x is a nonzerodivisor on u>a. This means that s G ?o '.uA ta. Our goal is to
 show s G ?o- This will complete the proof since then w = xs G 7?o C ?i,
 whence the class of w in l?g is zero.

 To achieve our goal of showing that s G ?o, we invoke Lemma 3.4.5, which
 guarantees that it is enough to show that: s G i?uja I* for t ? 0. For this, note
 that it is enough to show that:

 Claim 3.4.6. For any y G 7 (homogeneous in the graded case), s G (x?cja '.uja
 yf) for all t > 0.

 Indeed, because Q C A, the ideal generated by the t-th powers of the elements
 of an ideal 7 (homogeneous elements of degree n when 7 is generated in degree
 n) is simply V. This follows easily from the identity

 (9) t\xx... xt = j2 E ( - d'-*?!+ +xtky
 l<k<tl<ii<-<ik<t

 To prove Claim 3.4.6, take any y G 7 (of degree n in the graded case). We
 wish to apply Lemma 3.4.4 to the A-modules

 ?0 C N't C uA,
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 where N? = (x1l?a '.ua /). Note here that Qo C N't for all t, since

 /Qo C 7'Q0 C Qi = jc'Qo C x*lua.

 To this end, choose distinct units u\,...,um (of degree zero in the graded
 case), with m ? 0, and so that each x + my generates a reduction for 7. Then

 (10) w = xs = (x + u\y)si = ... = (* + wmy)sm

 for some s\,.. .,sm G Qo *.u;A nx. Therefore, assuming for the moment that the
 elements s,- are also in N?, then xs is in

 x(Q0 ^ m) n [(x + wdO(Q0 'n? m)] n n [(* + wmj)(Q0 :#; m)],

 and so applying Lemma 3.4.4, we have

 xs G xN?.

 Because x is a nonzerodivisor on l?a (and so on any submodule), we see that
 s G N't = (jc^a ^ /), which is precisely what we needed to show.

 It remains to show that each s? is in N't = (x?l?a :Wa /) for t ? 0. We in fact
 will show this for all t > 0, using induction on t. If t = 0, the Si are trivially in

 ?Vq. Assume then that

 si,...,sm e N't_x = (xt~xu?A '-oja y_1).

 So by the argument above using Lemma 3.4.4, we have also that s G N't_x. Since

 xs = (x + uty)si,

 we have

 y Si = ?r^Cs - s?) G xA?_! = x(xt~xtuA :<?A /_1) C xW :^a /_1.

 But then for each / = 1,..., m, we have

 Si G (XW ^ /) = A#,

 as we sought to show.
 This completes the proof of Claim 3.4.6, and hence the proof of Theorem

 3.4.1 in the dimension one case, and the proof of our main technical theorem,
 Theorem 3.0.2.
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 Remark 3.4.7. In Theorem 3.0.2, as well as in its later applications in Section
 5, the assumption that A contains the set of rational numbers is unnecessary in
 case the ideal 7 has reduction number at most one. Note that the reduction number

 does not increase as we reduce to the one-dimensional case. Now it is easy to
 see that in Lemma 3.4.5, one can take t to be the reduction number, that is,

 ?o = tfo?A '.uja 70 = (xrujA \UA F) where r is the reduction number of 7. So when
 the reduction number of / is at most one, it suffices to prove Claim 3.4.6 for the
 case t = 1. This follows in the same way without making use of identity (9).

 4. Brian?on-Skoda type results. In this section, we identify general con
 ditions under which the hypothesis of our Main Technical Theorem 3.0.2 are
 satisfied. The results of this section will allow us to apply the main technical the
 orem proved in the preceding section to deduce our main results in the following
 section.

 4.1. The Brian?on-Skoda theorem and related properties of adjoints.
 The next result is analogous to the "Brian?on-Skoda Theorem with adjoints"
 proved by Lipman for regular schemes in [34]. See also the "Skoda Theorem"
 discussed in [31].

 Lemma 4.1.1. Let (A, m) be a local ring of dimension d > 1, and let I C A be
 an ideal of positive height. Assume that uoy is m-regular in the sense of Castelnuovo

 Mumford, meaning that

 Hi(Y,ujy(m-i)) = 0

 for all i > 0. Then ??+i = JQnfor all n> m, where J is any reduction of I.

 Proof. This follows from a standard argument. As Ir+1 = JF, we have
 Joy = IOy = Oy(l). Generators of J therefore give rise to global sections which
 generate the sheaf Oy(l). These give rise to an exact Koszul complex. One can
 then argue as in [34, p. 747] (or as below in the proof of Proposition 4.1.4) to
 conclude that ??+i = JQ,n for all n > m under the stated vanishing conditions.

 Corollary 4.1.2. If I is m-primary, and A andR = A[It] are Cohen-Macaulay,
 then

 ?? = J?ln-\

 for alln > d = dim A.

 Proof. By Proposition 4.1.1, it suffices to check that uoy is (d ? l)-regular.
 But the vanishing of Hl(Y, uoY(d? 1 ? i)) for positive i is the same as the vanishing
 of Hlz(Y, Oy( ? i+1)) for i < d? 1. This vanishing follows easily from the Sancho
 de Salas sequence for R, as recorded in 2.5.2.
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 Remark 4.1.3. Corollary 4.1.2 holds also for ideals / that have a reduction
 generated by regular sequence, with d now the height of 7. Furthermore, because
 IOy = Oy(l) is ample for the map ir, we have Hl(Y, uy(m ? i)) = 0 for all i > 0
 and for sufficiently large m. So for large enough n, we always have ?w+i = JQn,
 where / is any reduction of 7.

 The next result ensures that Theorem 3.0.2 can be applied to some interesting
 cases. Note that when n > d, this statement collapses to the Brian?on-Skoda
 Theorem above in 4.1.2; the following result thus informs us also of what goes
 on for smaller indices n.

 Proposition 4.1.4. Let I be an m-primary ideal in a Cohen-Macaulay ring
 (A, m) of dimension d > 0, and let J be any minimal reduction of I. Let R denote
 the Rees ring A[It] of A with respect to I, and assume that R is Cohen-Macaulay.
 Then

 JuoA nQn = /?rc-i

 for all n G Z.

 Proof. The case d = 1 is degenerate. The condition that R is Cohen-Macaulay
 forces 7 to be principle (see e.g. [19, Cor 25.2]), so I = J = (x). Then Y = Spec A
 and ?? = yp-ujA for all n. This makes the statement obvious.

 Assume d > 1. Because A and R are both Cohen-Macaulay, ?? = uuA for non
 positive n; see Lemma 3.1.3 and 2.5.2. So the statement is trivial for negative
 n. Also, when n > d, the statement follows from Corollary 4.1.2. It remains to
 consider the case 1 < n < d.

 Let us first consider the weaker statement that

 7?w_2n?w = 7??-i

 for all n < d. To prove this, it is sufficient to prove that the natural map

 ??/7??_i ? ??_i//??_2

 is injective.
 Because 7r+1 = JF for some r > 0, we have IOy = Joy. Fix generators

 {xi,... ,xd} for / as an ideal of A. These elements give rise to generating global
 sections of IOy, and hence a surjection 0f=1 Oy ? IOy, and so also a surjection

 ^:=0Oy(-l) ^ Oy.
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 This means that the Koszul complex

 0 ?> NdT <g> L?Y(n) ?>- AXT <g) L?Y(n) ?> u?y(n) ?> 0

 is exact, where

 NT <g> L?Y(n) = (??Y(n -j))e$,

 for ally = 0,1,...,d. We now split this complex into d ? 1 short exact sequences

 0 ?>Kj ?> NT <g> L?Y(n) ? ICj-i ? 0,

 where /Co = o?y(n) and /Q_i = o?y(n?d). The corresponding long exact sequences
 of cohomology give the exact sequences

 Hj~x(Y, NT <g> L?Y(n)) ? ff~l (Y, /C/_i) ? ff (Y, Kj)

 for each j = l,2,...,d? 1. When j = 1 we get the sequence

 < 0) 0???-i ^ ?ln?*HX(Y,1CX)
 i=i

 which gives an injection

 an/mn^^Hx(Y,jCi).

 Note that Hj~x(Y,u?Y(n -j)) = 0forl<j<d-l; this follows easily from the
 Sancho de Salas sequence (see 2.5), taking into consideration the abundant van
 ishing afforded because A and R are Cohen-Macaulay. Thus we obtain injections

 ff-\YXj-\)<-+ff(Y9Kj)

 and finally, an injection

 Q?//Q?_i - Hd~x(Y,L?Y(n - d)).

 The inclusion Puy C In~xu)y induces a homomorphism of complexes

 0 ? /\dF?ujY{ri) ? ? f\lr?UY(n) ?> LJY(n)

 0 ? AdJr<8)VY(n-l) - - AlT?uJY(n- 1) - wy{n - 1),
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 which in turn induces a commutative diagram

 Q?/7Q?_! - Hd~\Y, uY{n - d))

 1 I
 ??_i//??_2 -> Hd-\Y,uy(n-l-d)).

 Thus we can get the desired injectivity of ??//??_i ?> ??_i//?w_2 by prov
 ing injectivity for the homomorphism

 Hd-l(Y,u?y(n - d)) ? Hd-\Y,uy(n - 1 - d)).

 To this end, consider the adjunction sequence for E c Y,

 0 -> LOy -> UOy( ? 1) -> ??E -> 0.

 Tensor with the flat module P~dOy to get a short exact sequence

 0 ?> uuy(n ? d) ?> uuy(n ? 1 ? d) ? ojE(n ? d) ?> 0.

 Taking cohomology, we get the exact sequence

 Hd~2(E,u?E(n - d)) ?> Hd-\Y,u?y(n - d)) ? Hd~\Y,uy(n - 1 - d)).

 Thus it is sufficient to show that Hd~2(E, uE(n ? d)) = 0. By duality applied to
 the map E ?> Spec A/7, it is enough to show Hl(E, ?E(d ? n)) = 0. But this
 follows easily from the Sancho de Salas sequence for the graded ring G:

 Hxm(Gd-n) ? H\E, 0E(d - n)) ? [H^iGHd-n.

 Indeed, because n < d, the module H^Gd-n) = H^I**-"/Id~n+l) vanishes (as
 the module Id~n/ld~n+1 has zero-dimensional support). Now when both R and
 A are Cohen-Macaulay, the associated graded ring G is Cohen-Macaulay with
 negative a-invariant (see 2.5), so the module [77^ (G)]d-n certainly vanishes, as
 d - n > 0.

 We have now shown that

 /??_2n?? = /??_i

 for all n < d. To complete the proof, note 7?n-i C JuoA fl ?? for all n > 1.
 So we need to show the reverse inclusion. We will do this by induction on n,
 starting from n = 0.
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 For n = 0, we verify that Jl?a H Qo C /Q_i. Indeed, because the a-invariant
 of G is non-positive, we know that l?a C Q_i. So Jl?a C 7Q_i, and of course
 then Jl?a n Qo C /Q_i.

 Now assume that n > 0 and the inclusion has been proved for smaller indices.
 Take x G Jl?a H Q?. Then certainly x G Jl?a H Q?-i, which is J?ln-2 by the
 induction hypothesis. So x G JQn-2 H Q?. But by the weaker statement proved
 above, this implies that x G /Q?-i- The proof is complete.

 4.2. The case where A is not necessarily Cohen-Macaulay. The following
 proposition offers an even more general setting in which the hypotheses of our
 main technical theorem are satisfied. Its proof is decidedly less elementary than
 the argument we have already made for Proposition 4.1.4 (which is why we have
 included a separate proof for Proposition 4.1.4).

 Proposition 4.2.1. Let (A,m) be a local ring of dimension d > 1. Let I c A
 be an m-primary ideal such that the irrelevant ideal of the Rees ring A[It] is a
 Cohen-Macaulay A[It]-module. Then, for any reduction J ofIy

 Jl?a H?? =/Q?_i

 for all n G Z.

 Proof. Let R+ denote the irrelevant ideal of R = A[It]. Because R+ is Cohen
 Macaulay, the a-invariant of the associated graded ring G is nonpositive, as one
 checks by looking at the Sancho de Salas sequence. So from Lemma 3.1.3, we
 have that Q? = l?a for n < 0. Thus statement is trivial for n < ? 1. Also the case

 n = 0 is clear, since Jl?a H Qo = 7Q-i n Qo = /Q-i. For n > 0 we proceed
 by induction on n as in the proof of Proposition 4.1.4. As in that argument, it is
 sufficient to prove the weaker statement that

 /Q?_2nQ?=/Q?_i

 for all n > 1.

 Choose N ? 0 such that Q#+i = JQn- Write

 N

 /a(Q_i/Q;v+i) = /a(Q-i/Qo) + Yl 'a(Q?/Q?+i),
 n=0

 where U(M) denotes the length of an A-module M, and

 /a(Q-i//QaO = /a(Q-i//Q-i) + 52iAvnn-i/jan).
 n=0
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 Then

 /A(?_l//?_!) = ZA(?_!/?0) + ? (/A(??/??+1) - lA(J?ln^/JQn)).
 n=0

 Consider the G-module W = 0?>o?w_i/?n. Fix generators {x\,...,xd} for /
 as an ideal of A. Let /* denote the ideal (x\,... ,x?) c G. Because

 oo

 k(W/J*) = /A(?_i/?0) + ^/A(??-l//?,-2 + ??)
 n=\
 oo

 = /A(?_!/?0) + J2 ttl(Qn-lMi) - lA(J&n-2 + Qn/Qn))
 OO

 = /A(?_!/?0) + J2 MQn-l/On) - lAmn-2/J&n-2 H ??))
 n=l
 oo

 = /A(Q_i/Qo) + E (U(an/an+i) - iA(JOn-i/JQn-i n ??+D),
 ra=0

 we now obtain

 oo

 k(W/J*) - /A(?_i//?_i) = 53(/A(/Qn_i//Qn)) - lA(JQn-i/J^n-i n ??+l))
 ?=0
 oo

 = ^/A?/Q^flQn+i/yQn).
 ?=0

 In order to prove our claim we thus have to show that Ig(W/J*)?/A(?_i/7?_i) =
 0. For this, recall the notion of the I-invariant of a graded module (see e.g. [43,
 p. 6]). Let B be a graded ring defined over a local ring, and let TV be a graded
 7?-module with r = dim TV. Then the I-invariant

 W) = r^i~lyB(Him(N))
 where 9t denotes the homogeneous maximal ideal of B. It is a general fact that if
 (yi? >)V) is any homogeneous system of parameters for Bj Ann Af, then always

 U(N/(y\,... ,yr)N) ? e(yu >yr\N) < I(AD> where e denotes the multiplicity of
 N with respect to (y\,... ,yr). If the equality holds, then the system of parameters
 (yu >)V) is called standard.

 By definition the multiplicity e(J*,W) = e(G+',W) is equal to d! times
 the leading coefficient of the numerical polynomial /A(W?) where n ? 0. But
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 for n > 0,

 wn = q?_i/q? = r-^?iN/j?-"^ <N

 showing that e(J*,W) = e(7, Q#)- For any p G Spec A, p ~fi I, we clearly have
 (Q?)p = L?Ap for all n G Z. Therefore

 e(J, ?lN) = J2 lApmN)p)e(J + p/p; A/p)
 p G Min A ,dim A /p =d

 Yl lAp{uAp)e(J + p/p; A/p)
 p MmA,dimA/p=d

 ? ZAp((Q_,)pM/ + p/p;A/p) p MinA,dimA/p=d

 = e(J;Sl-i).

 Soe(J*;W) = e(J;Q-i).
 Set Q = 0?>_i Q? and Q' = 0n>oQw. Observe that Q' = a;/e+ where ?;/?+

 denotes the canonical module of the /?-module R+, that is, Q' is the graded dual of
 the top local cohomology module of R+ with supports in the unique homogeneous

 maximal ideal. Indeed, a look at the Sancho de Salas sequence

 0 ? H?(R+n) ?> Hd(X, Ox(n)) ?> [Hd+x(R+)]n ? 0

 shows that there is an isomorphism H%(X,Ox(n)) = [Hd+x(R+)]n, for all n < 0.
 Dualizing, we then see that Qn = [L?R+]n for all n > 0. On the other hand, by
 considering the long exact sequence of cohomology corresponding to the exact
 sequence

 0 ?>R+ ?^R ?>A ?>0

 and taking into account that a(R) = -1, we get [Hd+x(R+)]n = [Hd+x(R)]n = 0
 for n > 0 so that [L?R+]n = 0 when n < 0. By [39, Satz 3.2.2], it follows that
 Q' is Cohen-Macaulay. By means of the long exact sequences of cohomology
 corresponding to the exact sequences

 0?>Q!?>Q?>Q_i(l)?>0 and 0?> Q!?> Q( - 1)?>W?>0

 one then easily checks that ff^W) = 74(Q_i) for all 0 < i < d. Therefore
 I(W) = ??(Q-i). As a(G) < 0, Lemma 3.1.3 implies that Q_i = uA. Using [15,
 Theorem 1.1, Appendix] and [15, Corollary 6.18] we know that (x\,...,Xd) is
 a standard system of parameters for A. Moreover, by [15, Theorem 3.17], then
 (x\,...,xd) is standard also for u^. This implies that I(l?a) = Ia(<j?a/Jwa) ?
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 e(J',u?A). Therefore

 k(w/J*) - /A(?_!//?_!) = (iG(w/j*) - e(/*; w))
 -(/A(?_1//?_1)-K/;?-i))

 < I(W) - ?(uA) = 0

 as wanted. The proof is complete.

 5. The main local algebraic results. In this section, we prove our main
 results about the core in a local ring, including the theorems relating core, adjoint,
 and coefficients ideals, the "local" version of Kawamata's Conjecture, and a
 formula for core conjectured in [7]. All are deduced from the main technical
 theorem, Theorem 3.0.2, using the Brian?on-Skoda results of Section 4. Further
 corollaries for graded rings appear at the end of Section 6.

 5.1. Formulas for core in the Cohen-Macaulay case. Recall that an equi
 multiple ideal in a local ring (A, m) is an ideal whose height equals its analytic
 spread (see [19, p. 58]). When the ring A has an infinite residue field, an equimul
 tiple ideal is precisely an ideal having a reduction generated by part of a system
 of parameters. Every m-primary ideal in a local ring is equimultiple.

 Corollary 5.1.1. Let (A,m) be a Cohen-Macaulay local ring containing a
 field of characteristic zero, and let I be an equimultiple ideal of height h whose
 Rees ring A[It] is Cohen-Macaulay. Then

 core (7) = H?(Y,Ih??Y) :A ??a = Jr+l :A F

 where, as always, H?(Y,In?jy) is considered as a submodule of ua via the trace
 map, and J is any reduction of I.

 Remark 5.1.2. In Corollary 5.1.1, if the height h is two (or less), then the
 assumption that A contains the rational numbers is not needed. See Remark 3.4.7.
 The case where h is height one is trivial, because our assumption on the Rees
 ring forces 7 to be principal.

 Remark 5.1.3. The formula core (7) = Jr+l : F is conjectured in [7, Conjec
 ture 5.1] under more general hypothesis.

 Corollary 5.1.1 follows easily from the following theorem, which generalizes
 our main technical theorem to ideals that may not be m-primary.

 Theorem 5.1.4. Let (A, m) be a Cohen-Macaulay local ring containing the set

 of rational numbers. Let I C A be an equimultiple ideal of positive height h such
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 that the corresponding Rees ringA[It] is Cohen-Macaulay. Then

 core(lL?A) = r(Y,IhL?Y)

 as submodules of l?a, where Y = Proj A[It].

 Remark 5.1.5. In fact, Q? C core(7o;A) for equimultiple ideals 7 in a Cohen
 Macaulay local ring A without any assumption on the Rees ring. The point is to
 prove the reverse inclusion. As we will see in the proof, the reverse inclusion
 holds even when it is assumed only that the irrelevant ideal of R is Cohen
 Macaulay (even when A is not).

 To see that that Theorem 5.1.4 implies Corollary 5.1.1, we need the following
 lemma.

 Lemma 5.1.6. Let (A, m) be a Cohen-Macaulay local ring, and let I be an
 equimultiple ideal of height h. Let J be any minimal reduction of I. Then

 &h -A WA = Jr+ 'A Ir

 for any integer r such that Ir+X = JF. In particular, Jr+X : F is independent of the
 choice of reduction J.

 Proof. We first note that

 n - J L?A -lja L

 for all n > 0. Indeed, set X = Proj A[Jt] and Y - Proj A[It\. Since / is generated
 by a regular sequence, l?a[j?\ has the expected form:

 [WA[Jt]\n = nX,JnL?X) = Jn-h+XL?A

 for all n > 1 (see e.g. [45, p. 142]). The canonical sheaf for Y can therefore be
 computed from the canonical sheaf for X via the finite map Y ?> X induced by
 the inclusion of the Rees rings A[Jt] ^-> A[It]. Working this out, we arrive at

 (11) T(Y, InL?Y) = T(X, Jn+rL?X) :UA F

 as submodules of l?a for all n > 0. For details, see [24, Proposition 2.3].
 Now we note that because / is generated by a regular sequence,

 (12) JnL?A:A??A=Jn

 for all n > 0. This can be proved by induction on n. When n = 1, this follows from

 the fact that l?a/j = l?a/Jl?a is a faithful A/7-module. Suppose then that n > 1.
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 Let x G Jnu)A : c<;A. By the induction hypothesis, we know that x G Jn~l. There
 thus exists a form F G A[t\,..., tr] of degree n ? 1 such that x = F(a\,...,ar).
 As F(ai,... ,ar)??A G /"?;a and (a\,...,ar) is an cja-regular sequence, every
 coefficient of F must lie in JwA : uja= J. Hence x G T7*.

 Finally, to see that

 ?/z -a <^a = Jr+ -a 7r,

 we simply compute

 ?,, :A ??a = (Jr+loJA '-uA H :a "a = (Jr+loJA :A ?a) :a 7r = Jr+l : 7r.

 Here, the first equality follows from (11) above, and the last equality follows
 from (12).

 Proof that Theorem 5.1.4 implies Corollary 5.1.1. Say that y G core (7). Then

 yujA C core (I??a) = ?/i

 by Theorem 5.1.4, so y G ?/j :A uja = Jr+l 'a 7r. Conversely, say that

 y G Qh :A UA = Jr+l :a Ir

 Then y G /r+1 :A 7r = / for every reduction / of 7, so y G core (7). The proof of
 5.1.1 is complete.

 Proof of Theorem 5.1.4. Assume that 7 is equimultiple. As usual, write Qn
 for T(Y,Ihu?y), considered as a submodule of u;A. To see that ?^ C core(7cjA),
 recall that ?^ = Jr+lojA 'uA F (as in the proof of Lemma 5.1.6). Thus Q>n C
 Jr+lojA \UA Jr C Joja, since / is generated by a regular sequence.

 It remains to show that core (7u;A) C ?^. Fix elements x\,... ,xd-n G A such
 that (xi +7,... ,xd-h+I) is a system of parameters on A/7 and a regular sequence
 of degree zero elements on G, the associated graded ring of A with respect to 7
 (see e.g. [19, Proposition 10.24 and its proof]). Then also (x^ +7,... ,xtd_h + I) is
 a regular sequence on G. Set A = A/(x\,... ,x^_^) and let 7 denote the image of 7
 in A. Then 7 is an m-primary ideal of A. Moreover, the corresponding associated
 graded ring

 ^ t 3 l
 G = grjA := j 0 Z2 0

 is easily seen to be isomorphic to

 G/(xi1+7,...,x^+7),
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 and hence Cohen-Macaulay. (For example, one can use the fact that (x[,... ,xd_h)
 nf = (x\,...,^d_h)In for all n > 0; see e.g. [19, Theorem 13.10 and Theo
 rem 13.7].)

 Furthermore, because G is obtained from G by killing elements of degree
 zero, the ^-invariants of G and G are equal (see Remark 2.6.4 here, or [45,
 Remark 5.1.21]). Because the Rees ring A[It] is Cohen-Macaulay, the a-invariants
 a(G) and a(G) are negative. So because G is Cohen-Macaulay with negative a
 invariant, the corresponding Rees ring

 /? = ?e7e72-..

 is Cohen-Macaulay. So Theorem 3.0.2 can be applied to the m-primary ideal 7
 in the Cohen-Macaulay ring A.

 Now observe that every minimal reduction of 7 is of type can be obtained as
 the image / in A of some minimal reduction J of 7. Indeed, let (of,..., ??) be a

 minimal reduction of 7 with a\,...,an G I. Then T = (of, , ?h)In for some
 n > 0 implies

 In+X C(au..., ah)In + (x[,... jd_h) H In+X

 = (al,...,ah)In + (x\,...,xtd_h)In+x

 so that In+X C (a\,...,an)In. It thus follows that (a\,...,an) is a minimal reduc
 tion of /.

 Finally, let y G core (/u;a)- Since l?t = -n?^t~,?, the above computation
 \x\i--'ixd_?l)l^A

 shows that y G core(7cc^-). Set Y = Proj/?. Then by Theorem 3.0.2 together with
 Proposition 4.1.4, we have

 core(7cc^)cr(F,o^(/z)).

 Now, again using the injection T(Y, L?y(n)) <-+ l?j induced by the trace map, one
 easily checks that there is an induced isomorphism

 T(Y,L?y(n))^
 a 'n

 (xx,... ,xd_h)iln

 for all n G Z. Thus

 y := , mod ?... .Jd_h?A e ^^^ C ^?.^W
 SO

 y G Clh + (x\,...,xtd_h)uuA.
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 Finally, because this works for any positive t, we have

 yef)(Qh + (x\,... ix'^uja) = ah.
 t>\

 This shows that core (Iuja) C Qn, and the proof is complete.

 5.2. Core in dimension one. The main technical theorem easily gives a
 formula for the core of an m-primary ideal in a local ring of dimension one,
 without any Cohen-Macaulay hypothesis at all.

 Corollary 5.2.1. Let (A,m) be a one dimensional local ring containing the
 rational numbers. Then for any m-primary ideal I, we have

 core(7?;A) = ?i.

 In particular, if A is Cohen-Macaulay, then

 core(7) = /r+1 : F,

 where J is any reduction of I and r is any positive integer such that F+l = JF.

 Proof. The second statement follows immediately from the first using
 Lemma 5.1.6. The first statement follows immediately from the the main techni
 cal theorem, Theorem 3.0.2. One need only verify that ?i C Juja and Juja H?o =
 /(?_i Hoja), but this is trivial by Lemma 3.1.4 since / is generated by a nonzero
 divisor on uja- n

 5.3. Core and adjoints. We recall the definition of an adjoint (or multiplier)
 ideal. Although a definition can be given that does not refer to resolution of
 singularities (see [34]), we prefer the following approach.

 Let X be a Gorenstein scheme essentially of finite type over a field of char
 acteristic zero, and let a be a coherent sheaf of ideals on X. Fix a log resolution
 of a, that is, a proper birational map Y -^ X from a smooth scheme Y such that
 a?y is locally principal and the union of the support of the corresponding divisor
 and the exceptional divisors is a divisor with normal crossing support. Then the
 multiplier (or adjoint) ideal of a is the ideal sheaf of Ox

 adj (a) = 7T*(au;y/x),

 where ??y/x = wy ?7r*u>x is the relative canonical sheaf of ir. This is independent
 of the choice of the log resolution. Note that because X is Gorenstein, uox is
 invertible, so u?y/x is invertible as well. See [31] or [9] for the general theory
 of multiplier ideals from the algebro-geometric point of view, or [34] for a more
 algebraic point of view.
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 In [22], Huneke and Swanson studied the core of an integrally closed m
 primary ideal in a two-dimensional regular local ring. In particular, they showed
 that in this case,

 core(7) = adj(72) = 7adj(7).

 However, such ideals are very special in a sense: the corresponding Rees algebra
 always has rational singularities (see [33, Proposition 1.2] and [23, Proposition
 2.1]). In particular, it is Cohen-Macaulay and normal. For this reason the follow
 ing can be considered a natural generalization of their result to higher dimension.

 Corollary 5.3.1. Let A be regular local ring essentially of finite type over a
 field of characteristic zero. Let I C A be equimultiple ideal of positive height h
 such that the Rees ring A[It] is normal and Cohen-Macaulay. Then the following
 conditions are equivalent:

 (1) A[It] has rational singularities;

 (2) ?? = adj (P)for all n > 0;

 (3) core (7) = adj (/*).

 If this is the case, then

 core (7) = 7adj (Ih~l) and adj (Ih~l) = core (7) : 7.

 Remark 5.3.2. In fact, as is clear from the proof, it is not necessary that
 A be regular for this theorem. It is sufficient if A is Gorenstein with rational
 singularities.

 Remark 5.3.3. In dimension two it is not necessary that A is essentially of
 finite type over a field of characteristic zero. Indeed, resolutions exist in this
 setting, and the hypotheses on the Rees ring imply that the reduction number is
 at most one; see Remark 3.0.4. In particular, since the hypotheses on the Rees
 ring hold automatically for any m-primary integrally closed ideal in a two regular
 local dimensional local ring, the Huneke-Swanson theorem is recovered in full
 generality.

 Proof. Set Y = Proj A [It], Observe first that A[7r] has rational singularities if
 and only if Y has rational singularities (see for example, [32, Proposition 1.2]
 and [23, Proposition 2.1]). Let/:Z ? F be a log resolution of IOy. Because Y
 is Cohen-Macaulay and normal, it follows that Y has rational singularities if and
 only if the natural inclusion

 f*u?Z C uJy
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 is an isomorphism; [28]. On the other hand, because I?y is ample for the map
 Y ? Spec A, this equivalent to requiring that the natural map

 T(Y, FOy ?f*L?Z) ? Y(Y, F??y)

 be an isomorphism for all n ? 0. Because FOy ?f*L?z can be identified with
 f*(Fu?z), this is the same as the the natural inclusion

 (13) adj (F) = T(Z, Fl?z) ? T(Y, Fuy) = Q?

 being an isomorphism for all n ? 0.
 Now, by Lipman's Brian?on-Skoda Theorem (see also [31])

 adj (7*) = /adj (Ih~x)

 and by our Brian?on-Skoda Theorem (actually Corollary 4.1.2 and the subsequent
 remark)

 Q/i = /Q/i-i

 So remembering also that Qn+\ ^ / = Qn for all n > 0, by Lemma 3.1.5,
 we conclude that (13) is an isomorphism for all n ^> 0 if and only if it is an
 isomorphism for n = h ? 1. This proves the equivalence of statements (1) and
 (2). The equivalence with (3) is also clear, since core (7) = Q? by Theorem 5.1.4.

 Finally, the formula adj (Ih~x) = core (7) : 7 is a consequence of the formula
 Qft_i = Q,n *.a / of Lemma 3.1.5. The corollary is proved.

 Example 5.3.4. Let /be a normal equimultiple monomial ideal of height h
 in a polynomial ring S over C. Then

 core/ = adj (Ih) = /adj (Ih~x).

 Indeed, in this case, the Rees ring S[It] is a normal semi-group algebra, and hence
 has rational singularities (since it is a direct summand of a polynomial ring [3]).
 In particular, if / is generated by monomials jc^ = x^x^1 -xnid, then core(/) is

 generated by monomials x5 = xxx -xdd where

 (bi + l,b2 + l,...,bd+l)

 is in the interior of the convex hull of the points hA\,..., hAr in Nd\ [21].

 5.4. Core and coefficient ideals. If / c / is a reduction of /, Aberbach
 and Huneke defined the coefficient ideal a(I, J) as the largest ideal a such that
 la = Ja; see [1]. The next corollary relates this notion to the core.
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 Corollary 5.4.1. Let (A, m) be a Gorenstein local ring containing the set of
 rational numbers. Let I C Abe an equimultiple ideal of positive height h such that
 the Rees ring A[It] is Cohen-Macaulay. IfJ C 7 is any minimal reduction, then

 core (7) = 7a(7,7) and a(7,7) = core (7) : 7.

 Proof. By Theorem 5.1.4 we know that core(7) = ?^. By the Brian?on
 Skoda Theorem (Lemma 4.1.1), ?/* = IQ>h-i- On the other hand, according to [24,
 Theorem 3.4], Qn-\ = a(I,J). Thus the first claim follows. The second one is
 now a consequence of the formula ?^_i = Qn ' 7 of Lemma 3.1.5.

 Remark 5.4.2. In fact, rational singularities of A[It] can be characterized in
 terms of the equality a(I,J) = adj (Ih~l) where / c 7 is any minimal reduction;
 see [24, Corollary 3.5].

 5.5. Further properties of core and questions

 Corollary 5.5.1. Let A be a Gorenstein local ring essentially of finite type
 over afield of characteristic zero. Let I be an equimultiple ideal of positive height
 h such that the Rees ring A[It] has rational singularities. Then

 core (/) C core (7')

 for any ideal I' of height h containing I.

 Proof. Because 7 c ?, we know adj (Ih) C adj ((/')*). By Corollary 5.3.1,
 we have core (7) = adj (Ih) C adj ((I')h). On the other hand, from the Brian?on
 Skoda theorem [34], adj ((I')h) is contained in every reduction of/7. So core(Z) C
 core (/')

 Question 5.5.2. If/ is an integrally closed ideal, then is core(Z) C core(Z')
 for all ideals I' containing /? If / is not integrally closed, the answer is no in
 general. Indeed, whenever / c V is an integral extension of ideals, then a minimal
 reduction of / is a minimal reduction of V, but /; may admit reductions that are
 not reductions of /. So clearly core (F) C core (/), but the inclusion can be strict,
 and usually is, for example, when / is a minimal reduction of /'. On the other

 hand, the same reasoning indicates that there is no loss of generality in assuming
 that also that /' is integrally closed in Question 5.5.2. This question was first
 raised in [22].

 The next result has to do with when the core itself is integrally closed.

 Proposition 5.5.3. Let A be a Cohen-Macaulay local domain of dimension d
 containing the set of rational numbers. Let I C Abe a normal equimultiple ideal
 of positive height h such that the Rees ring A[It] is Cohen-Macaulay. Then core (/)
 is an integrally closed ideal of A.
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 Proof Set Y = Proj A[It\. Consider u?y as a sub-sheaf of the constant sheaf
 K where K is the quotient field of A. Since uy is reflexive, we know that

 Qh = T(Y,IhL?Y)= f| IhL?YtX.
 codim {jc}=1

 But then

 core (7) = ?lh :A o?a = f] IhL?Y^ :A ma
 codim {jc}=1

 Thus core (7) is integrally closed, because it is an intersection of integrally closed
 ideals of A.

 Question 5.5.4. Under what conditions is the core of a normal ideal integrally
 closed? This issue was first raised in [22]. See also [7, Examples 3.9 and 3.10].

 Finally, we record an observation about the asymptotic behavior of core, as
 a partial answer to a question raised in [22].

 Corollary 5.5.5. Let (A, m) be a Gorenstein local ring containing the rational
 numbers. Let I C A be an equimultiple ideal of positive height h such thatA[It] is
 Cohen-Macaulay. Then

 core (F) = I{n-X)h core (/)

 for all n > 1.

 Proof. Set Y = ProjA[Ft]. Since Y = Proj/?(w) = Proj/?, we observe that
 T(Y,FkL?Y) = Q.kn for all k G Z. The ideal F being also equimultiple of height
 h, Theorem 5.1.4 and Corollary 4.1.2 (and the subsequent remark), now give

 core (F) = T(Y, InhouY) = Qnh = Fh-hQh = I{n~X)h core (7). n

 6. Nonvanishing Sections and the Core. The goal of this section is to
 reduce Kawamata's Conjecture to a purely algebraic statement relating the core
 of an m-primary ideal in a local ring of dimension d to the adjoint ideal (or
 multiplier ideal) of the rf-th power of the ideal. Actually, of course, we must work
 in the graded category. Also, to get at the most general version of Conjecture
 1.1.1, we must expand the notions of the core and the adjoint to submodules of
 the canonical module. The main result of this section is the following theorem.
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 Theorem 6.0.6. Let D be an ample Cartier divisor on a rationally singular
 projective variety X of positive dimension, and let

 S = @H?(X,nD)

 be the corresponding section ring. Fix n^> 0, and let I = S>n be the ideal generated
 by all elements of degrees at least n in S. Then H?(X, D) ^ 0 if

 (14) gradedcore(Ius) = adj (Id+lus), where d+1 = dim5,

 as subsets ofus.

 Remark 6.0.7. Here, gradedcore (lus) denotes the intersection of all submod
 ules of us of the form Jus, where / is a homogeneous reduction of /. Likewise,
 for any ideal / in a normal domain 5, adj (lus) denotes the following natural
 variant of the adjoint ideal. Fix a log resolution Y ? Spec S of /. Then adj (lus)
 is the submodule of us given by n*(Ius). This definition is independent of the
 choice of log resolution. This is like the usual notion of multiplier ideal, but the
 relative canonical modules have been replaced by the absolute canonical module
 of Y. This has the advantage of being defined even when S is not Gorenstein (or
 Q-Gorenstein). However, it is a submodule of us rather than an ideal of S.

 Remark 6.0.8. Formula (14) is a graded version of the formula we proved
 (under certain conditions on the ring and ideal) in Section 5. As we will see, rings
 arising from divisors satisfying the hypothesis of Conjecture 1.1.1 satisfy these
 conditions, so Kawamata's Conjecture is very closely related to our formulas in
 Corollary 5.3.1.

 Remark 6.0.9. As will be clear from the proof, a version of Theorem 6.0.6
 holds if X is not necessarily rationally singular, but is only normal. In this case,
 H?(X,D) is nonzero if gradedcore (lus) = ?</+i, with notation as in Section 3.

 Remark 6.0.10. In fact, the converse of Theorem 6.0.6 is also true: H?(X,D)
 is nonzero if and only if the formula (14) holds for n ? 0 in the section ring S
 of D. However, the proof of the requires rather different ideas and techniques, so
 we postpone it to a subsequent paper.

 In this section, we first prove Theorem 6.0.6. We then investigate the hypoth
 esis forced upon the section ring 5 of a pair (X, D) satisfying the hypothesis of
 Conjecture 1.1.1. Finally, we end with a discussion of core versus graded core in
 a graded ring.
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 6.1. A general criterion for nonvanishing. Let D be an ample Cartier
 divisor on a normal projective variety X of dimension d > 1. By definition, the
 section ring of the pair (X, D) is the N-graded ring

 S = @H?(X,?x(nD)),
 neN

 whose multiplication is given by the natural multiplication of sections. The ring
 S is a normal graded domain, finitely generated over the field k = H?(X, Ox),
 which we will assume to be infinite. There is a canonical isomorphism from X
 to Proj S under which the invertible sheaf Ox(nD) corresponds to the coherent

 module on Proj S arising from the graded 5-module S(n), where S(n) denotes the
 module S with its grading shifted so that S(n)m = Sm+n. For a general reference
 on section rings, see [16, Section 4.5].

 Proposition 6.1.1. Let D be an ample divisor on a normal projective variety
 X, and let S be the corresponding section ring of the pair (X, D). Fix n^> 0. Then

 H?(X,D) = 0

 if and only if

 [us]n(d+i)-\ C gradedcore(Iu?s),

 where l?s is the (graded) canonical module of the normal ring S, and I is the ideal
 of S generated by elements of degrees at least n.

 Proposition 6.1.1 follows readily from the following very general criterion
 for the vanishing of the space of global sections of an ample line bundle.

 Lemma 6.1.2. Let D be an ample Cartier divisor on a normal projective variety
 X of dimension d > 1. Fix any integer i. Then H?(X, iD) = 0 if and only if for some
 (equivalently, every) n ^> 0, and any set xo,... ,xd of d + 1 global generators for
 Ox(nD), the natural inclusion

 d

 Y^ XiH?(X, Kx + (nd - i)D) C H?(X, Kx + [n(d + 1) - i]D)

 is an equality.

 (Note: The precise condition on n in Propositions 6.1.1 and 6.1.2 is that n
 should be large enough that Ox(nD) is globally generated and Hl(X,Kx + mD)
 vanishes for all / > 0 and all m > n ? i.)

 Proof of Lemma 6.1.2. Fix any set of d + 1 global generators for Ox(nD).
 Such a set always exists (assuming X to be defined over an infinite field), because
 we can take generic linear combinations of any set of global generators for
 Ox(nD).
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 Consider the Koszul complex determined by the x/'s:

 d

 0 ? 0x( - (d+l)nD) ?+-v 0Ox( - nD) ^ Ox ?> 0.

 Because the x/'s generate Ox(nD), this complex is exact. Tensoring with the
 invertible sheaf Ox(Kx + [(d+l)n ? i]D), we get an exact complex

 0 ? Ox{Kx - iD) ?->@Ox(Kx + (dn-i)D) ^4 Ox(*X + [(d+ l)n - i]D) ?+ 0.
 1=0

 Because 7/'(X, Ox(Kx + m/>)) = 0 for all m > n ? i and all i > 0, a standard
 argument shows that the map of global sections

 0 H?(X, Kx + (dn - i)D) ^4 H?(X, Kx + [(d + l)n - i]D)
 i+0

 is surjective if and only if Hd(X, Kx ? iD) = 0. (The standard argument is this:
 break the complex into several short exact complexes of sheaves. Then look at
 the corresponding long exact complexes of cohomology, beginning with the 0-th
 cohomology of the short exact sequence arising from the right-most part of the
 complex. Working backwards, the relevant cohomology is the i-th cohomology
 of the i-th short exact sequence from the right. A similar argument is written
 down in full in the proof of Proposition 4.1.4.)

 By Serre duality (which holds at the "top spot" even if X is not Cohen
 Macaulay), the claim that 77?(X, iD) is zero is identical to the claim that Hd(X, Kx
 ? iD) is zero. So 77?(X, D) vanishes if and only if

 H?(X,KX + [n(d+ 1) - i]D) C (x0,... ,xd)H?(X,Kx + [nd - i]D).

 The proof of Lemma 6.1.2 is complete.

 Proof of Proposition 6.1.1. Interpret global sections of Ox(nD) as degree
 n elements of S. Because a set of global sections {x?} generates Ox(nD) if and
 only if their common zero set on X = Proj S is empty, such a set is a generating
 set for Ox(nD) if and only if the elements {x?} in S generate an m-primary ideal
 of 5. In particular, a set of d + 1 global sections of Ox(nD) is a generating set
 if and only if its elements form a homogeneous system of parameters for the
 ring S.
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 Now fix n ? 0. If H?(X,D) is zero, then for each set {xo,x\,... ,xd} of
 global generators of Ox(nD), Lemma 6.1.2 ensures that

 d

 Y^XiH?(X,Kx + (nd - 1)D) = H?(X,Kx + (n(d + 1) - 1)D).
 i=0

 Interpreted in terms of the section ring S, this says

 (Xo, . . . ,Xd)[L?S]nd-l = [<4s]ii(d+l)-l.

 In particular,

 [Us]n(d+l)-l C (X0, . . . ,Xd)??S

 for every system of parameters for S consisting of elements of degree n. In other
 words,

 [<4sw+i)-i c p| jl?S,
 j s.o.p degree n.

 where / ranges over all homogeneous systems of parameters for S consisting of
 elements of degree n. By Proposition 2.1.3 a system of parameters of degree n
 is precisely the same as a minimal homogeneous reduction for the ideal / = S>?,
 the ideal generated by all elements of degrees at least n, so this means that

 [^sW+D-i C gradedcore (Iljs).

 The proof of the converse simply reverses this argument.

 Remark 6.1.3. Although Proposition 6.1.1 follows quite trivially from Lem
 ma 6.1.2, the passage to this more algebraic lemma seems powerful. The point is
 that there is hope for showing that the intersection over all submodules of the form
 (jco, ... ,xd)u?s is quite small, so small in fact, that it can not contain any element
 of degree n(d + 1) ? 1 (although each individual module (xo, ... ,xd)ujs certainly
 contains many such elements!). This would settle Kawamata's Conjecture if it
 could be accomplished.

 6.2. An adjoint computation. The next proposition is a very general com
 putation of adjoint modules for certain types of ideals in a section ring.

 Proposition 6.2.1. Let S be a section ring of a pair (X,D) consisting of an
 ample Cartier divisor on a normal projective variety. Fix n ? 0 and let I = S>n be
 the ideal of S generated by all elements of degrees at least n. Then

 T(Y,Il?y) = [us]>n+u
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 ON A NON-VANISHING CONJECTURE OF KAWAMATA AND THE CORE OF AN IDEAL 1401

 as submodules of us, where Y is the blowup of the scheme Spec 5 along the ideal
 I. (The precise condition on n is that n should be large enough that (S>ny = S>tn
 forallt>0.)

 The proof of Proposition 6.2.1 makes use of the "natural" construction from
 [16, Section 8.7.3].

 6.2.1. The "natural" construction. Let S^ be the graded ring

 5h=5e5>i0 5>2?S>3---,

 where S>n indicates the ideal of S generated by elements of degree at least n.
 The ring S^ is finitely generated over its degree zero part S, so for large n, we
 have (S>n)k = S>nk for all k > 0. Since the projective scheme of a graded ring is
 unchanged under passing to any Veronese sub-ring, we have

 Proj S*^ Proj S[/?]

 where S[It] is the Rees ring of S with respect to the ideal / = S>n.
 There are two natural geometric interpretations of the scheme ProjS^. First,

 the above isomorphism shows that Proj S^ can be considered as the blowup of
 the ideal / in the affine scheme Spec S. On the other hand, there is a natural
 isomorphism (see [16, 8.7.3])

 Specx (Ox ? Ox(D) 0 Ox(2D) e ...) -^ Proj (S 0 5>i 0 S>2 ? )

 This allows us to interpret Proj S^ also as the total space of the "tautological"
 line bundle Ox( ? D) on X (or, in some writers' terminology, as the scheme

 Y(Ox(D))). Correspondingly, there are two natural projections,

 Proj S* ^U Spec S Proj S* -^ Proj S = X.

 The first is the blowing up morphism, while the second is the structure map of
 the line bundle Ox( - D).

 Remark 6.2.2. These interpretations of Proj S^ generalize the following situ
 ation. Let Y denote the incidence correspondence

 Y = {(pj)\p e ?} C Cn xF"-1,

 where ? is a line through the origin in Cn and p is a point on it. By projecting
 Y to either C" or P"-1, respectively, we arrive at either the blowup of the origin
 in Cn or the structure map of the tautological line bundle on Cn. Note that here
 Y = Proj S^ where 5 is the polynomial ring in n variables.
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 Proof of Proposition 6.2.1. Using the interpretation of Y as the total space
 of the tautological bundle, one easily computes l?y. Indeed, because Y ^ X is
 smooth of relative dimension one with Qy/x = rf?x(D), we have

 ??y = r?*L?X (8) Qy/x = rfu?X (g) rj*?x(D) = rf(ux(D)).

 Also, thinking of S[It] as the n-th Veronese sub-ring of the algebra S\ we see that
 FOy = Oy(nt) = rfOx(ntD), where Oy(nt) is the coherent sheaf on Y = ProjS^
 corresponding to the graded module S^(nt).

 Now, noting that the map Y -^> X affine and that 77* (9y = 0?G^ Ox(iD)9 we
 compute

 T(F,/V) = T(Y, rfOx(tnD) ? r/*(o;x ? Ox(D)))
 = T(Y,ri*(ujx?Ox([tn+l]D)))
 = T(X, (n*0Y ? {wx ? Ox([m + 1]7>)))

 = T(X, ( 0 Ox(iD)) ? (o;x ? Ox([m + 1]D)))
 ?GN

 = 0r(X,(jx([in+l+p
 ten

 = [^5]>m+l

 This completes the proof of Proposition 6.2.1.

 Proof of Theorem 6.0.6. Suppose that H?(X,D) = 0. Then by Proposition
 6.1.1, we have that

 [^sW+D-i C gradedcore (Il?s).

 If the equality (14) of Theorem 6.0.6 holds, then in fact

 [^sW+D-i C adj (Id+XL?S).

 Note that the assumptions of Kawamata's Conjecture force the variety X to
 have rational singularities. Therefore, the scheme Y = Proj S[It] also has rational
 singularities, because it is the total space of a line bundle over X. Furthermore, the
 ideal 7 (and its powers) pull back to an invertible sheaf on Y under the birational

 map Y ? Spec S whose support is an irreducible closed subvariety (isomorphic
 to X). It is easy to check that in this situation, the adjoint of Id+X can be computed
 from the resolution Y ? Spec S. If particular, if H?(X,D) = 0, then

 [^W+l)-i C T(Id+l??Y).
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 Finally, since Id+l = S>n(d+\), we apply Proposition 6.2.1 to conclude that

 [Vsln(d+1)-1 C [Ws]>n(d+iy+l

 This is an obvious contradiction, since us is nonzero in all sufficiently large
 degrees. Thus H?(X,D) can not vanish and the proof is complete.

 6.3. The section ring. In order to use Theorem 6.0.6 to prove Kawamata's
 Conjecture, we need to better understand the special conditions imposed on 5 by
 the hypothesis of Conjecture 1.1.1. Remarkably, it turns out that just the right
 condition to deduce a local form of formula (14) is satisfied.

 Proposition 6.3.1. Let S be the section ring of a normal projective variety X
 with respect to an ample Cartier divisor D, and let I be the ideal of S generated by
 elements of degree n ^> 0. Assume that there exists an effective Q-divisor B such
 that the pair (X, B) is Kawamata log terminal and the Q-divisor D ? (Kx + B) is
 big and nef Then the irrelevant ideal

 (S[It])+ := I ? I2 ? I3 ?

 of the Rees ring S[It] is a Cohen-Macaulay S[It]-module.

 The proof makes use of the following two lemmas.

 Lemma 6.3.2. Let S be a section ring as in Proposition 6.3.1. Then the local
 cohomology modules of S with support in the unique homogeneous maximal ideal
 m satisfy:

 (1) For i < dim S, the graded S-module s Hlm(S) vanish in all degrees n ^ 0.

 (2) H^mS(S) vanishes in positive degrees.

 Lemma 6.3.3. Let (A, m) be an arbitrary local ring of dimension d and let {In}
 be a Noetherian filtration of A consisting of ideals of positive height. Let

 A:=A?/i0/2?

 and

 G:=A/h?h/l2?h/h?'"

 denote, respectively, the Rees ring and the associated graded ring of A with respect
 to this filtration, whose unique homogeneous maximal ideals will be denoted DJIr
 and 9JIg, respectively. Then the irrelevant ideal ofR is a Cohen-Macaulay R-module
 if and only if the following two conditions on G are satisfied:

 (1) For i < d, [Hlm(G)]n = Ofor n?0.
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 (2) Hyx (G) vanishes in positive degrees.

 Proof of Proposition 6.3.1. Fix n ? 0. Setting / = S>n to be the ideal in 5
 generated by all elements of degrees at least n, we have Ik = S>nk. So for this
 n, the Rees ring S[It] is the n-th Veronese subring of the Rees ring S^ formed
 from the filtration /? = S>n. The irrelevant ideal of S[It] is therefore the n-th
 Veronese submodule of the irrelevant ideal of SK Thus in order to show that

 the irrelevant ideal of S[It] is a Cohen-Macaulay S[It]-module, it is sufficient to
 prove that the irrelevant ideal of Sfi is Cohen-Macaulay (since the appropriate local
 cohomology modules for the irrelevant ideal of S[It] are Veronese submodules of
 the corresponding local cohomology modules for the irrelevant ideal of 5^).

 To show that the irrelevant ideal of S^ is Cohen-Macaulay, note that because
 the irrelevant ideal is graded, it is enough to check Cohen-Macaulayness after
 localizing at the unique homogeneous maximal ideal of S[It]. So we may replace
 S by its localization A at its unique homogeneous ideal, and replace the filtration
 by its image {In} in A. Note that the associated graded ring of A with respect to
 this filtration {/?} is canonically isomorphic to S. Thus, the Proposition follows
 immediately from combining the two lemmas.

 Proof of Lemma 6.3.2. First note that because (X, B) is Kawamata log termi
 nal, the variety X has rational singularities (see e.g. [27, Th 1.3.6]). In particular,
 X is Cohen-Macaulay and Serre duality holds for X.

 To check statements (1) and (2), we make use of the identifications

 [H^Wn* Ht-\X9Ox(nD))

 for each i > 2 and all n G Z (see 2.5.1). Now, for 2 < i < dim S, the vanishing of

 H^S) in negative degree follows from the (dual form of the) Kodaira vanishing
 theorem applied to the ample divisor D. For all i > 2, the vanishing of Hlm(S) in
 positive degree follows from the Kawamata-Viehweg vanishing theorem.

 Since S is normal, the local cohomology modules H^S) and 7/^(5) are zero
 in any case, so the Proposition is proved.

 Proof of Lemma 6.3.3. Let R+ denote the irrelevant ideal of R. We make use
 of the following two exact sequences

 0 ?>R+ ?>R ?>A ?>0

 and

 0 ? R+(l) ?>R ?>G ? 0.
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 Because the ^-module A is concentrated in degree zero, the first sequence gives

 [HlmR(R+)]n * [lTmR(K)]n

 for all n ^ 0 and all i. Then looking at the long exact sequence arising from the
 second sequence, we find a long exact sequence

 -> [H^XR(G)]n ? [HlmR(R+)]n+l ? [lPmR(R)]n ?> [HlmR(G)]n ?

 in each degree n.
 Assume that R+ is Cohen-Macaulay. Then for / < d + 1 = dim/?+, we have

 [HlmR(R+)]n = 0 for all n. This implies that [7/^(7?)],, = 0 for all n ? 0. So
 the long exact sequence above tells us that Hlm (G) vanishes in every nonzero
 degree, for all i < d.

 For / = d, if n > 0, the long exact sequence above becomes

 ? [HdmR(R)]n ? [HdmG(G)]n ? [H^lR(R+)]n+l ?+ 0.

 Because H^R(R+)]n+\ = [H^R(R)]n+i, and the a-invariant of the Rees ring R is
 -1, we see [H^lR(R+)]n+i = 0 for n > 0. So both modules

 [H$nRmn and [H^lR(R+)]n+l

 are zero for n > 0, and so H^^G) vanishes in positive degree. The converse
 argument just reverses this. The lemma is proved. D

 6.4. Core and graded core in graded rings. We have seen that Kawamata's
 Conjecture follows from the following conjecture.

 Conjecture 6.4.1. Let S be the section ring of a pair (X,D) satisfying the
 hypothesis of Conjecture 1.1.1. Then

 (15) gradedcore (lus) = adj (Idus)

 where d is the dimension of S, and I = S>n is the m-primary ideal generated by
 elements of degrees at least n, for some n ^> 0.

 On the other hand, for a local ring (A, m) and an ideal / satisfying conditions
 satisfied by S>n in such a section ring, we have proved (see the remark following
 Theorem 5.1.4 and Proposition 6.3.1) that

 core (Iua) = adj (IdUA).
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 In particular, core (Il?s) = adj (IdL?s), for the section ring 5 of a pair (X, D) satis
 fying the hypothesis of Kawamata's Conjecture. It is easy to believe that perhaps
 the core and graded core of / = S>? are equal for large n, and hence that we
 have proved Kawamata's Conjecture. However, the problem appears to be quite
 subtle. In fact, we have the following corollary of the Main Technical Theorem.

 Corollary 6.4.1. Let S be a section ring of a normal variety of characteristic
 zero with respect to any ample divisor. Assume that the local cohomology modules

 Hlm(S) supported at the unique homogeneous maximal ideal of S vanish in negative
 degrees for i < d, where d = dim S. Let I = S>n be the ideal generated by the
 homogeneous elements of S of degrees at least n, for n ? 0. Then

 (16) core (Il?s) = [us]>nd+\

 In particular, if the variety is rationally singular, then

 core (Il?s) = adj (IdL?s).

 Furthermore, if S is Cohen-Macaulay,

 core (/) = S>nd+a+i

 where a is the a-invariant ofS.

 Remark 6.4.2. Of course, since there are ample line bundles on smooth va
 rieties with no sections, Proposition 6.1.1 makes clear that formula (15) cannot
 hold in general. Indeed, given any ample line bundle with no nonzero global sec
 tions, one can generate examples of ideals (namely S>n for n ? 0) in a graded
 ring (the corresponding section ring) which have many homogeneous reductions,
 but for which the core is not equal to the graded core.

 Proof The statement may be checked locally at the unique homogeneous
 maximal ideal of S, so we can replace / by its expansion to A = Sm, and our
 previous results in the local case apply to S. As always, we let Y denote the
 blowup of Spec S along /, and set Q, = H?(Y,Fl?y). From Proposition 6.2.1, we
 have

 Q = [Us]>nt+1

 for all t. Taking n ? 0, and arguing as in the proof of Lemma 6.3.3, one sees
 that the irrelevant ideal of S[It] is Cohen-Macaulay. Thus

 jL?Sr\Qd-i =/Qd-2
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 for all reductions J of 7, by Proposition 4.2.1. As pointed out in Remark 3.0.3
 following the Main Technical Theorem, this ensures that

 core/?^ CQ? = [vs]>nd+i

 This holds without requiring that S be Cohen-Macaulay, as does the statement
 core (/) C S>nd+a+i' Indeed, if z G core(/) has degree less than nd + a + 1,
 then by taking any nonzero element w of [L?s\-a, we would have an element
 yw G core(7o;ls) of degree less than nd+ 1, a contradiction.

 For the reverse inclusion, we need also that Qd C Jl?s. This follows from the

 Brian?on-Skoda Theorem 4.1.1 because n is sufficiently large. Indeed, we need
 only that Hl(Y,Id~x~lu?Y) is zero for all i > 1, where as usual Y = ProjS[/?]. For
 i < d ? I, this is essentially Serre vanishing (as n is large). For i = d ? 1, the
 required vanishing holds by Lemma 6.4.3 below. For / > d, all the cohomology
 vanishes since Y has a cover by d open affine sets.

 The corresponding statement for ideals follows as in the proof that Theo
 rem 5.1.4 implies Corollary 5.1.1.

 Lemma 6.4.3. If I is a normal ideal in a normal local ring A of dimension d at
 least two, then Hd~x(Y, l?y) = 0, where Y = Proj A[It].

 Proof Let Z A Y be a resolution of singularities of Y. The composition
 Z ?> Y ?> Spec A is a resolution of singularities of Spec A. We have a short exact
 sequence

 0 ?> v*l?z ?? ??y ? Q ? 0

 where ? is supported on some set of codimension at least two. This gives rise to a
 long exact sequence, which?because dim Q is at most d ? 2? gives a surjection

 Hd-x(Y,v*L?Z) -+ Hd~x(Y,L?Y).

 On the other hand, by the Grauert-Riemenschneider vanishing theorem RPv^l?z =
 0 for p > 0, so the appropriate spectral sequence degenerates to give an iso
 morphism Hl(Y, v*l?z) - H\Z, luz). But again by the Grauert-Riemenschneider
 vanishing theorem, this time applied to the resolution Z ?> Spec A, we have
 H1(Z,l?z) vanishes as well for all i > 0. So Hd~x(Y,v*L?z) must be zero, and
 therefore, so is its surjective image Hd~x(Y,L?Y). D

 Since every normal standard graded domain is a section ring, we have the
 following corollary.

 Corollary 6.4.4. Let S be normal Cohen-Macaulay N-graded domain finitely
 generated by its degree one elements over afield of characteristic zero. Let m denote
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 its unique homogeneous maximal ideal. Then for all n > 0,

 (17) core (mn) = gradedcore (mn) = mnd+a+1,

 where d = dim S and a is the a-invariant ofS.

 Proof. The formula for core follows from the above corollary since S>n =
 mn. It remains only verify that the core is the graded core in this situation. Set
 I = mn. Looking at the proof of the Key Lemma, we see that gradedcore (lus) C

 ?j = Ws\>dn+\ if the corresponding intersection rV^.^Cx;*,.. .,x*d)uc is zero
 in degree d. But because / is generated by elements all of the same degree, this
 follows from Theorem 3.4.1.

 Remark 6.4.5. In Corollary 6.4.4, one can weaken the assumption that 5 is
 Cohen-Macaulay and require only that the local cohomology modules Hlm(S)
 vanish in negative degrees fo / < d. Then formula (17) holds for n ^> 0.

 In order to prove Kawamata's Conjecture then, we must understand when
 core and graded core are equal. For an m-primary ideal generated by elements of
 the same degree in a Cohen-Macaulay graded ring over an infinite field, that core
 and graded core are equal follows from [6, Theorem 4.5]. But in general, this
 appears to be a subtle question. From the point of view of solving Kawamata's
 Conjecture (and understanding nonemptiness of linear systems more generally),
 this question is of great interest for ideals of the form 7 = S>n in a section ring.

 We return to this in a subsequent paper.
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