Quantum state transfer between photonic- and matter-based quantum systems is a key element of quantum information science, particularly of quantum communication networks. Its importance is rooted in the ability of atomic systems to provide excellent long-term quantum information storage, whereas the long-distance transmission of quantum information is nowadays accomplished using light. Inspired by the work of Duan et al. [1], emission of nonclassical radiation has been observed in first-generation atomic ensemble experiments [2].

In 2004 the first realization of coherent quantum state transfer from a matter qubit onto a photonic qubit was achieved [3]. This breakthrough laid the groundwork for several further advances towards the realization of a long-distance, distributed network of atomic qubits, linear optical elements, and single-photon detectors [4–8]. A seminal proposal for universal quantum computation with a similar set of physical resources has also been made [9].

An important additional tool for quantum information science is a deterministic source of single photons. Previous implementations of such a source used single emitters, such as quantum dots [10,11], color centers [12,13], neutral atoms [14,15], ions [16], and molecules [17]. The measured efficiency η_D to detect a single photon per trial with these sources is typically less than 1%, with the highest reported measured value of about 2.4% [14], to our knowledge.

We propose a deterministic single-photon source based on an ensemble of atomic emitters, measurement, and conditional quantum evolution. We report the implementation of this scheme using a cold rubidium vapor, with a measured efficiency $\eta_D \approx 1%–2%$. In common with the cavity QED system, our source is suitable for reversible quantum state transfer between atoms and light, a prerequisite for a quantum network. However, unlike cavity QED implementations [14], it is unaffected by intrinsically probabilistic single atom loading. Therefore, it is stationary and produces a photoelectric detection record with truly sub-Poissonian statistics.

The key idea of our protocol is that a single photon can be generated at a predetermined time if we know that the medium contains an atomic excitation. The presence of the latter is heralded by the measurement of a scattered photon in a write process. Since this is intrinsically probabilistic, it is necessary to perform independent, sequential write trials before the excitation is heralded. After this point one simply waits and reads out the excitation at the predetermined time. The performance of repeated trials and heralding measurements represents a conditional feedback process and the duration of the protocol is limited by the coherence time of the atomic excitation. Our system has therefore two crucial elements: (a) a high-quality probabilistic source of heralded photons and (b) long atomic coherence times. We note that related schemes using parametric down-conversion have been discussed [18].

Heralded single-photon sources are characterized by mean photon number $\langle n \rangle \ll 1$, as the unconditioned state consists mostly of vacuum [19,20]. More importantly, in the absence of the heralding information the reduced density operator of the atomic excitation is thermal [21]. In contrast, its evolution conditioned on the recorded measurement history of the signal field in our protocol ideally results in a single atomic excitation. However, without exception all prior experiments with atomic ensembles did not have sufficiently long coherence times to implement such a feedback protocol [2–7,22–24]. In earlier work quantum feedback protocols have demonstrated control of nonclassical states of light [25] and motion of a single atom [26] in cavity QED.

We first outline the procedure for heralded single-photon generation. A schematic of our experiment is shown in Fig. 1. An atomic cloud of optical thickness ≈ 7 is provided by a magneto-optical trap (MOT) of 85Rb. The ground levels $\{a\};\{b\}$ correspond to the $5S_{1/2}, F_{a,b} = \{3,2\}$ hyperfine levels, while the excited level $\{c\}$ represents the $5P_{1/2}, F_c = 3$ level of the D_1 line at 795 nm. The experimental sequence starts with all of the atoms prepared in level $\{a\}$. An amplitude modulator generates a linearly polarized 70 ns long write pulse tuned to the $\{a\} \rightarrow \{c\}$ transition, and focused into the MOT with a Gaussian waist of about 430 μm. We describe the write process using a simple model based on nondegenerate parametric amplification. The light induces spontaneous Raman scattering via the $\{c\} \rightarrow \{b\}$ transition. The annihilation of a write photon creates a pair of excitations: namely, a signal photon and a quasibosonic collective atomic excitation.
outputs of the fiber beam splitter are connected to detectors D2 and D3. Electronic pulses from the detectors are gated with 120 ns (D1) and 100 ns (D2 and D3) windows centered on times determined by the write and read light pulses, respectively. Subsequently, the electronic pulses from D1, D2, and D3 are fed into a time-interval analyzer which records photoelectric detection events with a 2 ns time resolution.

The transfer of atomic excitation to the detected idler field at either D_{k} ($k = 2, 3$) is given by a linear optics relation $\hat{a}_{k} = \sqrt{\eta_{i}/2A} + \sqrt{1 - \eta_{i}/2}\hat{\xi}_{i} (\tau)$, where \hat{a}_{k} depends parametrically on τ and corresponds to a mode with an associated temporal envelope $\phi(t)$, normalized so that $\int_{0}^{\infty} dt|\phi(t)|^{2} = 1$, and $\hat{\xi}_{i} (\tau)$ is a bosonic operator which accounts for coupling to degrees of freedom other than those detected. The efficiency $\eta_{i} (\tau)/2$ is the probability that a single atomic excitation stored for τ results in a photoelectric event at D_{k}, and includes the effects of idler retrieval and propagation losses, symmetric beam splitter (factor of $1/2$) and nonunit detector efficiency. We start from the elementary probability density $Q_{kl} (\tau_{c})$ for a count at time τ_{c} and no other counts in the interval [0, τ_{c}],

$Q_{kl} (\tau_{c}) = |\phi (\tau_{c})|^{2} (\hat{a}_{k}^{\dagger}\hat{a}_{k} - \hat{a}_{k}^{\dagger}\hat{a}_{k})$.

Using Eq. (1), we then calculate probability $p_{kl} \equiv \int_{0}^{\infty} dt Q_{kl} (\tau)$ that detector D_{k} registers at least one photoelectric detection event. We similarly calculate the probability $p_{23|1}$ of at least one photoelectric event occurring at both detectors. These probabilities are given by

$p_{21} (\tau) = p_{31} (\tau) = \Pi(\eta_{i} (\tau)/2; p_{1}, \eta_{s})$,

$p_{23|1} (\tau) = p_{21|1} (\tau) + p_{31|1} (\tau) - \Pi(\eta_{i} (\tau); p_{1}, \eta_{s})$,

where we show the explicit dependence on τ. Here $1 - \Pi(\eta_{i}; p_{1}, \eta_{s})$ is given by

$1 - p_{1} \left(\frac{1}{1 + \eta_{s} \sin^{2} \chi} + \frac{1}{1 + (\eta_{s} + \eta(1 - \eta_{s})) \sin^{2} \chi} \right)^{-1}$.

Our conditional quantum evolution protocol transforms a heralded single-photon source into a deterministic one. The critical requirements for this transformation are higher efficiency and longer memory time of the heralded source than those previously reported [4, 5]. In Fig. 2 we show the results of our characterization of an improved source of heralded single photons. Figure 2(a) shows the measured intensity cross-correlation function $g_{24} \equiv [p_{21} + p_{31}] / [p_{2} + p_{3}]$ as a function of p_{1}. Large values of g_{24} under conditions of weak excitation — i.e., small p_{1} — indicate strong pairwise correlations between signal and idler photons. The efficiency of the signal photon generation and detection is given by $\eta_{s} \rightarrow g_{24} p_{1}$, in the limit $\sin^{2} \chi \ll 1$. We have measured $\eta_{s} = 0.08$, which includes the effects of passive propagation and detection losses ϵ_{s}. It is important to distinguish the measured efficiency from the intrinsic efficiency which is sometimes employed. The intrinsic efficiency of having a signal photon in a single
The full curve is a fit of the form \(1 + B \exp(-\tau^2/\tau_c^2) \) with \(B = 16 \) and \(\tau_c = 31.5 \) \(\mu \text{s} \) as adjustable parameters.

The long coherence time enables us to implement a conditional quantum evolution protocol. In order to generate a single photon at a predetermined time \(t_p \), we initiate the first of a series of trials at a time \(t_p - \Delta t \), where \(\Delta t \) is on the order of the atomic coherence time \(\tau_c \). Each trial begins with a write pulse. If D1 registers a signal photoelectric event, the protocol is halted. The atomic memory is now armed with an excitation and is left undisturbed until the time \(t_p \) when a read pulse converts it into the idler field. If D1 does not register an event, the atomic memory is reset to its initial state with a cleaning pulse, and the trial is repeated. The duration of a single trial \(t_0 = 300 \) \(\text{ns} \). If D1 does not register a heralding photoelectric event after \(N \) trials, the protocol is halted. 1.5 \(\mu \text{s} \) prior to \(t_p \), and any background counts in the idler channel are detected and included in the measurement record.

Armed with Eqs. (3) and (4), we can calculate the unconditioned detection and coincidence probabilities for the complete protocol. The probability that the atomic excitation is produced on the \(j \)th trial is \(p_j (1 - p_1)^{j-1} \). This excitation is stored for a time \((N - j) t_0 \) before it is retrieved and detected; \(N = \Delta t / t_0 \) is the maximum number of trials that can be performed in the protocol (we ignore the 1.5 \(\mu \text{s} \) halting period before the readout).

One can express the probability of a photoelectric event at \(Dk (k = 2, 3), P_k \), and the coincidence probabilities \(P_{23} \)

FIG. 2 (color online). \(g_{si}(a) \) and \(\alpha(b) \) vs \(p_1 \), for \(\tau = 80 \) \(\text{ns} \). The solid lines are based on Eqs. (3) and (4), with a nearly negligible field [5]. The inset shows \(g_{si} \) vs storage time \(\tau \). The full curve is a fit of the form \(1 + B \exp(-\tau^2/\tau_c^2) \) with \(B = 16 \) and \(\tau_c = 31.5 \) \(\mu \text{s} \) as adjustable parameters.

In order to evaluate the atomic memory coherence time \(\tau_c \), we measure \(g_{si} \) as a function of the storage time \(\tau \), inset of Fig. 2(a). To maximize \(\tau_c \), the quadrupole coils of the MOT are switched off, with the ambient magnetic field compensated by three pairs of Helmholtz coils [4]. The measured value of \(\tau_c = 31.5 \) \(\mu \text{s} \), a threefold improvement over the previously reported value, is limited by dephasing of different Zeeman components in the residual magnetic field [5,6].

In order to evaluate the atomic memory coherence time \(\tau_c \), we measure \(g_{si} \) as a function of the storage time \(\tau \), inset of Fig. 2(a). To maximize \(\tau_c \), the quadrupole coils of the MOT are switched off, with the ambient magnetic field compensated by three pairs of Helmholtz coils [4]. The measured value of \(\tau_c = 31.5 \) \(\mu \text{s} \), a threefold improvement over the previously reported value, is limited by dephasing of different Zeeman components in the residual magnetic field [5,6].
in terms of the conditional probabilities of Eqs. (3) and (4).

\[P_\mu = p_1 \sum_{j=1}^{N} (1 - p_1)^{j-1} p_{\mu j} (\Delta t - j t_0), \]

\[\mu = 2, 3, 23. \] In the limit of infinite atomic coherence time and \(N \rightarrow \infty \), \(P_\mu \rightarrow p_{\mu j}. \) Hence, if the memory time is sufficiently long for an adequate number of trials, the protocol ideally results in deterministic preparation of a single atomic excitation, which can be converted into a single photon at a desired time. Consistent with Fig. 2(a) inset, we assume a combined retrieval-detection efficiency that decays as a Gaussian function of storage time, \(\eta(t) = \eta_0 (t) e^{-\left(\frac{t-t_0}{\tau_f}\right)^2} \), where \(\tau_f \) is the atomic spin-wave coherence time.

In Fig. 3 we present the measured degree of 2nd order coherence for zero time delay \(g_2^{(2)}(0) \equiv P_{23}/(P_2 P_3) \) [29] and the measured efficiency \(\eta_D \equiv P_2 + P_3 \) as a function of \(N \) [Figs. 3(a) and 3(b)], and as a function of \(p_1 \) [Figs. 3(c) and 3(d)]. The solid curves are based on Eq. (5). The dashed lines in Figs. 3(a) and 3(c) show the expected value of \(g_2^{(2)}(0) = 1 \) for a weak coherent state (as we have confirmed in separate measurements). The particular value of \(\Delta t \) is chosen to optimize \(g_2^{(2)}(0) \) and \(\eta_D \). The minimum value of \(g_2^{(2)}(0) = 0.41 \pm 0.04 \) indicates substantial suppression of two-photon events and under the same conditions \(\eta_D = 0.012 \) [30]. As shown in Fig. 3(a), when \(N \) is small, the protocol does not result in deterministic single photons. Instead, the cleaning pulse-induced vacuum component of the idler field leads to additional classical noise. Large \(N \), and hence long coherence times, are crucial to reduce this noise below the coherent state level and to approach a single-photon source. Note that in the limit of infinite atomic memory and \(N \rightarrow \infty \), \(g_2^{(2)}(0) \rightarrow \min |\alpha| = 0.012 \pm 0.007 \) and \(\eta_D \rightarrow \eta_0 = 0.075 \), substantially exceeding the performance of any demonstrated deterministic single-photon source.

Moreover, \(\eta_D \) can be further increased with a larger optical thickness and by optimizing the spatial modes of the signal and idler fields [31]. The spatial signal-idler correlations from an atomic ensemble (and, therefore \(\eta_0 \)) can also be improved by use of an optical cavity. However, in the absence of special precautions the use of a cavity will itself introduce additional losses associated, e.g., with the mirror coatings or the cavity locking optics [14,16,24]. The measured efficiency \(\eta_D \) would involve a trade-off between improved spatial correlations due to the cavity and the concomitant losses that it introduces.

In conclusion, we have proposed and demonstrated a stationary source of deterministic single photons based on an ensemble of cold rubidium atoms.

We thank M. S. Chapman for illuminating discussions. This work was supported by the Office of Naval Research, National Science Foundation, NASA, and Alfred P. Sloan and Cullen-Peck Foundations.

[27] This result can also be derived using arguments based on elementary photon counting probabilities [28].
[30] The corresponding value of the measured Mandel parameter \(Q_D = -\eta D |1 - g_2^{(2)}(0)| \approx -0.007 \pm 10\% \) and is largely determined by \(\eta_0 \) [29].
[31] In separate sets of measurements, we have observed \(\eta_0 \approx 0.2 \) for the intrinsic signal efficiency \(\eta_0 \approx 0.6 \).