Isotopic evidence for Plio–Pleistocene environmental change at Gona, Ethiopia

Naomi E. Levin, Jay Quade, Scott W. Simpson, Sileshi Semaw, Michael Rogers

Abstract

A 4.5 Ma record of fluvial and lacustrine deposits is well exposed at Gona, in the Afar Depression of Ethiopia. We use isotopic values of pedogenic carbonate and fossil teeth to reconstruct Plio–Pleistocene environmental change at Gona. An increase in δ13C values of pedogenic carbonates since 4.5 Ma points to a shift from woodlands to grassy woodlands in the early Pliocene, −10.4 to −3.9% (VPDB), to more open but still mixed environments in the late Pleistocene, −3.0 to −1.4% (VPDB). This pattern is also seen in isotopic records elsewhere in East Africa. However, at 1.5 Ma the higher proportion of C4 grasses at Gona is largely a result of a local facies shift to more water-limited environments. The wide range of δ13C values of pedogenic carbonate within single stratigraphic levels indicates a mosaic of vegetation for all time intervals at Gona that depends on depositional environment. Elements of this mosaic are reflected in δ13C values of both modern plants and soil organic matter and Plio–Pleistocene soil carbonate, indicating higher amounts of C4 grasses with greater distance from a river channel in both the modern and ancient Awash River systems. δ18O values of pedogenic carbonates increase up-section from −11.9% in the early Pliocene to −6.4% (VPDB) in the late Pleistocene. The wide range of δ18O values in paleovertisol carbonates from all stratigraphic levels probably reflects short-term climate changes and periods of strong evaporation throughout the record. Based on the comparison between δ18O values of Plio–Pleistocene pedogenic carbonates and modern waters, we estimate that there has been a 6.5% increase in mean annual δ18O values of meteoric water since 4.5 Ma. δ18O values of pedogenic carbonate from other East African records indicate a similar shift. Increasing aridity and fluctuations in the timing and source of rainfall are likely responsible for the changes in δ18O values of East African pedogenic carbonates through the Plio–Pleistocene.

© 2004 Elsevier B.V. All rights reserved.
1. Introduction

Sediments at Gona, in the Afar region of Ethiopia, contain a rich record of Plio–Pleistocene fossils and stone tools [1–3] (Figs. 1 and 2). There is great interest in placing this and other East African fossil and archaeological records within the context of environmental change. Many climate studies suggest an increase in aridity and climate variability in Plio–Pleistocene East Africa, based on evidence of heightened dust fluxes, increased coastal upwelling, faunal change and grassland expansion [4–7]. Of particular relevance to human evolution is the expansion of East African grasslands, as recorded by carbon isotopes from pedogenic carbonate and fossil teeth. Some records from East African sites also display higher oxygen isotopic values of pedogenic carbonates in the late Pleistocene, although the paleoenvironmental significance of this remains unclear [8,9].

Stable isotopic studies have just begun in the Awash Basin, in contrast to well-documented isotopic records from elsewhere in East Africa [10–12]. Previous studies of the Plio–Pleistocene paleoenvironments of Hadar (northeast of the Gona study area) (Fig. 1) primarily rely on faunal, palynologic and sedimentologic evidence, and attribute much of the environmental change to dramatic decreases in basin elevation [13–15]. The rich geologic archive at Gona provides an excellent opportunity to distinguish local environmental phenomena from regional climate changes, and to place the human evolutionary record from 4.5 to 0.6 Ma in a firm paleoenvironmental context. This paper uses isotopic values of pedogenic carbonate and fossil teeth to reconstruct paleoenvironmental change over this critical time span for human evolution.

2. Background

2.1. Geology and geochronology

The Gona project area is bounded to the east by the Awash River, a large river system that drains the western escarpment of the Afar Depression (Fig. 1). The Kada Gona drainage divide and the Busidima/Asbole drainage bound the Gona project area to the northeast and south, respectively. The As Duma Fault, a basin-bounding, north-trending normal fault, bisects the project area, dividing the older Sagantole Formation to the west from younger basin-fill deposits to the east [16]. The Sagantole Formation is composed of lacustrine claystones, travertines, carbonate-rich vertic paleosols, and volcaniclastic sediments. The sediments of the Sagantole Formation are intercalated with basalts and tuffs and cut by dikes and multiple normal faults. An air-fall tuff, dated by 40Ar/39Ar analyses from single plagioclase crystals, establishes 4.56 Ma as the maximum age for the base of the Sagantole Formation at Gona (J. Quade, unpublished data) (Fig. 2). The paleosols and fossil teeth sampled for isotopic analysis in this study lie 10–20 m above this tuff and probably represent a time interval < 100 kyr. This error estimate and those listed in the following descriptions of the Gona sediments are approximations based on uniform sedimentation rates between tuff deposits dated by 40Ar/39Ar analyses.

Basin fill east of the As Duma Fault consists of the Hadar and Busidima formations. The Hadar Formation contains fluvial and lacustrine sediments deposited in the central axis of the basin between ~ 3.4 and 2.9 Ma (Fig. 2). The geochronology of the Hadar Formation is well established and based largely upon 40Ar/39Ar dates from major and minor tuffs exposed in the Hadar project area north and east of the Kada Gona drainage divide [17]. Some of these tuffs, including the well-known SHT, Triple Tufts and KHT, as well as key marker sands and lacustrine beds, extend into the Gona project area. We used these dated horizons to estimate the ages of carbonate samples, assuming uniform sedimentation rates. The error of our age estimates is < 100 kyr.

A major disconformity (2.9–2.7 Ma), closely bounded by two dated tuffs, separates the Busidi-
ma Formation from the Hadar Formation below (Fig. 2) [16]. This disconformity marks a change in depositional style from a mix of fluvial and lacustrine deposition in the Hadar Formation to solely fluvial deposition in the Busidima Formation. The lower Busidima Formation is characterized by multiple fining-upward sequences deposited by a coarse-grained, meandering river system that flowed northeastward along the axis of the paleo-Awash valley [16]. In contrast, the upper Busidima Formation consists of paleosols and minor channel deposits associated with tributary river systems on distal alluvial fans. We use the presence of the Boolihinan Tuff (~1.5 Ma) to date the major facies shift that separates the lower and upper Busidima Formation [16]. Age assignments for pedogenic carbonate samples from the Busidima Formation are conservatively <200 kyr but likely <100 kyr.

Tephrostratigraphic correlations indicate that the top of the Busidima Formation is ~0.6 Ma [16]. Therefore, pedogenic carbonates formed on the alluvial fan gravels that cap the Busidima Formation likely date from 0.6 to 0 Ma.

2.2. C_3/C_4 plant distribution and carbon isotopes

Carbon isotopic values ($\delta^{13}C$) of soil organic matter and pedogenic carbonate can be used to reconstruct the proportion of trees and grasses present during soil formation. C_3 and C_4 plants fractionate carbon isotopes through different metabolic pathways. The C_3 pathway discriminates more strongly against ^{13}C than the C_4 pathway and produces plant matter with lower $\delta^{13}C$ values. In East Africa, the $\delta^{13}C$ values of C_3 and C_4 plants range from -31.4 to -24.6%, and -14.1 to -11.5%, respectively [18]. The range in values
Fig. 2. Composite stratigraphic section of the Sagantole, Hadar and Busidima Formation exposed in the Gona project area. Ages listed next to tuffs are either from 40Ar/39Ar dates or from tephrostratigraphic correlation [16,17].
within C3 and C4 plants primarily depends on water availability, and also canopy cover for C3 plants. Globally, C4 grasses dominate warm growing season ecosystems, and in East Africa most low altitude grasses (<2500 m) are C4 [19]. Any C3 grasses that do grow at low altitudes in East Africa grow in damp habitats as understory grasses in forests [20].

The proportion of C3 to C4 vegetation on a landscape is recorded by carbon isotopic values of the underlying leaf litter, soil organic matter, and soil carbonates formed from plant-respired soil CO2 [21]. δ13C values of pedogenic carbonate (δ13CPC) reflect δ13C values of soil CO2, which is determined by the isotopic composition of overlying vegetation at moderate to high soil respiration rates. At soil depths greater than 30 cm, δ13CPC values differ from δ13C values of the overlying vegetation by +13.5–16.6‰ [22].

δ18O values of fossil tooth enamel (δ18C enamel) record the proportion of C3 to C4 plants consumed by an animal during enamel formation early in life as teeth develop [23]. Although past studies have provided a range of enrichment factors between δ13C enamel and dietary δ13C values, recent work shows that carbon isotope ratios in herbivore teeth are enriched in 13C by 14.1‰ relative to the plant matter consumed [24].

The isotopic composition of atmospheric CO2 varies with fluxes in the global carbon cycle [25]. Any variation in the δ13C value of atmospheric CO2 alters δ13C values of vegetation and thus changes the meaning of δ13C values for both pedogenic carbonate and tooth enamel. However, we do not account for the effect of such changes in this study because the small changes in atmospheric δ13C values between the Pliocene and today would not alter our large-scale interpretations of relative C3 and C4 abundance from δ13C values of pedogenic carbonates and fossil tooth enamel [26].

2.3. Oxygen isotopes in meteoric waters and soil carbonate

δ18O values of meteoric water (δ18OMW) reflect air temperature and the amount, source and seasonal distribution of rainfall [27]. δ18OMW values typically increase with increased air temperature and decrease with higher rainfall amounts and increased altitude [27]. Modern δ18OMW values recorded in East Africa vary seasonally as rainfall amount and moisture sources change [28].

δ18O values of pedogenic carbonate (δ18OPC) depend on soil temperature and the δ18O values of soil water (δ18OSW) during carbonate formation [21,29]. At depths greater than 30 cm, soil temperatures approach mean annual ambient temperatures [30]. δ18OPC values also vary with soil depth. Quade et al. [29] attribute the decrease in δ18OPC values with depth in the soil either to greater evaporative enrichment near the soil surface or to preferential infiltration of isotopically depleted rainfall. In the absence of soil water evaporation, δ18OPC should be roughly equivalent to δ18OMW values. If we assume that carbonate always forms in the presence of soil moisture that is solely determined by δ18OMW and temperature, we then can use δ18OPC values to estimate mean annual δ18OMW values. However, hot and arid environments, like those in East Africa, increase the likelihood of soil water evaporation and produce δ18OMW values that are higher than mean annual δ18OMW values. Consequently, assuming constant temperatures of formation, any estimates of mean annual δ18OMW values from δ18OPC values are maxima.

2.4. Carbonate formation

Secondary carbonates at Gona include both pedogenic and non-pedogenic (groundwater and spring) forms. The distinction between the two types of carbonates is critical in isotopic studies because the relationship between δ13CPC values and vegetation cover is only established for soils. Pedogenic carbonates are abundant in the vertic paleosols at Gona. To qualify as pedogenic, carbonate must be found within a zone of carbonate formation (Bk horizon) and it must be associated with other pedogenic features. At Gona, pedogenic carbonates are associated with vertic features like the development of ped structure, clay cutans or slickensides on ped faces. The development of these features varies with the degree of soil formation as determined by both environmental con-
ditions and time. Within a soil horizon, carbonate can be dispersed throughout the matrix or can take the form of stringers, nodules, rhizoliths, clast coatings or platey vertic fracture fill.

Non-pedogenic carbonates at Gona are formed by ground or spring waters and can take the form of nodules, rhizoliths, ledges, travertines, and sparry precipitate in the interstices of gravels. They are distinguished from pedogenic carbonates because they are not associated with a soil horizon or other pedogenic features.

3. Methods

Pedogenic carbonates were sampled at least 30 cm below the upper paleosol contact to ensure that δ13C values represent the δ13C values of soil CO2 and hence the fraction of C3/C4 biomass and to reduce the potential influence of soil water evaporation on δ18O values. The upper paleosol contact is usually a conservative estimate of a former land surface because erosion can remove part of the upper soil horizons. Most upper paleosol contacts were recognized by a major change in lithology, such as the scour of a fluvial gravel.

Pedogenic carbonate nodules were first broken to reveal their internal structure and to avoid analysis of any non-pedogenic spar found in vugs and small veinlets. Fifty-three nodules (206 analyses) were microsampled to investigate the isotopic variation between micrite and spar within single nodules and to characterize the variation within the micritic portions. Microsampling was performed under a binocular microscope with a 0.5 mm drill bit at 2 mm intervals along an interior cross-section. All carbonate samples were heated at 400°C for 3 h in vacuo and processed using an automated sample preparation device (Kiel III) attached directly to a Finnigan MAT 252 mass spectrometer at the University of Arizona. δ18O and δ13C values were normalized to NBS-19 based on internal lab standards. Precision of repeated standards is ±0.1‰ for δ18O and ±0.06‰ for δ13C (1σ).

Fossil tooth enamel was prepared for analysis of the δ13C value its structural carbonate following a procedure adapted from O’Neil et al. [31]. Enamel was removed from the dentine with a 0.5 mm drill bit. Enamel powder was pretreated with 2% H2O2 and reacted in an ultrasonic bath to remove remnant organic matter. Samples were then reacted with 1 M acetic acid for 30 minutes in an ultrasonic bath, rinsed with distilled water, dried at 80°C and reground. Enamel was reacted with 3 ml 100% H3PO4 at 50°C, and the resultant CO2 was purified cryogenically. Carbon isotopes of the purified gas were measured on a Finnigan Delta S mass spectrometer.

Plant matter and bulk soil organic matter were collected on the floodplain of the modern Awash River. Plant matter was ground and soil organic matter was sieved through a 250 μm mesh sieve, pretreated with 2 M HCl and rinsed with deionized water. Organic δ13C values were measured using an automated CHN analyzer (Costech) connected to a Finnigan Delta-plus XL continuous-flow mass spectrometer. Internal lab standards are calibrated relative to NBS-22 and USGS-24. Precision of repeated internal standards is ±0.09‰ for δ13C (1σ).

Stable isotope composition of water was measured on a Finnigan MAT Delta-S gas ratio mass spectrometer using two automated sample preparation devices. δ18O values were measured using CO2 equilibration at 15°C for a minimum of 8 h [32]. δD values were measured by reducing the water on chromium at 750°C and direct transfer of H2 into the mass spectrometer [33]. Samples were normalized to VSMOW and VSLAP based on secondary standards. Repeated standards have a standard deviation of 0.06‰ for δ18O values and 0.8‰ for δD values.

Carbonate, teeth and organic matter isotopic results are reported using standard δ‰ notation relative to VPDB, whereas δ18O values of waters are presented relative to VSMOW.

4. Pedogenic vs. non-pedogenic carbonates

4.1. Carbonate morphologies and textures

Pedogenic carbonate nodules range from 2 to 30 mm in diameter and reflect stage II and stage
III carbonate development for non-clastic parent materials [34]. Petrographic examination showed that nodule texture is dominantly micritic, although distinct concentrations of spar are common. Spar and microspar crystals concentrate in vugs and veins, and sometimes surround detrital lithic grains, quartz and clay. Dendritic manganese often accompanies the spar. Both rhizoliths and vertic fracture fill are dominantly micritic but often contain spar-filled veins and vugs, and dendritic manganese threads.

Non-pedogenic carbonates from the Gona deposits were also studied in thin section and sampled for isotopic analysis. Sparry calcite cements many of the large fluvial cobble conglomerates in the lower Busidima Formation. In addition, micritic travertine and very coarse, euhedral calcite crystals are present in the Sagantole Formation. The euhedral calcite is found in thick (> 2 cm) veins and in the hollow cavities of fossil bone. Travertines often contain freshwater snails and bivalves.

4.2. Isotopic results from carbonate morphologies and textures

$\delta^{18}O$ values ($-6.0 \pm 0.5 \%_o$, 1σ, $n = 5$) of the sparry cements from the conglomerates in the lower Busidima Formation lie within the same range as values for spar and micrite in pedogenic nodules (Tables 1 and 2). $\delta^{13}C$ values of conglomerate spar average $-4.5 \pm 0.1 \%_o$ (1σ; $n = 5$). $\delta^{13}C$ and $\delta^{18}O$ values of coarse euhedral calcite from the Sagantole Formation average $-6.3 \pm 1.1 \%_o$ and $-16.5 \pm 4.5 \%_o$ (1σ; $n = 5$). Micritic travertines from the Sagantole Formation average $-6.9 \pm 0.7 \%_o$ and $-11.4 \pm 0.7 \%_o$ (1σ; $n = 3$) for $\delta^{13}C$ and $\delta^{18}O$ values respectively.

$\delta^{13}C$ and $\delta^{18}O$ values of rhizolith and vertic fracture fill fall within the same range of values as nodular carbonate sampled throughout the section (Figs. 3a and 5a).

1 See online version of this article.
older deposits. Some of the euhedral calcite yields very low δ^{18}O values, as low as $-23.4\%_o$, and clearly formed at elevated temperatures. The highest δ^{18}O value ($-12.8\%_o$) from euhedral calcite is close to the lowest δ^{18}O value ($-11.9\%_o$) from the Sagantole Formation, and might have either a moderately hydrothermal or a low temperature origin. However, micritic travertines from the Sagantole Formation, which show no textural evidence of diagenetic alteration, have a minimum δ^{18}O value ($-12.1\%_o$) close to the minimum δ^{18}O value ($-11.9\%_o$) (Table 2i). The presence of intact primary textures in both the pedogenic carbonate and the travertine suggests that their low δ^{18}O values reflect the primary conditions of carbonate formation. In addition to the textural, isotopic and morphologic evidence, the abundance of reworked carbonate nodules in minor channel deposits of all the formations sampled suggests that these carbonates are pedogenic and not diagenetic.

Fossil teeth analyzed for this study are well preserved, with little visible evidence (discoloration, physical breakdown) of alteration. In general, δ^{13}C values of fossil enamel are highly resistant to diagenesis [37].

5. δ^{13}C values of pedogenic carbonate and fossil teeth

5.1. Sagantole Formation

δ^{13}CPC values from the Sagantole Formation (4.5 Ma) average $-7.4\%_o \pm 1.6$ (1σ; n = 15) and range from -10.4 to $-3.9\%_o$ (Fig. 3a). The range of values indicates that C₄ grass cover in the Gona area was approximately 10–60% at ~ 4.5 Ma.

δ^{13}C enamel values of Hippopotamidae (n = 6), Proboscidea (n = 1), Bovidae (n = 3), and Suidae (all *Nyanzachoerus jaegeri* (n = 6) from the Sagantole Formation range from -14.1 to $+0.1\%_o$ (n = 16) (Table 3i). All of the δ^{13}C values of tooth enamel, except two Hippopotamidae samples and the Proboscidea sample, are evidence of C₄-dominated diets. At 4.5 Ma there must have been enough C₄ grass on the landscape to support animals with grazing (C₄) adaptations.

5.2. Hadar and Busidima formations

δ^{13}CPC values from the Hadar Formation (3.3–2.9 Ma) average $-6.6 \pm 1.4\%_o$ (1σ; n = 17) (Fig. 3a). Average δ^{13}CPC values increase from $-5.5 \pm 1.1\%_o$ (1σ; n = 97) in the lower Busidima Formation (2.9–1.5 Ma) to $-4.0 \pm 1.5\%_o$ (1σ; n = 13) in the upper Busidima Formation (~ 1.5–0.5 Ma). δ^{13}C values from carbonate clast coatings on the middle Pleistocene gravels average $-2.3 \pm 0.6\%_o$ (1σ; n = 7).

δ^{13}CPC values indicate a steady increase in C₄ grass cover, from approximately 20–55% in the Hadar Formation to 35–75% in the upper Busidima Formation. In the Hadar and lower Busidima formations, axial, rift-system lakes and rivers hosted water-dependent trees, shrubs and edaphic grasses (grasses rooted in a shallow floodplain water table) [16]. Due to the continuous presence of an axial depositional system, the increase in grasses during this time period must reflect environmental change independent of depositional environment. However, at ~ 1.5 Ma the axial river environments of the lower Busidima Formation were replaced by more marginal environments characterized by deeper water tables, dry alluvial fans, and seasonally active tributaries of the paleo-Awash. Consequently, we view the increase in C₄ grasses in the upper Busidima Formation as the result of a local facies shift.

5.3. C₃/C₄ plant distribution on the floodplain of the modern Awash River

We measured the variation in δ^{13}C values of vegetation and soils on the modern Awash floodplain and used the results as a comparative model for the variation in δ^{13}CPC values from the lower Busidima Formation. Based on sedimentologic similarities, the modern Awash River is an appropriate modern analog for the depositional setting of the lower Busidima Formation [16]. Near Gona, the Awash River is an entrenched meandering system flanked by an approximately 300 m wide swath of thick riparian woodland that is bordered by edaphic grasslands. The δ^{13}C values of both soil organic matter and plant matter increase with distance from the Awash channel (Fig.
Plant δ^{13}C values from within the dense riparian woodland average $-27.9 \pm 1.5\%$
$(1\sigma; n = 9)$ and those of edaphic grasses average $-15.0 \pm 3.3\%$
$(1\sigma; n = 3)$. Within the C$_3$-rich riparian woodland, soil organic matter averages $-23.7 \pm 1.4\%$
$(1\sigma; n = 9)$ and is enriched in 13C relative to the vegetation directly overlying it.
Higher soil organic matter δ^{13}C values in the riparian woodland might be due to 13C-enriched microbial and fungal residues in the soil, incorporation of plant litter with pre-industrial δ^{13}C values when atmospheric δ^{13}C values were $\sim 1.3\%$ higher (Seuss effect), or a shift in the distribution of C$_3$ and C$_4$ plants [38]. In the open floodplain dominated by edaphic grassland, δ^{13}C values of soil organic matter average $-20.1 \pm 2.9\%$. The

Fig. 4. Lateral transect results. (a) δ^{13}C values of modern vegetation and soil organic matter and distance from the Awash River channel. (b) δ^{13}C$_{soil}$ values in a paleosol lateral to lower Busidima Formation conglomerate. The drawing overlying each plot represents the sampling context of each transect.
more negative values in the grassland sediment can be specifically related to the local presence of trees.

We use the isotopic relationships on the modern floodplain to clarify the paleoecologic context of paleo-Awash floodplain deposits in the lower Busidima Formation. For this comparison, we selected a ~2.7 Ma paleosol exposure that is lateral to a conglomerate, representing a paleo-channel at the limit of its lateral migration and its associated floodplain. We sampled the paleosol for soil carbonates at 25 m intervals for approximately 250 m lateral to the conglomerate–paleosol transition. The δ^{13}CPC values increase from -7.6 to -2.0% with increasing lateral distance from the conglomerate–paleosol transition (Fig. 4b). The increase in δ^{13}CPC values records the transition from riparian woodland to grassland, in strong correspondence to the modern analog.

However, one difference between the modern analog and fossil results is that we obtain no δ^{13}CPC values that represent end-member C3 or C4 conditions in the lower Busidima Formation. There are at least three ways to interpret this difference: (1) there were never any pure C3 or C4 vegetation stands lateral to the channel; (2) δ^{13}CPC values represent a time-average of fluctuating vegetation zones, with the rapid migration of a river channel and its associated riparian woodland an end-member C3 value will not be recorded; or (3) soil CO2 mixes laterally, reducing the isotopic contrast between adjacent stands of pure C3 and C4 vegetation.

Explanation (1) is unlikely because higher δ^{13}CPC values in the Pliocene indicate a greater overall presence of C3 vegetation than in the modern environment. A nearly pure C3 gallery forest borders the modern Awash River. If the modern Awash River is an appropriate analog for the paleo-Awash system we should expect a greater or equal amount of C3 vegetation adjacent to a major river channel in the Pliocene.

In our view, explanation (2) is the most plausible. If C3 vegetation is restricted to river banks, the end-member C3 signal would not be recorded in δ^{13}CPC values because the period of carbonate formation (10^3–10^4 years) exceeds the typical residence time of vegetation and channel position (10^2 years). Pedogenic carbonate forming beneath a C3 riparian woodland will either be eroded by the river’s cut bank or become increasingly distal to the C3-rich riparian vegetation belt as the river channel migrates.

Explanation (3), lateral soil CO2 mixing, is untested and requires measurements of δ^{13}C values of modern soil CO2 across riparian woodland and edaphic grassland vegetation zones.

5.4. Regional grassland expansion

The increase in δ^{13}CPC values evident in other East African paleosol records points to an expansion of C4 grasses throughout the Plio–Pleistocene (Fig. 3b). Although there is evidence of C4 vegetation as early as 15.3 Ma in East Africa, C4 grasses became a substantial part of herbivore diets by the latest Miocene and came to dominate most East African landscapes after 1.7 Ma [6,39].

δ^{13}C values of 4.5 Ma tooth enamel and pedogenic carbonate demonstrate the significant presence of grasses by the early Pliocene at Gona. Slightly older environments (5.54–5.77 Ma), south of Gona in the Middle Awash Sagantole Formation, have been interpreted as closed and wet woodlands from fauna [10]. However, δ^{13}CPC values from the Middle Awash also indicate the presence of considerable C4 grass mixed with woodlands. The range of δ^{13}CPC values from the Middle Awash, -7.5 to -4.1% ($n=11$) [10] is similar to the range of δ^{13}CPC values, -10.4 to -3.9% ($n=15$) from the Sagantole Formation at Gona.

δ^{13}CPC values from the Hadar and lower Busidima formations parallel those of other East African soil carbonates of the same age. δ^{13}CPC values from Koobi Fora and Olduvai show similar increases in C4 vegetation, as do values from the shorter records at Olorgesailie, the Middle Awash, and Kanapoi (Fig. 3b) [8–10,40–43]. As at Gona, the wide range in δ^{13}CPC values from every study area at any given time interval indicates considerable heterogeneity in the distribution of C3 and C4 vegetation.
6. δ¹⁸O values of pedogenic carbonates and modern waters

6.1. δ¹⁸O values Plio–Pleistocene carbonates

Two features of the Gona δ¹⁸O values (typically > 5‰) at every stratigraphic interval (Fig. 5a). The first feature is the considerable scatter in δ¹⁸O values (typically > 5‰) at every stratigraphic interval (Fig. 5a). The second feature is the up-section increase in both mean and minimum δ¹⁸O values. Mean δ¹⁸O values increase from −7.8‰ in 4.5 Ma to −4.5‰ < 0.6 Ma. Minimum δ¹⁸O values increase from −11.9‰ in 4.5 Ma to −6.4‰ < 0.6 Ma.

These patterns in the δ¹⁸O PC record can be explained in terms of the three main determinants of δ¹⁸O values: mean annual δ¹⁸OMW values, soil temperature and soil water evaporation. δ¹⁸OMW values and soil temperature are related to δ¹⁸O values according to the following expression:

\[1000 \ln \frac{K_{\text{calcite}}}{C_{\text{water}}} = 18.03 \times (10^3 \ T^{-1}) - 32.42,\]

where \(K\) is the fractionation factor, \(T\) is the temperature in Kelvin and \(\alpha_{\text{calcite-water}} = \frac{\delta^{18}O_{\text{PC}}}{\delta^{18}O_{\text{SW}} + 1000}\) [44]. At constant δ¹⁸OMW values, large changes in soil temperature result in only small changes in δ¹⁸O values. By comparison, evaporative enrichment of ¹⁸O in soil water can produce large increases in associated δ¹⁸OPC. As such, we interpret the broad scatter of δ¹⁸OPC values at any one stratigraphic level at Gona as likely produced by: (1) the intense but variable evaporation of soil water prior to carbonate precipitation and (2) short-term fluctuations in mean annual δ¹⁸OMW values associated with shifting climatic conditions within the stratigraphic resolution at Gona (~100 kyr). The change in soil temperature required to produce a 5‰ range in δ¹⁸O values within 100 kyr is unrealistically high (ΔTsoil = 25°C).

The up-section increase in mean and minimum δ¹⁸OPC values through the Plio–Pleistocene is not unique to Gona and is also evident in other East African deposits, as we will discuss later. A combination of higher mean annual δ¹⁸OMW values and increasing soil water evaporation is likely responsible for the long-term increase in δ¹⁸OPC values. In the absence of additional data the relative contributions of changing δ¹⁸OMW values and evaporative conditions are difficult to determine. For the Gona data set, however, we do have an additional constraint. We can use modern δ¹⁸OMW values to show that mean annual δ¹⁸OMW values must have increased significantly between the early Pliocene and the Present, although the exact timing of this shift is not clear.

6.2. δ¹⁸OMW values

To explore the relative effect of changing δ¹⁸OMW values and soil water evaporative conditions on δ¹⁸OPC values we consider the lowest...
(and therefore least evaporated) $\delta^{18}O_{PC}$ value (−11.9‰) from the base of the Gona record (Fig. 5a). We reconstruct a $\delta^{18}O_{MW}$ value of −9.4 ‰ for this carbonate sample at 4.5 Ma by assuming a soil temperature equivalent to the approximate mean annual temperature at Gona today, 26°C. This is a maximum $\delta^{18}O_{MW}$ estimate because the soil water, which originated as meteoric water, likely experienced at least some evaporation before carbonate formation. If soil water evaporation were the sole determinant of increasing $\delta^{18}O_{PC}$ values, we could generate the rest of the Gona $\delta^{18}O_{PC}$ record by holding the calculated early Pliocene $\delta^{18}O_{MW}$ value constant at −9.4 ‰ and increasing soil water evaporation.

Our measurements of modern groundwaters and river waters help to constrain modern $\delta^{18}O_{MW}$ values at Gona. Groundwater samples were obtained from open wells in dry tributaries to the Awash River at Gona in the dry season, February 1999–2001 (Fig. 1; Table 5) and yielded a range of $\delta^{18}O$ values ($\delta^{18}O_{GW}$) from −0.8 to 1.1 ‰ and δD values of 0.05 to 11.01 ‰ (VSMOW). $\delta^{18}O$ and δD values of river waters, sampled from high to low elevations, yielded a range of −0.03 to +2.4 ‰ and +7.1 to +16.4 ‰ (VSMOW), respectively (Table 5). Values from a small spring (Entoto) in the Awash headwaters near Addis Ababa gave $\delta^{18}O$ and δD values of −2.6 and −7.3 ‰ (VSMOW), respectively. Most isotopic results from both surface water and the Gona groundwater plot to the right of the global meteoric water line (GMWL) and the Addis Ababa meteoric water line (AMWL), indicating varying degrees of evaporative enrichment (Fig. 6).

To estimate modern mean annual $\delta^{18}O_{MW}$ values at Gona we reconstruct the initial isotopic values of these waters, prior to evaporation, by connecting these points back to the GMWL along evaporative enrichment lines, whose slope varies from 4.5 to 3.9 based on 50% or 0% humidity [45]. Using the evaporative enrichment lines, the unevaporated $\delta^{18}O_{MW}$ values range from −2.9 ‰ to −0.8 ‰ (Fig. 6). We compare the Gona $\delta^{18}O_{GW}$ and δD_{GW} values to the GMWL because it closely represents the waters from most stations in East Africa [28]. We do not use the AMWL because high elevation (2360 m), heavy rainfall (1219 mm/yr) and high mean annual $\delta^{18}O_{MW}$ value (−1.31‰ VSMOW) make rainfall in Addis Ababa isotopically anomalous [28].

If valid, these modern $\delta^{18}O_{MW}$ values show that increased soil water evaporation is not the sole determinant of increasing $\delta^{18}O_{PC}$ values at Gona. The comparison between the modern $\delta^{18}O_{MW}$ value, −2.9 ‰, and the calculated 4.5 Ma $\delta^{18}O_{MW}$ value, −9.4 ‰, shows that $\delta^{18}O_{MW}$ values must have increased by at least 6.5 ‰ between the early Pliocene and the Present (Fig. 7). This conclusion does not exclude the role of evaporation in influencing $\delta^{18}O_{PC}$ values at Gona. It merely demonstrates the minimum shift in $\delta^{18}O_{MW}$ values required to produce the observed differences between estimated modern $\delta^{18}O_{MW}$ values and Pliocene $\delta^{18}O_{PC}$ values.

6.3. Regional $\delta^{18}O$ increases

$\delta^{18}O_{PC}$ values from other East African sites in-
crease through the Plio–Pleistocene and exhibit a large range of values at all time intervals (Fig. 5b) [8–10, 40–43, 46]. Just as the δ^{18}OPC values at Gona cannot be reasonably matched with the isotopic composition of modern meteoric waters, δ^{18}OPC values from elsewhere in Plio–Pleistocene East Africa are also too low to have formed from their local modern waters.

In addition to pedogenic carbonate, gastropods also record the large differences between δ^{18}O values of Pliocene and modern waters. In their isotopic study of gastropod shells from the Hadar Formation, Hailemichael et al. [12] calculate that δ^{18}OMW values were 6–7‰ lower at 3.2 Ma than they are today. This estimate is remarkably close to our estimate of a minimum 6.5‰ increase in δ^{18}OMW values at Gona. The similarity of δ^{18}O records at Gona and elsewhere in East Africa suggests that the variability of δ^{18}OPC values and the general increase in δ^{18}OMW values are regional phenomena that require regional explanations.

6.4. Determinants of δ^{18}OMW values

Temperature, elevation, precipitation amount and moisture source determine modern δ^{18}OMW values [27]. One or more of these variables must have changed at a regional scale since the early Pliocene to explain the 6.5‰ increase in δ^{18}OMW values at Gona and similar changes elsewhere in East Africa. We use isotopic data of modern precipitation from IAEA stations in East Central Africa [47] to understand how these variables may have influenced Plio–Pleistocene δ^{18}OMW values. Each variable is presented to investigate possible end-member explanations.

At high latitudes, δ^{18}OMW values increase with temperature, whereas in the low latitude tropics δ^{18}OMW values and temperature are not well correlated [48]. Among isotope data stations in East Central Africa, there is no consistent relationship between annual or monthly temperatures and δ^{18}OMW values [47]. We therefore can exclude an increase in temperature as a significant influence on the net 6.5‰ increase in average δ^{18}OMW values.

The negative correlation seen globally between altitude and δ^{18}OMW values allows us to test the effect of elevation on the increase of δ^{18}OMW values at Gona [48]. Several studies have proposed a 1000 m decrease in basin elevation as an explanation for ecological change in the Hadar region [14, 49]. Based on the δ^{18}OMW–elevation relationship established for Mt. Cameroon, a 1000 m decrease in elevation would only account for a 1.6‰ increase in δ^{18}OMW values [50]. Higher basin elevations in the early Pliocene therefore cannot be a primary explanation for the lower δ^{18}OMW values at Gona.

δ^{18}OMW values from stations in East Central Africa decrease with increased precipitation, following a trend termed the ‘amount effect’ [27]. The amount effect, determined from the slope of the linear regression between mean monthly δ^{18}OMW values and the amount of precipitation, varies with each station. We calculated that the average ‘amount effect’ for East Central African stations is −32 mm rainfall per 1‰ δ^{18}OMW [47]. If a change in the amount of precipitation were responsible for the 6.5‰ increase in δ^{18}OMW val-

Fig. 7. Lines of constant δ^{18}OMW values (VSMOW) are plotted with soil temperature and δ^{18}OPC values (VPDB) according to the temperature-dependent 18O/16O calcite–water fractionation, as defined by Kim and O’Neil [44]. The minimum unevaporated δ^{18}OMW value (−2.9‰) represents the modern mean annual δ^{18}OMW value (see Fig. 6 and discussion). δ^{18}OMW values are calculated from minimum 4.5 Ma and <0.6 Ma δ^{18}OPC values at 26°C and plotted as lines. The vertical gray bar marks approximate mean annual temperature at Gona today (26°C) and extends to include possible higher mean annual temperatures in the Plio–Pleistocene.
ues then total annual precipitation would have been approximately 700 mm in the early Pliocene (200 mm more than today). Most IAEA stations in East Central Africa receive more than 700 mm of annual rainfall, yet their minimum monthly $\delta^{18}O_{MW}$ values average -4% and are rarely less than -7.3% (VSMOW), compared to -9.4% (VSMOW) which is the reconstructed mean annual $\delta^{18}O_{MW}$ value for the early Pliocene at Gona. This implies that a decrease in the amount or intensity of precipitation cannot fully explain the increase in $\delta^{18}O_{MW}$ values at Gona through time.

Our analysis suggests that the increase in $\delta^{18}O_{MW}$ values must be partially due to changes in moisture sources or seasonal proportions of moisture sources since the early Pliocene. Moisture sources in East Africa today are governed by the position of major convergence zones, topography and sea-surface temperatures [51,52]. The Intertropical Convergence Zone (ITCZ) separates northeasterly dry Saharan air from easterly and southeasterly air currents sourced in southern Asia and the Indian Ocean. The Interoceanic Convergence (IOC), fixed by the high western shoulders of the East African Rift, separates southwesterly moisture from the Congo and the Atlantic Ocean from southeasterly Indian Ocean moisture. Heavy rains accompany the passage of the ITCZ, yielding only one dominant rainy season in Ethiopia at the ITCZ’s northern limit [28]. The aridity in East Africa today is due primarily to high topography that blocks Atlantic moisture, cool upwelling waters near the Somali coast and the subsiding Somali jet which parallels the East African coast [53].

7. Plio–Pleistocene climate change

Any shift in the position of the ITCZ or IOC could alter the source, timing and amount of rainfall in East Africa and consequently alter mean annual $\delta^{18}O_{MW}$ values. Tectonic changes and northern hemispheric glaciation in the Pliocene reorganized East African climate with changes in circulation patterns, increased climate variability and decreased rainfall. We present the following examples of Plio–Pleistocene climate phenomena as possible explanations for the regional changes in mean annual $\delta^{18}O_{MW}$ values, soil water evaporation and the range in environmental conditions evident at Gona and elsewhere in East Africa.

Cane and Molnar [54] suggest that the closure of the Indonesian seaway 3–4 Ma is responsible for increased aridity in East Africa. The authors propose that a northward displacement of New Guinea channeled cool waters from the North Pacific towards the Indian Ocean and blocked the passage of warmer waters from the South Pacific. Periods of heavy rainfall in East Africa today are associated with warm sea-surface temperatures in the Indian Ocean, which reduce air subsidence over East Africa and heat the normally cold upwelling waters along the Somali coast [51]. If the climate behaved similarly in the early Pliocene, a cooling of the Indian Ocean after 3–4 Ma would decrease rainfall in East Africa [54].

The continued development of the high topography of the East African Rift through the Plio–Pleistocene might also contribute to the increase in $\delta^{18}O_{MW}$ values. The East African highlands today block southwesterly Atlantic moisture [53]. Lower topography in the early Pliocene would allow more southwesterly Atlantic moisture to reach East Africa. The associated changes in moisture source and increased rainfall could be partially responsible for lower $\delta^{18}O_{MW}$ values in the early Pliocene.

The closure of the Indonesian seaway is a discrete event, the uplift of the East African highlands is a gradual phenomenon but northern hemispheric glaciation is a cyclic process whose effect repeatedly and drastically altered Plio–Pleistocene climate. Marine dust records and general circulation models for the Plio–Pleistocene show that during full glacial periods and times of reduced summer insolation, increased snow and ice cover in southern Asia inhibits summer heat flow, reduces summer monsoon winds in southwest Asia and reduces precipitation over Africa [4]. Northern hemispheric glaciation also alters the latitudinal position of the ITCZ which depends on the temperature difference between the northern and southern hemispheres. Before the
start of northern hemispheric glaciation in the late Miocene, colder temperatures in the southern hemisphere strengthened the southern trade winds and displaced the ITCZ northern limit to 22°N [55]. As the northern hemisphere cooled with the onset of glaciation and as the Central American seaway closed, the ITCZ shifted southward to its present location, 12°N, 4.4–4.3 Ma [55,56]. A more northerly position of the ITCZ in the early Pliocene and during interglacial periods would increase rainfall, alter circulation patterns and lower δ18O values in areas near the present northern limit of the ITCZ. Today, Gona is just south of the ITCZ northern limit.

Glacial and interglacial conditions oscillated on 23/19 kyr, 40 kyr and 100 kyr cycles from the Pliocene through the Pleistocene [57]. East African climate responded to these cycles with changes in moisture source and rainfall amount as described above. Late Pliocene and early Holocene groundwaters from northern Africa indicate that δ18O values were lower during African wet phases [58–60]. Similarly, speleothem δ18O values from the Oman indicate that δ18O values increased up to 9.4‰ between interglacial and glacial periods [61]. Fleitmann et al. [61] attribute the difference in δ18O values between interglacial and glacial periods to changes in moisture source with the oscillation of ITCZ position.

An increase in mean annual δ18O values, high variability in environmental conditions, and an increase in soil water evaporation are evident in the Plio–Pleistocene δ18O record at Gona and throughout East Africa. These trends are likely responses to the regional changes in circulation patterns, reduction in rainfall and climatic fluctuations that characterize Plio–Pleistocene climate in East Africa. Given the 100 kyr temporal resolution of the Gona record and the high frequency of climatic events in the Plio–Pleistocene we only explain the δ18O values in terms of general climatic trends. However, with a better understanding of modern δ18O values and the timing of the increase in δ18O values in the Plio–Pleistocene, it might be possible to connect changes in local environmental records to specific regional climate events.

8. Conclusions

Plio–Pleistocene δ13CPC and δ18OPC values at Gona and in East Africa indicate a gradual grassland expansion, changing circulation patterns, increased aridity, and strong environmental variability. A combination of global, regional and local climatic factors may be responsible for these trends.

The increase in C4 grasses at Gona through the Plio–Pleistocene reflects both a local shift in depositional environment and the East African expansion of C4 grasslands in the late Neogene [6]. Increasing aridity or a change in the seasonal distribution of rainfall, as indicated by the increase in δ18OPC values, are possible explanations for this vegetation shift at Gona. However, a greater abundance of C4 plants is also evident at Gona across a major facies shift at ~1.5 Ma between the lower Busidima Formation, where water is available on the landscape in lakes or active floodplains, and the upper Busidima Formation, where small tributary rivers host water-stressed environments. The Gona record demonstrates that changes in C3/C4 vegetation must be examined within their depositional context before assigning regional significance to any changes.

δ18OPC values from Gona and other East African sites point to an increase in δ18O values, greater aridity and high climate variability through the Plio–Pleistocene. The comparison between early Pliocene δ18OPC values and modern δ18O values demonstrates that δ18O values have increased by at least 6.5‰ since 4.5 Ma. We attribute low δ18O values in the Pliocene to a regional change in moisture source. Smaller-scale climate fluctuations that influence δ18O values and evaporative conditions are responsible for the large range of δ18OPC values at all stratigraphic levels.

The expansion of grasslands, changing δ18O values and increased aridity are probable responses to the onset of glaciation and the reorganization of atmospheric circulation in East Africa during the Plio–Pleistocene. However, the terrestrial expression of global or regional climate phenomena depends on local conditions. As we better characterize specific paleoenvironments and their
response to regional climatic trends, paleoenvironmental studies will become increasingly meaningful to questions concerning human evolution.

Acknowledgements

We thank K. Schick and N. Toth of CRAFT at Indiana University, the ARCH of the Ministry of Youth, Sports and Culture of Ethiopia, the National Museum of Addis Ababa, and the Afar people of Elowaha who made this project possible. D. Dettman and A. Cohen provided useful comments on the manuscript. We appreciate the instructive reviews of D. Deocampo and P. Koch. This research was funded by grants to S.S. from the Leakey Foundation, the Wenner-Gren Foundation, the National Geographic Society and the National Science Foundation (Grant SBR-9910794).[BOYLE]

References

M.A. Cane, P. Molnar, Closing of the Indonesian seaway...

