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Optimal entrainment of circadian clocks in the presence of noise
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Circadian clocks are biochemical oscillators that allow organisms to estimate the time of the day. These
oscillators are inherently noisy due to the discrete nature of the reactants and the stochastic character of their
interactions. To keep these oscillators in sync with the daily day-night rhythm in the presence of noise, circadian
clocks must be coupled to the dark-light cycle. In this paper, we study the entrainment of phase oscillators as
a function of the intrinsic noise in the system. Using stochastic simulations, we compute the optimal coupling
strength, intrinsic frequency, and shape of the phase-response curve, that maximize the mutual information
between the phase of the clock and time. We show that the optimal coupling strength and intrinsic frequency
increase with the noise, but that the shape of the phase-response curve varies nonmonotonically with the noise: in
the low-noise regime, it features a dead zone that increases in width as the noise increases, while in the high-noise
regime, the width decreases with the noise. These results arise from a tradeoff between maximizing stability—
noise suppression—and maximizing linearity of the input-output, i.e., time-phase, relation. We also show that
three analytic approximations—the linear-noise approximation, the phase-averaging method, and linear-response
theory—accurately describe different regimes of the coupling strength and the noise.
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I. INTRODUCTION

Many organisms possess a circadian clock to anticipate the
changes between day and night. Circadian clocks are biochem-
ical oscillators that can tick without any external driving with
an intrinsic, free-running period of about 24 h. In unicellular
organisms these oscillations are formed by chemical reactions
and physical interactions between molecules inside the cell,
while in multicellular organisms these oscillations are typically
shaped by a combination of intra- and intercellular interactions,
which are, however, both mediated by molecular interactions.
Due to the discreteness of molecules and the stochastic nature
of chemical and physical interactions, circadian oscillations are
inherently stochastic, which means that they have an intrinsic
tendency to run out of phase with the day-night cycle. To
keep the circadian oscillations in phase with the day-night
rhythm, the oscillations must be coupled to daily cues from
the environment, such as daily changes in light-intensity or
temperature. This coupling makes it possible to lock the clock
to, i.e., synchronize with, the daily rhythm. However, how the
circadian clock should be coupled to entrainment cues is a
question that is still wide open. It is neither clear what the
natural performance measure for entrainment is, nor is it fully
understood how this depends on the strength and form of the
coupling, the characteristics of the entrainment signal, and the
properties of the clock.

The function that is most commonly used to describe the
coupling of the clock to the entrainment signal is called the
phase-response curve [1]. It gives the shift of the phase of
the clock as induced by a perturbation (a small change in,
e.g., light intensity), as a function of the phase at which
the perturbation was given. The phase-response curve has
been measured for a wide variety of organisms, ranging
from cyanobacteria, to fungi, plants, flies, and mammals [2].

Interestingly, these phase-response curves share a number of
characteristic features: they typically consist of a positive and
a negative lobe, and often possess a dead zone of no coupling
during the subjective day (see Fig. 1). Yet, the width of the dead
zone can vary significantly, and also the negative and positive
lobes are not always equal in magnitude.

These observations naturally raise the question of what
the best shape is for a phase-response curve. To answer
this, a measure that quantifies the performance of the system
is needed. Several measures have been put forward. A key
characteristic of any locking scheme is the Arnold tongue [1],
which describes the range of system parameters over which the
deterministic system is locked to the driving signal. In general,
this range tends to increase with the strength of the driving
signal, and one performance measure that has been presented
is how the range—the width of the Arnold tongue—increases
with the magnitude of the driving; this derivative has been
called the “entrainability” of the clock [3,4]. Another hallmark
of any stochastic system is its robustness against noise, and,
in general, the stability of an entrained clock depends not only
on its intrinsic noise, but also on the strength and shape of the
coupling function; one way to quantify clock stability is the
so-called “regularity,” which is defined as the variance of the
clock period [3,4]. Another important property of any locked
system is its sensitivity to fluctuations in the driving signal.
To quantify this, Pfeuty et al. have defined two sensitivity
measures, one that describes the change in the phase difference
between the signal and the clock due to a change in the input,
and another that quantifies the change in the stability of the
fixed point (the slope of the phase-response curve) in response
to a change in the input signal [2].

These performance measures make it possible to make
predictions on the optimal shape of the phase-response curve.
Pfeuty et al. argued that the shape of the phase-response
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FIG. 1. Cartoon of the system. (a) The instantaneous phase-response curve Z(φ), characterized by the five parameters ε+,ε− and φ1,φ2,φ3.
The driving signal is given by L(t) = 1 during the day and L(t) = 0 during the night. (b) The phase evolution of the system, dφ/dt , can be
interpreted as that of a particle in a potential U (φ), with a force −dU (φ)/dφ = ω0 + Z(φ)L(t). Note that the particle only experiences a force
during the day, when L(t) = 1, and not during the night, when L(t) = 0. (c) The phase evolution of the system, in the limit of small noise.
During the night the deterministic system always evolves with its intrinsic frequency ω0. During the day, it evolves with its intrinsic frequency
ω0 when the phase is between φ1 and φ2; between φ3 − 2π and φ1, the system is “pushed,” moving with a frequency ω0 + ε+, while between
φ2 and φ3 it is slowed down, moving at frequency ω0 − ε−. (d) Illustration of how P (φ) evolves in time, in the regime of strong coupling. At
dawn, the system is pushed, narrowing the distribution; during the dead zone in which Z(φ) = 0, the distribution tends to widen; near dusk, the
system is slowed down, narrowing the distribution; during the night, the system evolves freely, widening the distribution again.

curve is determined by the requirement that the clock should
respond to changes in light intensity that are informative on
the day-night rhythm, namely light-intensity changes during
dawn and dusk, but should ignore uninformative fluctuations
in light intensity during the day, arising, e.g., from clouds [2].
This naturally gives rise to a dead zone in the phase-response
curve, which allows the clock to ignore the input fluctuations
during the day. Hasegawa and Arita argued that the shape of
the phase-response curve is determined by a tradeoff between
regularity (stability) and entrainability [3,4]. Entrainability
requires not only changes in light intensity, but also that a
change in the copy number ni of a component i, as induced
by the changing light signal, leads to a change in the phase
φ of the clock: the gain dφ/dni should be large. However, a
higher gain also means that the evolution of the phase becomes
more susceptible to noise in ni . Maximizing entrainability for
a given total noise strength integrated over 24 h then yields a
phase-response curve with a dead zone: During the day, when
informative variations in light intensity are low, a high gain
will not significantly enhance entrainability but will increase
the integrated noise, implying that the gain should be as low
as possible during the middle of the day.

In this paper, we introduce another measure to quantify the
performance of the system, the mutual information [5]. The
mutual information quantifies the number of signals that can
be transmitted uniquely through a communication channel. As

such it is arguably the most powerful measure for quantifying
information transmission, and in recent years the mutual
information has indeed been used increasingly to quantify
the quality of information transmission in cellular signaling
systems [6–24]. In the context studied here, the central idea is
that the cell needs to infer from a variable of the clock, e.g.,
its phase φ, the time of the day t . The mutual information
then makes it possible to quantify the number of distinct time
points that can be inferred uniquely from the phase of the clock.
Importantly, how many time states can be inferred reliably
depends not only on the noise in the system, but also on the
shape of the input-output curve, φ(t), i.e., the average phase
φ(t) at time t .

We study how the mutual information between the clock
phase and the time depends on the shape and magnitude of the
phase-response curve in the presence of intrinsic noise in the
system; we thus do not consider fluctuations in the input signal.
The clock is modelled as a phase oscillator and the phase-
response curve is described via a piecewise linear function (see
Fig. 1), which allows for optimization and analytical results.
We find that for a given amount of noise in the system there
exists an optimal coupling strength that maximizes the mutual
information: Increasing the coupling strength too much will
decrease the mutual information. However, as the noise in
the system increases, the optimal coupling strength increases.
Moreover, for a given shape of the phase-response curve
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featuring a dead zone, the optimal intrinsic (free running)
period of the clock is nonmonotonic: as the noise is increased,
the optimal period first becomes larger than 24 h, but then
decreases to become smaller than 24 h. Optimizing over not
only the coupling strength and the intrinsic period but also over
the shape of the phase-response curve reveals that the optimal
width of the dead zone is also nonmonotonic. As the noise
is increased, the width first increases, but then decreases. We
show that all of these results can be understood as a tradeoff
between linearity and stability. At low noise, it is paramount
to make the input-output relation φ(t) as linear as possible, be-
cause this maximizes the mutual information; this is enhanced
by a large dead zone and weak coupling. However, for large
noise strengths, stability becomes key, which favors a small
dead zone, a stronger coupling, and a smaller intrinsic period.

In the next section, we first briefly present the chemical
Langevin description of a biochemical network, because this
is important for understanding not only the phase-reduction
method that reduces the system to a phase-oscillator model,
but also for understanding some important characteristics of
the mutual information. In the subsequent section, we then in-
troduce the mutual information. We emphasize that the mutual
information is insensitive to a coordinate transformation and
that the mutual information between all degrees of freedom of
the system (i.e., copy numbers of all components) and the input
(i.e., time t) is always larger than that between one degree of
freedom and the input. This means that the mutual information
that we will compute between the phase of the clock and the
time will provide a firm lower bound on the actual mutual
information. We then briefly describe our phase-oscillator
model and how we model the phase-response curve.

In the results section, we first present the results of stochastic
simulations of our phase-oscillator model. By performing
very extensive simulations we find the system parameters that
maximize the mutual information, and by explicitly computing
the linearity and stability as a function of parameters, we show
that the optimal design as a function of the noise arises from
the tradeoff mentioned above between linearity and stability.

Finally, we present and apply three different analytic ap-
proximations (or “theories”), and show that each recapitulates
the simulations in a different parameter regime. The linear-
noise approximation accurately describes the regime of low
noise and strong coupling. The phase-averaging method [1]
captures the regime of low noise and weak coupling. Finally,
the linear-response theory accurately describes the mutual
information in the regime of high noise and weak coupling.
Whereas the first two approximations are valid in the vicinity
of the optimal coupling for an appropriate range of noise
strengths, the third turns out to hold only far from optimality.

II. MODEL

Below we derive the phase-oscillator model for a biochemi-
cal system starting from the chemical Langevin equation. This
description is generic: the biochemical system can either be
a single bacterial cell such as a cyanobacterium or a higher
eukaryotic organism.

A. Chemical Langevin description

We consider a self-sustained oscillator of M components
with copy numbers n1,n2, . . . ,nM , denoted by the vector n. Its

dynamics is given by

dn
dt

= A(n), (1)

where A(n) is determined by the propensity functions of the
chemical reactions that constitute the network. The limit cycle
of the free-running oscillator is the stable periodic solution of
this equation, n(t) = n(t + T0), where T0 is the intrinsic period
of the oscillator.

Due to the stochasticity of the chemical reactions and the
discreteness of the molecules, the evolution of the network
is stochastic. When the copy numbers are sufficiently large,
then the dynamics can be described by the chemical Langevin
equation [25],

dn
dt

= A(n) + η(n), (2)

where the vector η(t) describes the Gaussian white
noise, characterized by the noise matrix with elements
〈ηi(n(t))ηj (n(t ′))〉 = Dij (n)δ(t − t ′).

A clock is only a useful timing device if it has a stable and
precise phase relationship with the daily rhythm. Biochemical
noise tends to disrupt this relationship. To keep the clock in
sync with the day-night rhythm in the presence of noise, the
clock must be coupled to the light signal:

dn
dt

= A(n) + εp(n,t) + η(n). (3)

Here p(n,t) describes the coupling to the light signal and ε the
strength of the coupling. The coupling force p(n,t) = p(n,t +
T ) has a period T and frequency ω = 2π/T , which in general
is different from the intrinsic period T0 and intrinsic frequency
ω0 = 2π/T0, respectively, of the free-running oscillator. In this
paper, we will assume that the light signal is deterministic. We
thus only consider the biochemical noise in the clock.

B. Mutual information

The organism needs to infer the time t from the con-
centrations of the clock components. This inference will be
imprecise, because of the noise in the clock. We will quan-
tify the accuracy of information transmission via the mutual
information, which is a measure for how many distinct time
states can be resolved from the concentrations of the clock
components [5].

The mutual information I (n; t) = I ({n1, . . . ,nM}; t) be-
tween the copy numbers of all components and the time is
given by

I (n; t) =
∫

dn
∫

dtP (n; t) log2
P (n; t)

P (n)P (t)
, (4)

where P (n; t) is the probability that copy numbers n are found
at time t . I (n; t) measures the reduction in uncertainty about
t upon measuring {n1, . . . ,nM}, or vice versa. The quantity is
indeed symmetric in n and t :

In; t) = H (t) − 〈H (t |n)〉n (5)

= H (n) − 〈H (n|t)〉t , (6)

where H (a) = − ∫
daP (a) log2 P (a), with P (a) the prob-

ability distribution of a, is the entropy of a; H (a|b) =
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− ∫
daP (a|b) log2 P (a|b) is the information entropy of a

given b, with P (a|b) the conditional probability distribution
of a given b; 〈f (c)〉c denotes an average of f (c) over the
distribution P (c).

A key point worthy of note is that the mutual information is
invariant under a coordinate transformation, which allows us
to put a firm lower bound on the mutual information between
time and the clock components. Specifically, we can first make
a nonlinear transformation from n to some other set of variables
x, of which two components are the amplitude R of the clock
and its phase φ. Because the mutual information is invariant
under this transformation,

I (n,t) = I (x,t). (7)

Second, if the time is inferred not from all the components of
x, but rather from R and φ, then, in general,

I (R,φ; t) � I (x; t). (8)

By combining this expression with Eq. (7), we find that

I (n; t) � I (R,φ; t). (9)

Hence, once we have defined a mapping between n and x and
hence (R,φ), the mutual information I (R,φ; t) between the
combination of the amplitude and phase of the clock (R,φ) and
time t , puts a lower bound on the mutual information I (n; t).
A weaker lower bound is provided by the mutual information
between the phase of the clock and time:

I (n; t) � I (R,φ; t) � I (φ; t). (10)

However, we expect this bound to be rather tight, since a
reasonable, natural, mapping between n and (R,φ) should put
the information on time in the phase of the clock.

C. Phase oscillator

The bound of Eq. (10) makes it natural to develop a
description of the clock in terms of the phase. Here, we review
the derivation of such a description, largely following the
standard arguments in [1], but paying special attention to the
appropriate form of the effective noise on the phase variable. In
the absence of any coupling and noise, the temporal evolution
of the phase is given by

dφ(n)

dt
= ω0, (11)

where ω0 = 2π/T0 is the intrinsic frequency of the clock, with
T0 the intrinsic period. As the phase is a smooth function of n,
the evolution of φ is also given by

dφ(n)

dt
=

∑
i

∂φ

∂ni

dni

dt
. (12)

Combining the above two equations with Eq. (1) yields the
following expression for the intrinsic frequency:

ω0 =
∑

i

∂φ

∂ni

Ai(n). (13)

This equation defines a mapping φ(n). This mapping is defined
such that for each point n in state space, the time derivative
dφ(n)/dt = dφ/dt of the phase is constant and equal to

ω0. The surfaces of constant φ(n), defined according to this
mapping, are called isochrones.

In the presence of noise, the phase dynamics is, combining
Eqs. (2) and (12),

dφ(n)

dt
=

∑
i

∂φ

∂ni

[Ai(n) + ηi(n)] (14)

= ω0 + ξ (n), (15)

which yields for the noise on the phase variable

ξ (n) =
∑

i

∂φ

∂ni

ηi(n). (16)

In general, the variance of ξ thus depends on all of the state
variables n, not just on the phase φ, and Eq. (15) does not give
a closed description in terms only of φ. However, when the
deviations from the limit cycle are small compared to the scale
over which the noise strength changes as a function of distance
from the limit cycle, we can estimate the noise by evaluating
it at the limit cycle, n0:

ξ (φ) =
∑

i

∂φ(n0)

∂ni

ηi(n0), (17)

with Gaussian white noise statistics

〈ξ (φ(t))ξ (φ(t ′))〉 =
∑
i,j

∂φ

∂ni

∂φ

∂nj

Dij (n0)δ(t − t ′), (18)

≡ 2D(φ)δ(t − t ′). (19)

When the system is coupled to light, the phase evolution
becomes, from Eqs. (3) and (12),

dφ(n)

dt
=

∑
i

∂φ

∂ni

[Ai(n) + εpi(n,t) + ηi(n)]. (20)

The force depends explicitly on time. This impedes a unique
definition of the isochrones φ(n), because how the phase
evolves at a particular point in phase space depends not only
on n but also on t . Of course, one could still adopt the mapping
of the free-running system, in which case the evolution of the
phase is given by

dφ(n)

dt
= ω0 + ε

∑
i

∂φ

∂ni

pi(n,t) + ξ (φ). (21)

The problem is that, because along the surface φ(n) the light-
coupling term is not constant, dφ(n)/dt will depend on n. One
can then not reduce the dynamics to that of a single phase
variable.

However, if ε is small and the force only leads to small
deviations from the limit cycle of the free-running system, then
one may approximate the effect of the forcing by evaluating
the corresponding term at the limit cycle, n0. We then have

dφ(n)

dt
= ω0 + ε

∑
i

∂φ(n0)

∂ni

pi(n0,t) + ξ (φ). (22)

In this case the evolution of the phase no longer explicitly
depends on n:

dφ

dt
= ω0 + Q(φ,t) + ξ (φ), (23)
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with

Q(φ,t) = ε
∑

i

∂φ(n0(φ))
∂ni

pi(n0(φ),t). (24)

How a circadian clock responds to a given light signal L(t)
depends on its phase φ; it does not explicitly depend on time.
The coupling term can then be written as Q(φ,t) = Z(φ)L(t),
where Z(φ) is the instantaneous phase-response curve, which
describes how the clock responds to the light signal as a
function of its phase φ. In addition, while in general the noise
strength depends on the phase, we will, motivated by the
experimental observations of Mihalecescu and Leibler on the
clock of the cyanobacterium Synechococcus elongatus [26],
assume it is constant. We then finally arrive at the equation
that describes the evolution of the phase in our model:

dφ

dt
= ω0 + Z(φ)L(t) + ξ (t), (25)

with 〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′).
In what follows, we will study entrainment using the above

equation not only when Z(φ)L(t) and D are much smaller
than ω0, so that the weak coupling assumptions necessary
for the reduction to a phase oscillator clearly hold, but also
when Z(φ)L(t) or D are of order ω0 or larger. As we discuss
in more detail in Sec. V, however, this does not present any
contradiction, because it is perfectly possible for the noise and
the external driving to be small compared to restoring forces
orthogonal to the limit cycle, so that the system always stays
near the limit cycle and the phase is the only relevant variable,
while simultaneously strongly perturbing motion along the
limit cycle. Hence, our description not only applies to organ-
isms with highly stable rhythms, such as the cyanobacterium S.
elongatus [26], but also to cells with more noisy clocks [27,28].

While it is clear that ε can be varied independently of the
noise strength, it is perhaps less obvious that Z(φ) and D can
be varied independently. When the size of the system, e.g.,
the volume of a living cell, is changed, then the noise strength
D will change, but the coupling strength Z(φ) will, to first
order, not change because the concentrations remain constant.
This shows that at least fundamentally Z(φ) and D can be
varied independently by changing the volume. In fact, even
experimentally this might be possible: to study the effect of
noise on the differentiation dynamics of the bacterium Bacillus
subtilus (which does not have a circadian clock), Süel and
co-workers varied cell length by inducing filamentation [29]
and similar experiments could potentially be performed for
cyanobacteria [30]. In addition, typically the system is coupled
to light only via a relatively small number of reactions, while
the noise is determined by all reactions. Also in this case,
it seems natural to assume that Z(φ) and D can be varied
independently. We note that the arguments of Hasegawa and
Arita do not contradict our arguments that Z(φ) and D can be
varied independently: the fact that changing the gain ∂φ/∂ni

affects both the coupling to light (entrainability) and the phase
noise [3,4], does not mean that the noise and the coupling
cannot be varied independently if other parameters are changed
(and vice versa). We thus imagine that pi(n) can be tuned (by
evolution) independently of the Dij (n). We do not change the
mapping φ(n), determined by the properties of the uncoupled
system.

D. System

We will approximate Z(φ) and L(t) as step functions,
shown in Fig. 1. This makes it possible to analytically
obtain the Arnold tongue, i.e., the range of parameters for
which the deterministic system locks to the day-night rhythm
in the absence of noise. The light-dark function L(t) is
unity for 0 < t < T/2 and zero for T/2 < t < T . The shape
of the instantaneous phase-response curve Z(φ) is inspired
by experimentally characterized response curves, featuring a
positive lobe, a dead zone in which Z(φ) is essentially zero,
a negative lobe, followed by a positive lobe again [2]. It is
characterized by five variables, the coupling strengths ε+ and
ε−, and the phases φ1,φ2,φ3:

Z(φ) =

⎧⎪⎨
⎪⎩

ε+ 0 < φ < φ1

0 φ1 < φ < φ2

−ε− φ2 < φ < φ3

ε+ φ3 < φ < 2π

, (26)

where ε+ and ε− are greater than 0. With these five variables,
a wide range of experimentally characterized phase-response
curves can be described.

III. RESULTS

A. Arnold tongue of the deterministic system

Motivated by the observation that circadian clocks typically
lock 1:1 to the day-night rhythm, we will focus on this locking
scenario, although we will also see that this system can exhibit
higher-order locking, especially when the intrinsic period of
the clock deviates markedly from that of the day-night rhythm.
To derive the Arnold tongue, we first note that when the clock
is locked to the light-dark cycle, it will have a characteristic
phase φs at the beginning of the light-dark cycle, ts = 0. In the
case of 1:1 locking, the phase of the clock will then cross
phase φ1 at time t1, φ2 at time t2, and φ3 at time t3. To
obtain the Arnold tongue, we have to recognize that there are
in total 12 possible locking scenarios: three for φs and four
for t1,t2,t3. The scenarios for φs are (1) φ3 − 2π < φs < φ1;
(2) φ1 < φs < φ2; (3) φ2 < φs < φ3. The four scenarios for
t1,t2,t3 are defined by where T/2 falls with respect to these
times: (1) T/2 < t1 < t2 < t3; (2) t1 < T/2 < t2 < t3; (3) t1 <

t2 < T/2 < t3; (4) t1 < t2 < t3 < T/2. For each of these 12
scenarios, we can analytically determine φs and t1,t2,t3, which
then uniquely specify φ(t). The four unknowns, φs,t1,t2,t3,
give each an inequality for T , and the range of T that satisfies
all four inequalities determines the width of the Arnold tongue.
For each of the 12 scenarios for the given ε+,ε−, we have
an Arnold tongue, and those 12 tongues together give “the”
Arnold tongue for those values of ε+,ε−. We now derive the
tongue for scenario 1, which is also the most important one,
as we will see: in this regime, the mutual information between
time and the phase of the clock is the largest.

Scenario 1 is characterized by φ3 − 2π < φs < φ1; 0 <

t1 < t2 < T/2 < t3. The solution depends on whether ε− is
larger or smaller than ω0. If ε− < ω0, then the deterministic
system locks 1:1 to the driving signal when

φs + (ε+ + ω0)t1 + ω0(t2 − t1)

+ (−ε− + ω0)(T/2 − t2) + ω0T/2 = φs + 2π. (27)
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To solve this, we note that φ1 = φs + (ω0 + ε+)t1, 
φ12 ≡
φ2 − φ1 = ω0(t2 − t1). The solution is

t1 = 2π − T (ω0 − ε−/2) − ε−
φ12/ω0

ε+ + ε−
� 0, (28)

t2 = 
φ12

ω0
+ t1 < T/2, (29)

t3 = 
φ23

ω0 − ε−
+ t2 > T/2, (30)

φs = φ1 − (ω0 + ε+)t1 > φ3 − 2π, (31)

where 
φ23 ≡ φ3 − φ2. The above inequalities lead to the
following inequalities for the period T , respectively:

T � 2π − ε−
φ12/ω0

ω0 − ε−/2
, (32)

T >
2π + ε+
φ12/ω0

ε+/2 + ω0
, (33)

T <
2π + ε+
φ12/ω0 + 
φ23(ε+ + ε−)/(ω0 − ε−)

ε+/2 + ω0
, (34)

T >
(
φ13 − 2π )(ε+ + ε−)/(ω0 + ε+) + 2π − ε−
φ12/ω0

ω0 − ε−/2
,

(35)

where 
φ13 ≡ φ3 − φ1 = 
φ12 + 
φ23. The width of the
Arnold tongue is given by the range of T that satisfies all
inequalities.

If ε− > ω0, then the equation to solve is

φs + (ε+ + ω0)t1 + ω0(t2 − t1) + ω0T/2 = φs + 2π. (36)

The solution is

t1 = 2π − ω0T/2 − 
φ12

ε+ + ω0
� 0, (37)

t2 = 
φ12

ω0
+ t1 < T/2, (38)

t3 = ∞ > T/,2 (39)

φs = φ1 − (ω0 + ε+)t1 > φ3 − 2π. (40)

The third inequality for t3 does not contribute if the other
inequalities are satisfied. We thus have three inequalities:

T � 2(2π − 
φ12)

ω0
, (41)

T >
2π + ε+
φ12/ω0

ε+/2 + ω0
, (42)

T >
2
φ23

ω0
. (43)

It is seen that the locking region does not depend on the
absolute values of φ1,φ2,φ3, but only on the separation be-
tween them, leaving only two independent parameters that are
related to the phase: 
φ12 = φ2 − φ1 and 
φ23 = φ3 − φ2; the
remaining interval is given by 2π − 
φ13 = 2π − (
φ12 +

φ23). Shifting the absolute values of φ1,φ2,φ3 only changes
the definition of the phase of the clock, not the moments
of the day—t1,t2,t3—at which Z(φ) changes. The system
thus has five independent parameters, four related to Z(φ)—

φ12,
φ23,ε+,ε−—and one being the intrinsic frequency ω0.

I II III

IV

0.5 1 1.5 2.52

1

3

2

4

5

FIG. 2. The Arnold tongue for 1 : 1 locking in the deterministic
model, with the coupling strength ε+ = ε− = ε in units of the (fixed)
frequency of the day-night rhythm ω, plotted as a function of the
intrinsic frequency of the clock,ω0/ω. The different colors correspond
to the different scenarios that yield a stable solution. The large region
around ω0/ω = 1, bounded by the blue lines, corresponds to the
Arnold tongue of scenario (1). The adjoining region to the right, with
the red boundaries, corresponds to scenario (2). The green lines bound
the Arnold tongue of scenario (3), and the yellow lines on the far left
yield the Arnold tongue of scenario (4). The other key parameters of
Z(φ) are kept constant: 
φ12 = 
φ23 = π/2.

In Appendix A, we derive the Arnold tongues for the other
scenarios. It turns out that only scenarios (1)–(4) yield stable
solutions; the solutions of the other scenarios are unstable.

Figure 2 shows the Arnold tongues for the four scenarios.
Since we imagine that the period of the light-day cycle is fixed
while the clock can adjust its intrinsic frequency ω0, we plot the
range of ε = ε+ = ε− over which the system exhibits a stable
deterministic solution, as a function of ω0/ω; 
φ12 = 
φ23 =
π/2. The different colors correspond to the different scenarios.
Clearly, the Arnold tongues of the respective scenarios are
adjoining. The region in the middle, around ω0 = ω, bounded
by the blue lines, corresponds to our natural scenario, i.e.,
scenario 1, discussed above. The green lines bound the Arnold
tongue of scenario 3. This is an unnatural scenario, because
in this scenario the clock is driven backwards when the light
comes up. Moreover, for ω0/ω > 2, the system can also exhibit
higher-order locking, which is biologically irrelevant. We will
therefore focus on the regime 0.5 < ω0 < 2.

Figure 2 shows that for ε < 1 the Arnold tongue exhibits
the characteristic increase in its width as the coupling strength
is increased: coupling increases the range of frequencies over
which the clock can be entrained. However, for ε > 1, the width
does not change significantly; in fact, it does not change at all
when ω0 > ω. This is because (a) during the day, for ε− = ε =
ε+ > 1, the phase evolution comes to a halt at φ3—the particle
sits in the potential well of Fig. 1(b), and (b) during the night
the system evolves with a fixed speed ω0, independent of ε.

Following earlier work [31], the relationship between the
Arnold tongue and the phase of entrainment—the phase differ-
ence between the Zeitgeber and the clock—has recently been
studied in considerable detail [32–34]. The phase difference
depends on the frequency mismatch ω0 − ω and the coupling
strength and was found to vary for a range of systems by
approximately 180◦ within the Arnold tongue [32–34]. Our
work underscores these observations: the phase φs (which
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quantifies the phase difference between clock and input) varies
with the intrinsic frequency ω0 and coupling strengths ε+ and
ε− within the Arnold tongue (Fig. 2), changing continuously
from one region to the next [see Eqs. (37) and (40) for region
I, and Appendix A for other regions]. Interestingly, within
regions I, II, and IV, φs varies for a given coupling strength
ε+ = ε− = ε from φ3 − 2π (the left border of region IV,
corresponding to the smallest intrinsic frequency ω0 for which
the system exhibits 1 : 1 locking) to φ2 (the right border of
region II, corresponding to the highest value of ω0); φs is
thus excluded from φ2 < φs < φ3 (see Fig. 1). Hence, the
range over which φs varies within I, II, IV is φ2 − φ3 + 2π :
clearly, for φ3 and φ2 such that φ3 − φ2 = π , also in our
model the phase difference varies within the Arnold tongue
by 180◦, supporting the earlier observations [32–34]. In fact,
if, additionally, φ2 = φ1, such that there is no dead zone,
the scenario with φ3 − φ2 = π corresponds to a symmetric
sinusoidal-like phase-response curve, for which the 180◦ rule
has been reported [32].

B. Optimal coupling strength and intrinsic frequency
in presence of noise

While the Arnold tongue shows the range of parameters over
which the deterministic system can exhibit stable 1 : 1 locking,
it does not tell us how reliably the time can be inferred from
the phase in the presence of noise. To address this question,
we have computed the mutual information I (φ; t) between the
phase of the clock, φ(t), and the time t . The mutual information
captures how the reliability to infer the time depends on
the mean input-output relation φ̄(t), the noise in the system,
and the restoring force for deviations away from the mean
input-output relation. We have computed I (φ; t) by performing
long stochastic simulations of the system, i.e., stochastically
propagating Eq. (25).

Figure 3(a) shows a heat map of the mutual information as
a function ε+ = ε− = ε and ω0/ω, for 
φ12 = 
φ23 = π/2
and D = 0.1/T . Superimposed over the heat map are the
deterministic Arnold tongues for scenarios (1)–(4), which are
also shown in Fig. 2. It is seen that the mutual information is
highest in the region bounded by the Arnold tongue of 1 : 1
locking in scenario 1. Interestingly, however, the figure does
also show that the mutual information can be large outside of
the 1 : 1 locking regimes, especially when ω0/ω > 2. This is
the result of higher-order locking.

The results of Fig. 3(a) are further elucidated in Figs. 3(b)–
3(d), which show the mutual information as a function of ω0/ω

for different values of the diffusion constant D, and for three
different values of ε/ω, respectively; the results forD = 0.1/T

in Figs. 3(b)– 3(d) correspond to three different cuts through
the heat map of Fig. 3(a). The following points are worthy
of note. First, it can be seen that for each value of ε/ω and
ω0/ω the mutual information always increases with decreasing
D. Decreasing the noise makes the mapping from the time
to the phase of the clock more deterministic, which means
that the time can be more accurately inferred from the phase
of the clock. Second, it is seen that the mutual information
exhibits very characteristic peaks, which result from higher-
order locking. For example, the peak at ω0/ω ≈ 2.3 for ε =
1.5ω, corresponds to 2 : 1 locking.

(a) (b)

(c) (d)

FIG. 3. The mutual information as a function of ε, D, and ω0,
keeping 
φ12 = 
φ23 = π/2. (a) Heat map of the mutual informa-
tion as a function of ε/ω and ω0/ω for D = 0.1/T , respectively.
Superimposed are the Arnold tongues for 1 : 1 locking in scenarios
(1)–(4). It is seen that the mutual information is high inside the Arnold
tongues, with the region corresponding to scenario (1) being the most
stable one. The mutual information can, however, also be high outside
the 1 : 1 locking regions, because of higher-order locking, especially
when ω0/ω > 2. (b)–(d) The mutual information as a function of
ω0/ω for different values of the diffusion constant D, and for three
values of the coupling strength ε/ω, as indicated by the dashed lines
in panel (a): ε/ω = 0.5 (b), ε/ω = 1.5 (c), and ε/ω = 4.5 (d). For
all values of ε, the mutual information increases as D decreases. The
peaks outside the main locking region around ω0 ≈ ω correspond to
higher-order locking.

Figure 3 also shows that, for a given ω0 and D, the mutual
information initially increases with ε. This is not surprising,
and is consistent with the observation that increasing the
coupling strength ε tends to widen the Arnold tongue; locking
is enhanced by increasing the coupling strength. However, a
closer examination of the different panels of Fig. 3 suggests
that the mutual information not only saturates as ε is increased
further, but even goes down. The second surprising observation
is that the optimal intrinsic frequency ω0 that maximizes the
mutual information is not equal to ω. In fact, it seems to be
smaller than ω when D is small, but then becomes larger than
ω as D is increased [Fig. 3(d)].

To elucidate the optimal design of the clock that maximizes
the mutual information further, we show in Fig. 4(a) the mutual
information Iω

opt
0

(φ; t) that has been obtained by maximizing
I (φ; t) over ω0 as a function of ε, for different values of D.
It is seen that for all values of D, Iω

opt
0

(φ; t) first rises with
ε, as expected. However, Iω

opt
0

(φ; t) then reaches a maximum,
after which it comes down: there exists an optimal coupling
strength εopt that maximizes Iω

opt
0

(φ; t); increasing the coupling
too much will actually decrease the mutual information.
Figure 4(a) also shows, however, that the optimal coupling εopt

does increase with the diffusion constant. This is more clearly
shown in Fig. 4(b): εopt increases monotonically with D. This
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FIG. 4. Optimal design of the clock: parameters ε = ε+ = ε−
and ω0 of the phase-response curve Z(φ) that maximize the mutual
information I (φ,t) as a function of the intrinsic clock noise D,
keeping the shape of Z(φ) constant [see Fig. 1(a)]. (a) The mutual
information I

ω
opt
0

(φ; t) obtained by maximizing I (φ; t) over ω0 as a
function of ε, for different values of D. It is seen that there is an
optimal coupling strength εopt that maximizes the mutual information,
which depends on the magnitude of the diffusion constant D; the
blue dot denotes the maximum for each value of D. The figure also
shows the predictions of three theories, each for their own regime of
validity: the linear-noise approximation (LNA), which captures the
regime of strong coupling ε and low diffusion D (result shown for
D = 10−2/T ); the phase-averaging method (PAM), which describes
the regime of weak coupling and weak noise (result shown for
D = 10−3/T ); and linear-response theory (LRT), which describes
the regime of high diffusion and weak coupling (result shown for
D = 1/T ). For a more detailed comparison of the accuracies of the
respective theories, see Fig. 8. (b) The optimal coupling strength εopt

(red dots) and the optimal intrinsic frequency ω
opt
0 (blue dots), both

obtained by maximizing I (φ; t) over both ε and ω0, as a function of D.
While εopt increases with D monotonically, ω

opt
0 first decreases from

ω0 = ω, but then rises again to become larger than ω for higher D. The
lines are a guide to the eye. Other parameters: 
φ12 = 
φ23 = π/2.

panel also shows the optimal intrinsic frequency ω
opt
0 obtained

by maximizing the mutual information over both ω0 and ε,
as a function of D. For D → 0, εopt goes to zero, and ω0 to
ω—this is the free-running clock. As D is increased, however,
ω0 first decreases, but then increases again to become larger
than ω for higher diffusion constants. The optimal intrinsic
period that maximizes the mutual information depends in a
nontrivial, nonmonotonic manner on the noise in the clock.

C. Optimal design arises from tradeoff between
linearity and stability

To understand the optimal design of the clock, we have
to recognize that, in general, the amount of information that
is transmitted through a communication channel depends on
the input distribution, the input-output relation, and on the
noise that is propagated to the output. For a given amount
of noise, the optimal shape of the input-output relation that
maximizes the mutual information is determined by the shape
of the input distribution. However, the shape that optimally
matches the input-output curve to the input distribution is not
necessarily the design that minimizes the noise in the output.
Our system provides a clear demonstration of this general
principle, and, as we will see, the optimal design of the clock
can be understood as arising from a tradeoff between stability,
i.e., noise minimization, and linearity, i.e., optimally matching
the input-output curve to the statistics of the input.

When the noise is very weak, noise minimization is not
important, and optimally matching the input-output curve to
the input distribution is paramount. Since the input distribution
p(t) is flat, the optimal input-output curve is linear: the average
phase φ(t) should increase linearly with time t . This is indeed
the solution of the free-running clock, φ(t) = ω0t , and it
explains why in the low-noise limit the optimal design is that
of an essentially free-running system that is only very weakly
coupled to the input.

However, as the noise level is increased, the reliability
by which each input signal is relayed becomes increasingly
important. Here, a tradeoff could emerge: while increasing the
coupling strength ε could reduce the noise at the output, which
tends to enhance information transmission, it may also distort
the input-output curve, pushing it away from its optimal linear
shape, decreasing information transmission. Can we capture
this tradeoff quantitatively?

To study the tradeoff between linearity and stability, we have
computed for each value of ε the value of ω0 that makes the
average input-output relation φ(t) most linear, i.e., minimizes∫ T

0 dt[φ(t) − ωt]2. The result is the blue line in Fig. 5(a), which
lies in the Arnold tongue of scenario (1). Along this line of
maximal linearity, ω0 decreases as ε increases, which can be
understood intuitively by noting that increasing ε introduces
a curvature in the input-output relation, leading to a deviation
away from the straight line ωt : at the beginning of the day, till
the time t1 at which the system crosses φ1, the phase evolves
with a speed ω0 + ε, whereas between the time t2 at which
the system crosses φ2 and the end of the day at T/2, the phase
evolves either following φ2 when ε = ε− > ω0 or evolves with
a speed ω0 − ε when ε = ε− < ω0. While increasing ε tends
to increase the curvature, this effect can be counteracted by
decreasing ω0.

To quantify the stability, we define the return map Ft (φ):

φ(t + T ) = F (φ(t)) = Ft (φ), (44)

where the subscript t for F indicates that the return map
depends on time; this subscript will be suppressed in what
follows below when there is no ambiguity, in order to simplify
notation. The deterministic solution φ∗(t) is given by φ∗(t) =
φ∗(t + T ) = F (φ∗(t)). We now expand F (φ) around φ∗(t):

F (φ∗ + δφ) = F (φ∗) + F ′(φ∗)δφ, (45)

where δφ = φ − φ∗ and we have dropped the subscript t

because F ′(φ), which gives the rate of exponential relaxation
back to the limit cycle over many cycles, must be independent
of t . Indeed, by exploiting that F (φ∗(t)) = φ∗(t + T ), we find
that

δφ(t + T ) = F ′(φ∗)δφ(t). (46)

The quantity F ′(φ∗) ≡ ∂F (φ)/∂φ|φ∗ = ∂φ(t + T )/∂φ(t)|φ∗(t)

determines the linear stability of the system, with F ′ < 1
meaning that the system is stable. The quantity can be
directly obtained from the deterministic solutions. We first
note that, since L(t) = 0 during the dark, F ′(φ∗(t = 0)) =
∂φ(T )/∂φ(0) = ∂φ(T/2)/∂φ(0). For scenario (1), when
ε− < ω0, φ(T/2) = φ2 + (ω0 − ε−)(T/2 − t2). We then find
that, exploiting Eqs. (38) and (40), F ′(φ∗(t = 0)) = ∂φ(T/2)/
∂φ(0) = ∂φ(T/2)/∂φs= (∂φ(T/2)/∂t2)(∂t2/∂t1)(∂t1/∂φs) =
(ω0 − ε−)/(ω0 + ε+). Similarly, for scenario (2) we find
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FIG. 5. The optimal design arises from a tradeoff between linearity and stability. (a) The black line shows the Arnold tongue (AT) for
scenarios (1) and (4) while the green line shows the Arnold tongue of scenario (2) (see also Fig. 2). The dashed blue line shows for each value
of ε the value of ω0 that makes the input-output curve φ(t) most linear, i.e., minimizes

∫ T

0 dt[φ(t) − ωt]2. The dashed red line shows for each
value of ε the value of ω0 that maximizes the stability. For ε/ω < 2, this line is ω0 = ε, along which F ′ = 0; for ε = ε− > ω0, F ′ = 0 for
all values of ω0 and ε; the line of maximal stability then corresponds to the line where the system spends most of its time in φ2, which is the
line ω0 = ε when ε < 2ω and ω0 = 2ω when ε � ω; this is further illustrated in panel (b). The dashed black line shows a parametric plot of
the optimal system, i.e., the combination (εopt,ω

opt
0 ) that maximizes the mutual information as a function of D [values of D along this solid

line are indicated by the colored circles; see also Fig. 4(b)]. It is seen that for low diffusion constant, the optimal system that maximizes the
mutual information (black line) follows the dashed blue line where the input-output curve is most linear, while for high noise the optimal system
moves towards the dashed red line, where the system is most stable. How this tradeoff between linearity and stability maximizes information
transmission is further illustrated in panels (c) and (d). Panel (b) shows the average input-output curves for the three points labeled (i), (ii),
and (iii) in panel (a). It is seen that as the system moves towards the line of maximal stability, the time the system spends in φ2 increases; for
ε/ω > 2, at ω0 = 2ω, the system starts the day at φ2. Panel (c) shows the two average input-output curves corresponding to the two points (1)
and (2) in panel (a), together with the output noise, for a high value of the diffusion constant, D = 0.1/T . Panel (d) shows the same, but then
for a low value of the diffusion constant, D = 10−3/T . It is seen that when the noise is small (panel d), the output noise of the more stable
system (red line) is hardly smaller than that of the more linear system (blue line); consequently, the optimal input-output curve can be linear to
maximize information transmission. In contrast, when the noise is large [panel (c)], the system with a more linear input-output curve (the blue
line) has significantly more output noise than the more stable but more nonlinear system (red line); in this regime, stability becomes important
for taming the output noise, making the optimal system more nonlinear (red line). Other parameters: 
φ12 = 
φ23 = π/2.

that, for ε− < ω0, F ′(φ∗(t = 0)) = (ω0 − ε−)/ω0. Here, we
consider the case that ε− = ε+ = ε. Clearly, in both scenarios
the stability is maximized when ε approaches ω0 and F ′(φ∗)
becomes zero. This defines the line ε = ω0, along which
F ′(φ∗) = 0; it is the part of the red dashed line of maximal
stability in Fig. 5(a) that corresponds to ε < 2ω.

For ε = ε− > ω0, F ′(φ∗) = 0 for both scenarios (1) and (2),
because during the day the phase evolution of the system comes

to a standstill at φ2; any perturbation in φ will fully relax during
one period. Can we nonetheless differentiate in the stability
strength, even though the linear stability F ′(φ∗) = 0 for all
points (ε,ω) above the line ε = ω0? To answer this question,
we turn to a global stability measure, which is defined by the
amount of time the deterministic system spends at φ2, which
is the bottom of the potential well when ε = ε− � ω0 (see
Fig. 1). The value of ω0 that maximizes the stability for a
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given ε according to this measure is ω0 = ε when ε � 2ω

and ω0 = 2ω when ε � 2ω. This fully specifies the line of
maximum stability shown in Fig. 5(a). The reason why the
stability is maximized along this line is illustrated in Fig. 5(b).
During the night, the trajectories evolve freely, and because
of noise they will arrive at the beginning of the day with a
distribution of phases. Along the line of maximum stability,
the stochastic trajectories are most likely to reach the bottom
of the potential well at φ2 during the day (see Fig. 1), where
they will be confined before they are released again during the
night. Indeed, along this stability line the variance in the phase,
〈δφ2〉, will be lowest which tends to increase information
transmission. However, the input-output relation φ(t) is then
highly nonlinear. In fact, the globally most stable solution, for
all possible values of ε and ω0, is

φstab(t) ≡ φ2θ (T/2 − t) + ω0tθ (t − T/2), with ω0 = 2ω,

(47)

which is the most stable solution for any ε � 2ω. It is shown in
Fig. 5(b)—it is the solution at the high-frequency boundary of
the Arnold tongue of scenario (2). This solution maximizes
the probability that trajectories that start at the limit cycle
at the beginning of the day will return to the limit cycle φ2

before the end of the day. While this solution is maximally
stable, no time points t can be inferred from φ(t) during the
day, because φ(t) is completely flat. This dramatically reduces
information transmission.

The optimal values of ω0 and ε that maximize the mutual
information as a function of the noise in the system can now
be understood as a tradeoff between linearity and stability.
This tradeoff is illustrated in the bottom panels of Fig. 5,
which show the average input-output curves, together with
their output noise, for the two points 1 and 2 in the map
of Fig. 5(a), both for a high diffusion constant [Fig. 5(c)]
and a low diffusion constant [Fig. 5(d)]. When the diffusion
constant is low [Fig. 5(d)], the noise in the more stable but
more nonlinear system (red line, corresponding to point 2) is
hardly lower than that in the more linear but less stable system
(blue line, corresponding to point 1), which means that the
benefit of linearity dominates and the mutual information is
maximized in the more linear system. In contrast, when the
noise is larger [Fig. 5(c)], the output noise in the more stable
but more nonlinear system (red line) is so much smaller than
that in the less stable but more linear system (blue line) that
it outweighs the cost of higher nonlinearity, thus maximizing
mutual information.

Finally, Fig. 5(a) also shows a parametric plot of the optimal
(ε,ω0) that maximizes the mutual information, with the noise
D the parameter that is being varied (dashed black line; the
colors of circles denote values of the diffusion constant). It
is seen that for low D the optimal system traces the dashed
blue line of maximal linearity, but then at a higher D makes a
transition towards the dashed red line line of maximal stability.

D. Optimal shape of the phase-response curve

In the previous section, we showed how the optimal values
of the coupling strength ε and the intrinsic frequencyω0 depend

on the noise D in the system, while keeping the shape of the
coupling function Z(φ) constant. In this section, we will relax
this restriction.

We first checked the effect of changing the magnitude
of the positive and negative lobe of the coupling function
Z(φ) as characterized by ε+ and ε−, respectively (see Fig. 1),
keeping 
φ12 = 
φ23 = π/2 constant. We varied ε+ and ε−
via a parameter α, defined as ε+ = (1 − α)ε and ε− = αε;
changing α thus keeps the total absolute coupling strength
(the integrated modulus) constant. We found, however, that
the results are not very sensitive to the precise values of ε+
and ε− (see Appendix D).

We then decided to compute the mutual information I (φ,t)
as a function of 
φ12 and 
φ23 for different values of ε,
ω0, and D, keeping ε+ = ε− = ε. We found that the mutual
information is essentially independent of 
φ23. This can
be understood as follows: The deterministic Arnold tongue,
and, to a good approximation, the dynamics of the stochastic
system, does not depend on the absolute values of φ1,φ2,φ3,
but only on 
φ12 and 
φ23 (see Sec. III A). Moreover, as long
as φ3 is crossed during the night (see Fig. 1), we can change φ3

at will, because during the night, when L(t) = 0, the clock is
not coupled to light [see Eq. (25)], meaning that the clock runs
with its intrinsic frequency ω0. Changing 
φ23 by changing φ3

will thus have no effect. Changing 
φ23 by changing φ2 will
also have no effect when φ1 is simultaneously changed such
that 
φ12 remains constant: while changing φ2 and φ1 keeping

φ12 and φ3 constant will alter 
φ23, we can always change
φ3 such that 
φ23 remains unchanged. In short, as long as φ3

is crossed during the night (which it will be for most values of
φ1 and φ2), changing φ1 and φ2 keeping 
φ12 constant does
not change the dynamics; the times t1 and t2 at which φ1 and
φ2 are crossed, respectively, do not change.

Because φ23 is not critical, we kept 
φ23 = π/2, and
then performed very extensive simulations to determine the
optimal coupling strength ε∗, speed ω∗

0, and optimal dead zone

φ∗

12 that maximize the mutual information, as a function of
D. Figure 6 shows a parametric plot of ε∗(D), ω∗

0(D), and

φ∗

12(D), with D being the parameter that is varied. It is seen
that for very low D, the optimal coupling strength ε∗ is small,
the optimal intrinsic frequency ω∗

0 is close to ω, and the optimal
value of 
φ∗

12 is small. As the diffusion constant is increased,
ε∗ rises but ω∗

0 initially remains close to ω and then increases
too. The optimal value of 
φ12, however, first rises and then
falls again.

The behavior of 
φ∗
12 can again be understood as a tradeoff

between linearity and stability. This is illustrated in Fig. 7.
The figure shows for different values of ε the linearity and the
stability of the input-output relation φ(t) as a function of 
φ12

and ω0, computed within the deterministic Arnold tongue of
scenario (1) (where the mutual information is highest). The
linearity of φ(t) is quantified via

∫ T

0 dt[φ(t) − φlin(t)]2, which
is the average deviation ofφ(t) away from the most linear input-
output relation, φlin(t) = ωt . The stability of φ(t) is quantified
via

∫ T

0 dt[φ(t) − φstab(t)]2, which is the average deviation of
φ(t) away from the most stable input-output relation φstab(t),
given by Eq. (47).

The following observations can be made. First, the width of
the Arnold tongue (the range of ω0 that permits a deterministic
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FIG. 6. A parametric plot of the optimal coupling strength ε∗(D),
the optimal intrinsic frequency ω∗

0(D), and the optimal width of the
dead zone 
φ∗

12(D) that maximize the mutual information, with the
noise D being the parameter that is varied. The value of 
φ23 = π/2
was kept constant. It is seen that ε∗ rises with D, while ω∗

0 remains
initially close to ω, but then rises too. In contrast, 
φ∗

12 first increases
and then decreases. Colored dots give the diffusion constants for
which (ε∗,ω∗

0,
φ∗
12) are optimal.

solution) decreases as 
φ12 increases. Second, the linearity is
maximal in the range 1 < ω0/ω < 1.5, and tends to increase
with 
φ12: in the dead zone 
φ12 the system evolves freely

with speed ω0, which makes φ(t) more linear, especially when
ω0 ∼ ω. In contrast, the stability is highest when ω0/ω is large
and 
φ12 is small, particularly for higher values of ε. The
large magnitudes of ω0 and ε mean that at the beginning of the
day the system is strongly driven, 〈φ̇〉 ≈ ε + ω0, and the small
dead zone 
φ12 means that after the system has crossed φ1,
it quickly reaches φ2, where, with ε = ε− > ω0, the system is
then confined (see Fig. 1).

Figure 7 also shows superimposed a parametric plot of
the optimal 
φ∗

12(D) against the optimal ω∗
0(D). The colored

dots denote the diffusion constants for which (ω∗
0,
φ∗

12) are
optimal; the diffusion constant for which the ε of a panel
is the optimal coupling strength ε∗ is shown near the top
of the Arnold tongue. It is seen that for very small D, the
optimal system parameters (ω∗

0,
φ∗
12,ε

∗) put the system in
the regime where φ(t) is linear [top left panel (a)]; increasing

φ∗

12 would not make the system significantly more linear,
since ε∗ is still very small. Increasing D raises ε∗, while ω∗
remains close to ω. The optimal width of the dead zone 
φ∗

12
now increases, because for the higher value of ε∗ the system
becomes significantly more linear when 
φ∗

12 is increased.
Beyond D = 1/T , however, linearity is sacrificed for stability.
The optimal coupling strength ε∗ and intrinsic frequency ω∗
increase, while the optimal size of the dead zone decreases, to
maximize stability. Indeed, when the noise is even larger still,
the width of the dead zone reduces to zero and the coupling
strength and intrinsic frequency become even larger: during the
day the system is rapidly driven to φ2, where it then remains

(a) (b)

FIG. 7. The optimal shape of the instantaneous phase-response curve Z(φ) arises as a tradeoff between linearity and stability. The linearity
(a) is quantified via

∫ T

0 dt[φ(t) − φlin(t)]2, which is the average deviation of the mean input-output relation φ(t) away from the most linear

solution φlin(t) = ωt . The stability (b) is quantified via
∫ T

0 dt[φ(t) − φstab(t)]2, which is the average deviation of φ(t) away from the most stable
solution φstab(t), given by Eq. (47). These measures are computed as a function of the intrinsic frequency ω0 and the width of the dead zone

φ12, for different values of ε, inside the Arnold tongue of scenario (1); note that smaller values correspond to higher linearity and stability,
respectively. Superimposed is a parametric plot of the optimal intrinsic frequency ω∗

0(D) and optimal width of the dead zone 
φ∗
12(D) that

maximize the mutual information for a given D. The dots denote the values of D to which ω∗
0(D) and 
φ∗

12(D) correspond; the value of D for
which the ε of a panel is the optimal coupling strength ε∗ is given near the top of the Arnold tongue. It is seen that for small D, the optimal
parameters (ω∗

0(D),
φ∗
12(D),ε∗(D)) that maximize the mutual information are those that make the input-output relation φ(t) most linear [top

left panel (a)], while for large D, the optimal parameters are those that make the system very stable [bottom right panel (b)]. Other parameters:

φ23 = π/2.
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FIG. 8. Comparison between simulation results and three different theories: linear-noise approximation (LNA), phase-average method
(PAM), and linear-response theory (LRT). The comparison is performed by computing the Kullback-Leibler divergence DKL(Pn||Pa) between
Pn(φ|t) as obtained in the simulations and Pa(φ|t) as predicted by the theory. For two values of ω0, namely ω0/ω = 1 [panels (a) and (b)] and
ω0/ω = 1.05 [panels (c) and (d)], we show DKL(Pn||Pa) as a function of D for two values of ε [panels (a) and (c)] and DKL(Pn||Pa) as a function
of ε for two values of D [panels (b) and (d)]. It is seen that the LNA accurately predicts the regime of strong coupling and low noise, PAM the
regime of weak coupling and weak noise, and LRT the regime of high noise and weak coupling. Other parameters: 
φ12 = 
φ23 = π/2 for
all data points.

strongly confined till the beginning of the night [see Fig. 1
and also Fig. 5(c)]. In this limit, the clock transmits one bit of
information, and the system can only distinguish between day
and night.

Figure 6 thus generalizes the finding of Fig. 5 that corre-
sponds to a fixed dead zone and shows that the optimal shape
of the instantaneous phase-response curve can be understood
as a tradeoff between linearity and stability.

IV. THEORY

The simulation results can be described quantitatively via
three different theories, which each accurately describes a
particular regime of parameters: The linear-noise approxima-
tion (LNA) describes the regime of strong coupling and low
diffusion; the phase-averaging method (PAM) holds in the
low diffusion, weak coupling regime; and the linear-response
theory (LRT) applies in the regime of high noise and weak
coupling. Here, we have borrowed the terminology LNA from
the name of the theory to describe biochemical networks that
is based on the same underlying principles: indeed, rather than
linearizing the chemical Langevin equation around the fixed
point given by the mean-field chemical rate equations and
taking the noise at that fixed point, we here linearize the return
map F (φ) around its fixed point, and compute the noise at that
fixed point. The results of the respective theories in their regime

of validity are shown in Fig. 4. A more detailed comparison
between the simulation results and the theoretical predictions,
discussed below, is shown in Fig. 8, where ε and D are varied
for two different values of ω0.

A. Linear-noise approximation

The linear-noise approximation (LNA) is expected to be
accurate when the driving is strong compared to the diffusion
constant, so that the system closely follows the deterministic
solution φ∗(t), which is given by the return map of Eq. (44):
φ∗(t) = φ∗(t + T ) = F (φ∗(t)). Because in this regime the
deviations from the deterministic solution are small, we can
expand F (φ) up to linear order in δφ = φ − φ∗ to obtain
F (φ∗ + δφ); see Eq. (45). This makes it possible to derive how
a deviation from the deterministic solution at time t will relax
to the limit cycle at time t + T : δφ(t + T ) = F ′(φ∗)δφ(t) [see
Eq. (46)]. The quantity F ′(φ∗) thus determines the stability of
the system near the deterministic fixed point. It can be readily
obtained from the deterministic solutions.

Given a variance at time t , 〈δφ(t)2〉, the variance at time
t + T , 〈δφ(t + T )2〉, is given by two contributions:

〈δφ(t + T )2〉 = F ′2 (φ∗)〈δφ(t)2〉 + V [φ(t + T )|φ∗(t)]. (48)

The first contribution is a deterministic contribution, which
is determined by how a deviation δφ(t) = φ(t) − φ∗(t) at
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time t regresses deterministically to the mean at time t + T :
δφ(t + T ) = F ′(φ∗)δφ(t). The second contribution describes
the variance of the distribution P (φ(t + T )|φ∗(t)) of φ(t + T )
at time t + T , given that at time t the system was at the
deterministic solution φ∗(t); in general, we should instead
compute the variance at t + T for an arbitrary initial φ(t) =
δφ(t) + φ∗(t), but to leading order in small δφ it is sufficient
to evaluate the noise at the deterministic solution φ∗. It is
important to note that the variance V [φ(t + T )|φ∗(t)] depends
not only on the diffusion constant, but also on the deterministic
force, as in a canonical LNA description: For example, in
the simplest possible noisy dynamics, δ̇x = −kδx(t) + η(t),
with 〈η(t)η(t ′)〉 = 2Dδ(t − t ′), the deterministic contribution
to the variance 〈δx(t + T )2〉 at time t + T , given the variance
〈δx(t)2〉 at time t , is 〈δx(t)2〉e−2kT , while the stochastic contri-
bution to the variance at time t + T is V [δx(t + T )|x∗(t)] =
(D/k)(1 − e−2kT ), which indeed depends on the force constant
k. However, in the limit that the force is weak, the stochas-
tic contribution is given by the variance of free diffusion:
V [δx(t + T )|x∗(t)] = 2DT . We assume, and subsequently
verify numerically, that a similar simplification applies for
our phase oscillator model. Indeed, except at the boundaries
φ1, φ2, and φ3, our phase dynamics reduces to diffusion
with a constant drift, for which it is rigorously true that
V [φ(t + T )|φ∗(t)] = 2DT ; our assumption hence amounts to
neglecting any corrections to the integrated noise due to the
brief “kicks” at these boundaries. Equation (48) then reduces
to

〈δφ(t + T )2〉 = F ′2 (φ∗)〈δφ(t)2〉 + 2DT. (49)

This expression constitutes the fluctuation-dissipation relation
for this system. In steady state, 〈δφ(t + T )2〉 = 〈δφ(t)2〉, from
which it follows that

〈δφ(t)2〉 = 2DT

1 − F ′2 (φ∗)
. (50)

Clearly, the variance depends not only on the diffusion con-
stant, but also on the stability, which increases with the
coupling strength; as derived below Eq. (46), for scenario
(1), F ′(φ∗) = (ω0 − ε−)/(ω0 + ε+) decreases (meaning the
system becomes more stable) as ε− and ε+ increase.

In this linear-noise approximation, the distribution of the
phase at time t is a simple Gaussian with a mean φ(t) that
is given by the deterministic solution, φ(t) = φ∗(t), and a
variance that is given by Eq. (50):

P (φ|t) = 1√
2πσφ

exp − [φ − φ(t)]2

2σ 2
φ

, (51)

where σφ ≡
√

〈δφ2〉. This variance is, in this approximation,
independent of the phase.

To derive the mutual information, it is convenient to invert
the problem and look for the distribution of possible times t ,
given φ. This can be obtained from Bayes’ rule:

P (t |φ) = P (t)
P (φ|t)
P (φ)

, (52)

where P (t) = 1/T is the uniform prior probability of having
a certain time and P (φ) is the steady-state distribution of φ,
which in the small noise limit can be computed via P (t)dt =

P (φ)dφ. If the noise ξ is small compared to the mean, then
P (t |φ) will be a Gaussian distribution that is peaked around
t∗(φ), which is the best estimate of the time given the phase
[17,24,35]:

P (t |φ) � 1√
2πσ 2

t

exp

[
− [t − t∗(φ)]2

2σ 2
t

]
. (53)

Here σ 2
t = σ 2

t (t∗) is the variance in the estimate of the time,
and it is given by [17]

σ 2
t = σ 2

φ

(
dt

dφ

)2

. (54)

We note that σ 2
t does depend on t because the slope dφ/dt

depends on t . Indeed, while the LNA assumes that σ 2
φ is

independent of φ, it does capture the fact that changing ε and
ω0 can affect the mutual information not only by changing
the noise σ 2

φ but also via the slope dφ/dt of the input-output

relation φ(t).
The mutual information can now be obtained from

I (φ; t) = H (t) − 〈H (t |φ)〉φ (55)

= log2 T −
〈

1

2
log2

(
2πeσ 2

φ

(
dt

dφ

)2
)〉

φ

(56)

= log2

⎛
⎝ T√

2πeσ 2
φ

⎞
⎠ + 1

T

∫ T

0
dt log2

dφ

dt
, (57)

where 〈. . . 〉φ denotes an average over P (φ), and we have
exploited that in the LNA the variance σ 2

φ is independent

of φ. For the model presented here, φ(t) = φ∗(t) is piece-
wise linear, and the second integral can be obtained an-
alytically, for each of the scenarios; for scenario (1), for
example, the second term is 1/T [t1log2(ω0 + ε+) + (t2 − t1)
log2ω0 + (T/2 − t2)log2(ω0 − ε−) +T/2log2ω0].

Figure 4 shows that the LNA accurately predicts the
mutual information Iω

opt
0

(φ; t) in the regime that the coupling
strength ε is large and the diffusion constant D is small. A
more detailed comparison is shown in Fig. 8, which shows
the Kullback-Leibler divergence DKL(Pn||Pa) between the
distribution Pn = Pn(φ|t) obtained in the simulations and
Pa = Pa(φ|t) as predicted by LNA. Figures 8(a) and 8(b)
show the result for ω0/ω = 1, while Figs. 8(c) and 8(d) show
the results for ω0/ω = 1.05. Moreover, Figs. 8(a) and 8(c)
show the results as a function of D for two values of ε, while
Figs. 8(b) and 8(d) show the results as a function of ε for two
values of D.

Figures 8(a) and 8(c) show that as D is decreased at
fixed ε, the LNA becomes accurate for small D, as expected.
Figures 8(b) and 8(d) show that for large D, the LNA never be-
comes accurate, even for large ε. However, for large values of ε,
the assumption that the stochastic contribution to the variance
is given by that of free diffusion, V [δφ(t + T )|φ∗(t)] � 2DT ,
breaks down. This is also the reason why for the smaller value
of D [crosses in Figs. 8(b) and 8(d)], the LNA works very well
for low values of ε, but then becomes slightly less accurate
for higher values of ε. Indeed, for ε = ε− > ω0, F ′ = 0, and
the key assumption of LNA—namely that the dynamics can
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be expanded to linear order around the deterministic fixed
point—breaks down.

Comparing Fig. 8(c) against Fig. 8(a) and Fig. 8(d) against
Fig. 8(b) shows that LNA is less accurate in the smallD (ε)
regime when ω0/ω = 1.05 [Fig. 8(c)]([Fig. 8(d)]) than when
ω0/ω = 1.0 [Fig. 8(a)]([Fig. 8(b)]). More specifically, while
LNA is very accurate for D < 10−2/T for both values of
ε when ω0/ω = 1.0 [Fig. 8(a)], LNA becomes less accurate
for D < 10−2/T when ω0/ω = 1.05 and ε is small, i.e.,
ε/ω = 0.1 [Fig. 8(c)]; only for ε/ω = 0.9 is LNA still accurate
in this regime. Similarly, while LNA is very accurate for
ε/ω < 1 when D = 10−3/T and ω0/ω = 1.0 [Fig. 8(b)], LNA
becomes less accurate for ε/ω < 0.5 when D = 10−3/T yet
ω0/ω = 1.05 [Fig. 8(d)]. This observation can be understood
by noting that when ω0 is increased, the system moves to the
boundary of the Arnold tongue of scenario (1), especially when
ε is small (see Fig. 2). The system then switches under the
influence of noise between the solution of scenario (1) and that
of scenario (2), meaning that the response becomes nonlinear
and LNA breaks down. Interestingly, however, another method,
described in the next section, accurately describes this regime.

B. Phase-averaging method

In the limit that the coupling ε is weak, the diffusion constant
D is small, and the intrinsic frequency ω0 is close to the driving
frequency ω, we expect that the evolution of φ is close to that
of the free-running oscillator, φ0(t) = ω0t + φ0. In this regime
the phase will exhibit fluctuations that are slow, occurring
on time scales much larger than the intrinsic period T0. The
detailed coupling within a clock cycle becomes irrelevant, and
only the average coupling over a clock period matters. This
leads to the notion of phase averaging, in which P (φ(t) − ωt |t)
no longer depends on t : P (φ(t) − ωt |t) = P (φ(t) − ωt) ≡
P (ψ), with ψ ≡ φ(t) − ωt .

Following Pikovsky [1], we now make this intuitive notion
concrete by rewriting the coupling term as

Q(φ,t) = Z(φ)L(t) (58)

=
∑

k

∑
l

akble
i(kφ+lωt). (59)

If the coupling and the noise are weak, ε → 0,D → 0, we may
expect that φ � ω0t + φ0 for all times t . If we substitute this
into Eq. (59), we find

Q(φ,t) =
∑

k

∑
l

akble
ikφ0ei(kω0+lωt). (60)

When ω ≈ ω0, the terms k = −l contribute most strongly
to the integral. These terms correspond to variations in the
force on long time scales. We thus expect that in the regime
that ε,D → 0 and ω ≈ ω0, where the phase is expected to
follow φ ≈ ω0t + φ0, the terms k = −l yield the strongest
contributions to the force:

Q(φ,t) =
∑

k

akb−ke
ik(φ−ωt) (61)

=
∫ T

0
dt ′Z(ψ + ωt ′)L(t ′) (62)

= Q(ψ), (63)

where in Eq. (62) we have introduced the new phase variable
ψ ≡ φ − ωt . The force Q(ψ) is commonly referred to as the
phase-response curve; it is thus a convolution of the instanta-
neous phase-response curve Z(φ) and the light-signal L(t).

The temporal evolution of ψ , ψ̇ = φ̇ − ω, is, using Eq. (25),

dψ

dt
= ω0 − ω + εQ(ψ) + ξ (t) (64)

= −ν + εQ(ψ) + ξ (t), (65)

with ν = ω − ω0. The first two terms on the right-hand side are
the deterministic force, which can be written as the derivative
of a potential V (ψ),

−ν + εQ(ψ) = −dV (ψ)

dψ
, (66)

with the potential given by

V (ψ) = νψ − ε

∫ ψ

−π

Q(x)dx. (67)

Indeed, the evolution of ψ can be described as that of a particle
in a potential V (ψ), which is a 2π -periodic potential with a
slope given by ν = ω − ω0.

The evolution of the probability density P (ψ,t) is given by
the Fokker-Planck equation corresponding to Eq. (65):

∂tP (ψ,t) = −∂ψ {[−ν + εQ(ψ)]P (ψ,t)} + D∂2
ψP (ψ,t) (68)

= −∂J (ψ,t)

∂ψ
, (69)

where we have defined the probability current

J (ψ,t) = −P (ψ,t)
dV (ψ)

dx
− D

∂P (ψ,t)

∂t
. (70)

In steady state, ∂P (ψ,t)/∂t = 0, which yields the following
stationary solution that is 2π -periodic in ψ :

P (ψ) = 1

C

∫ ψ+2π

ψ

e[V (ψ ′)−V (ψ)]/Ddψ ′. (71)

Here, C is the normalization constant.
Figure 4 shows that the phase-averaging method (PAM)

accurately predicts the mutual information I (φ; t) in the regime
that both the coupling strength ε and the diffusion constant
D are small. The more detailed comparison based on the
Kullback-Leibler divergence DKL(Pn||Pa) between the dis-
tribution Pn = Pn(φ|t) obtained in the simulations and Pa =
Pa(φ|t) as predicted by PAM confirms this interpretation: as
shown in Fig. 8(b), when ω0/ω = 1.05, PAM is accurate for
D < 10−2/T when ε/ω = 0.1 (green crosses), while LNA
breaks down in this regime (blue crosses). Similarly, as
illustrated in Fig. 8(d), when ω0/ω = 1.05, PAM is accurate
for ε/ω < 0.7 when D = 10−3/T (green crosses), whereas
LNA again breaks down in this regime (blue crosses).

While the LNA breaks down when the distribution P (φ|t)
becomes non-Gaussian as the coupling becomes too weak,
the PAM accurately describes P (φ|t) in the low-coupling,
low-noise regime, as it allows for non-Gaussian distributions.
However, the PAM does assume that φ(t) follows ωt . As a
result it breaks down when the coupling becomes large, causing
the average input-output relation φ(t) to deviate markedly from
ωt , an effect that can be captured by the LNA. PAM also breaks

032405-14



OPTIMAL ENTRAINMENT OF CIRCADIAN CLOCKS IN … PHYSICAL REVIEW E 97, 032405 (2018)

down when ε is small and ω ≈ ω0, yet D is large: now the
large diffusion constant causes the instantaneousφ(t) to deviate
markedly from ωt . This regime can, however, be described by
linear-response theory.

C. Linear-response theory

When the coupling strength is weak yet the diffusion
constant is large, φ(t) at any moment in time will tend to deviate
strongly from ω0t , but the steady-state distribution will be close
to that of a noisy, free-running oscillator, P0(φ) = 1/(2π ). The
full distribution can then be obtained as a perturbation to this
distribution. This is the central idea of linear-response theory
(LRT).

We start with the Fokker-Planck equation for the evolution
of P (φ,t):

∂tP (φ,t) = D∂2
φP (φ,t) + ω0∂φP (φ,t)

+L(t)∂φ[Z(φ)P (φ,t)]. (72)

We now consider the external signal L(t)Z(φ) to be a weak
perturbation of the free-running system. To this end, we rewrite
the above equation as

∂tP (φ,t) = [F0 + εF1(t)]P (φ,t), (73)

where F0 is the operator that defines the time evolution of the
unperturbed system and F1 is that due to the perturbation:

F0 = +D∂2
φ + ω0∂φ, (74)

F1(t) = +L(t)∂φZ(φ) + L(t)Z(φ)∂φ. (75)

Furthermore, we expand P (φ,t) as

P (φ,t) � p0(φ,t) + εp1(φ,t) + ε2p2(φ,t) + O(ε3). (76)

Substituting this expression into Eq. (73), and keeping only
terms up to order ε, we find

O(0) : F0p0(φ,t) = ∂tp0(φ,t), (77)

O(ε) : ∂tp1(φ,t) − F0p1(φ,t) = F1p0(φ,t). (78)

We are interested in the solutions that satisfy the periodic
boundary conditions,

pi(φ,t) = pi(φ + 2π,t), (79)

∂φpi(φ,t) = ∂φpi(φ + 2π,t), (80)

for both i = 0,1. Moreover, in steady state, for t → ∞, it must
hold that

pi(φ,t) = pi(φ,t + T ). (81)

Equation (77) describes the diffusion of a particle with drift.
The steady-state solution, which obeys Eqs. (79)–(81), is

lim
t→∞ p0(φ,t) = 1

2π
. (82)

Clearly, p0(φ,t) in steady state is flat, which means that any
deviation in the steady-state solution for P (φ,t) from the flat
distribution must be contained in p1(φ,t). Since p1(φ,t) is,
by construction, a small perturbation, this approach will be

accurate only when the full distribution is sufficiently flat,
which means that the diffusion constant cannot be too small.

To obtain p1(φ,t), we proceed by substituting the solution
for p0(φ,t), Eq. (82), into Eq. (78), yielding

∂tp1(φ,t) − D∂2
φp1(φ,t) − ω0∂φp1(φ,t)

= L(t)p0(φ,t)∂φZ(φ). (83)

The solution to this nonhomogeneous heat equation is given by

p1(φ,t) =
∫ 2π

0
dξG(φ − ω0t,ξ,t)f (ξ )

+
∫ 2π

0

∫ t

0
dτdξG(φ − ω0t,ξ,t − τ )A(ξ,τ ),

(84)

where f (φ) is the initial condition, G(φ − ω0t,φ0,t,t0) is the
Green’s function of the unperturbed diffusion operator with
drift, and A(φ,t) ≡ L(t)p0(φ,t)∂φZ(φ). This expression holds
for any t , not only for the steady-state solution.

To obtain the steady-state solution, we aim to find the initial
condition P (φ,t) = f (φ) that folds back onto itself after a time
T : P (φ,t + T ) = P (φ,t) = f (φ). To this end, we evaluate
Eq. (84) for t = T , to arrive at the Fredholm equation of the
second kind:

f (φ) =
∫ 2π

0
dξf (ξ )G(φ,ξ,t = T ) + Q(φ), (85)

where Q(φ) is given by Eq. (C17). The above equation can be
solved analytically; see Appendix C.

Figures 8 and 4 show, respectively, that the LRT accurately
describes P (φ,t) and hence the mutual information in the
regime that the coupling is weak and the diffusion constant
is large. In contrast to the phase-averaging method, the LRT
breaks down for smaller diffusion constant. The reason is that
then P (φ,t) deviates increasingly from the uniform distribu-
tion, p0(φ,t) = 1/(2π ), and the full solution P (φ,t) can no
longer be treated as a weak perturbation to p0.

V. DISCUSSION

The phase-response curves that have been measured ex-
perimentally often have a positive lobe and a negative one,
separated by a dead zone where the coupling strength is zero
[2]. However, the width of the dead zone varies considerably
from organism to organism. Here, we asked how the opti-
mal phase-response curve depends on the intrinsic noise in
the system, using the mutual information as a performance
measure.

Information theory predicts that the number of signals that
can be transmitted reliably through a communication channel
depends on the shape of the input distribution, the input-output
relation, and the noise in the system. These arguments apply to
any signaling system and the circadian clock is no exception.

When the input distribution is flat and the noise is low,
then, in general, the optimal input-output relation is linear. The
phase-oscillator model of the clock obeys this rule: the input
distribution p(t) = 1/T is flat, and the optimal input-output
relation φ(t) is indeed linear in the low-noise regime [Figs. 5(b)
and 5(c)]. Such a linear input-output relation is obtained for an
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intrinsic period that is close to 24 h and for a dead zone that is
relatively large (Figs. 6 and 7). Our analysis thus predicts that
less-noisy circadian clocks exhibit a relatively large dead zone.
Interestingly, the rule also explains why for a constant dead
zone, in the low-noise limit, the optimal intrinsic frequency
decreases as the coupling strength increases [see Fig. 5(a)].

In the large-noise regime, containment of noise becomes
paramount. This inevitably requires a large coupling strength.
While a strong coupling distorts the input-output relation,
which tends to reduce information transmission, it also reduces
the noise, enhancing information transmission [Figs. 5(b) and
5(c)]. The stability is further enhanced by increasing the
intrinsic frequency and reducing the width of the dead zone
(Fig. 7). Indeed, our results predict that noisy circadian systems
feature a smaller dead zone and a higher intrinsic frequency.

These results have been obtained by reducing the circadian
clock to a phase-oscillator model. It is useful to briefly review
the generality and limitations of this approach. The mutual
information obeys I (n; t) � I (R,φ; t) � I (φ; t). Hence, any
mapping of n to φ makes it possible to put a lower bound on the
mutual information. The bound will be tight when the phase,
according to this mapping, contains most of the information
on time.

Another question is whether the model that we use to
describe the evolution of the phase is accurate. Phase-oscillator
models have commonly been employed to describe oscillatory
systems, yet they are typically described as being valid in the
limits of weak driving and low noise: this ensures that the
coupled system stays close to the limit cycle of the unperturbed,
deterministic system, so that the coupling function and the
diffusion constant can be approximated by their values on
that limit cycle [1]. Here, having derived the phase oscillator
description in the weak coupling limit, we then proceed to study
it for arbitrary values of ε and D. This might at first glance
seem self-contradictory. It should be realized, however, that
biochemical noise and coupling can have two distinct effects:
they can affect the dynamics along the limit cycle, i.e., of φ,
and/or they can cause the system to move away from the limit
cycle. Only perturbations in the latter direction, orthogonal
to the limit cycle, need to be small for the phase oscillator
description to apply. Moreover, ε and D are dimensionful
parameters that can only be meaningfully said to be large or
small in comparison to another parameter, and the appropriate
parameter for comparison is different for perturbations along
and orthogonal to the limit cycle. Thus, it is entirely possible
for ε and D to be small compared to the rate of relaxation to
the limit cycle, implying that neither the external driving nor
the noise can force the system far from the limit cycle and
that the phase oscillator model is a good approximation, but
simultaneously for one or both of ε and D to be large compared
to ω0, so that perturbations to the phase dynamics are not weak.
We imagine that just such a situation holds here: D and ε

can become bigger than ω0—meaning that the noise and the
coupling can induce large changes in φ—but, even for large
D/ω0 and ε/ω0, the system in our model does not significantly
move off the limit cycle. It remains an open question how, for a
given, particular clock biochemical noise and strong coupling
to an entrainment signal affect the dynamics: How far does
the system move away from its limit cycle, and how much
do the diffusion constant and the coupling function then

change? The detailed and minimal biochemical network mod-
els that have been developed for the cyanobacterium Syne-
chococcus elongatus would make it possible to investigate
these questions in detail [36–43].

Our work shows that the behavior of the coupled phase os-
cillator can be accurately described by three different theories,
which each work best in a different parameter regime. In the
regime of weak coupling, low noise, and intrinsic frequency
close to the driving frequency, the phase-averaging method is
very accurate. In the regime that the driving is strong compared
to the diffusion constant, the linear-noise approximation is
most accurate. These are the two most relevant regimes for
understanding the design of circadian clocks. There is also
another regime, however, namely that of weak coupling and
high noise, and in this regime linear-response theory is very
accurate. That linear-response theory can describe any regime
at all is perhaps surprising, since it has been argued that this
theory should be applied to phase oscillators only with the
greatest care [1]. The argument is that small but resonant
forcing can have effects on φ that build up over time, meaning
that the effect of perturbations that are nominally of order
ε, and thus small, will eventually become large with time.
However, noise can pre-empt this accumulation of resonant
perturbations by effectively randomizing the phase and erasing
the memory of earlier perturbations before they are able to
accumulate over time. As a result, the full distribution of
the phase can be written as a small perturbation around the
uniform distribution, and this does make it possible to apply
linear-response theory. While this regime is probably less
relevant for understanding biological clocks, this approach
may be useful in other contexts.

Finally, we have focused on the optimal design of the clock
as a function of the intrinsic noise in the system. As Pfeuty et al.
have shown, fluctuations in the input signal are an important
consideration for understanding the design of circadian clocks
[2]. It will be interesting to see whether maximizing the mutual
information will reveal new design principles for clocks driven
by fluctuating signals.
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APPENDIX A: ARNOLD TONGUE OF THE
DETERMINISTIC MODEL

For completeness, we give here the inequalities for all
scenarios.

Scenario (1). As discussed in the main text: φ3 − 2π <

φs < φ1; t2 < T/2 < t3. If ε− � ω0, then

T � 2π − ε−
φ12/ω0

ω0 − ε−/2
, (A1)

T >
2π + ε+
φ12/ω0

ε+/2 + ω0
, (A2)

T <
2π + ε+
φ12/ω0 + 
φ23(ε+ + ε−)/(ω0 − ε−)

ε+/2 + ω0
, (A3)
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T >
(
φ13 − 2π )(ε+ + ε−)/(ω0 + ε+) + 2π − ε−
φ12/ω0

ω0 − ε−/2
.

(A4)

If ε− > ω0 then

T � 2(2π − 
φ12)

ω0
, (A5)

T >
2π − 
φ12 + (
φ12/ω0)(ε+ + ω0)

ε+/2 + ω0
, (A6)

T >
2
φ23

ω0
. (A7)

Scenario (2). φ1 < φs < φ2; 0 < t2 < T/2 < t3 < t1 < T .
For ε− < ω0, the evolution of φ(t) is given by

φs + ω0t2 + (−ε− + ω0)(T/2 − t2) + ω0T/2 = φs + 2π.

(A8)

This yields

t2 = 2π − T (ω0 − ε−/2)

ε−
< T/2 and > 0, (A9)

t3 = 
φ23

ω0 − ε−
+ t2 > T/2, (A10)

t1 = t2 − 
φ12/ω0 + T < T, (A11)

φs = φ2 − ω0t2 > φ1. (A12)

This yields the following inequalities:

T >
2π

ω0
, (A13)

T <
2π

ω0 − ε−/2
, (A14)

T <
2π + 
φ13ε−
ω0 − ε−/2

, (A15)

T >
2π − ε−
φ12/ω0

ω0 − ε−/2
. (A16)

If ε− > ω0, the equation to solve is

φs + ω0t2 + ω0T/2 = φs + 2π. (A17)

The solution is

t2 = 2π

ω0
− T/2 < T/2, (A18)

t3 = ∞ > T/2, (A19)

t1 = t2 − 
φ12/ω0 + T < T, (A20)

φs = φ2 − ω0t2 > φ1 and < φ2. (A21)

This yields the following inequalities:

T > 2π/ω0, (A22)

T >
2(2π − 
φ12)

ω0
, (A23)

T < 4π/ω0. (A24)

This scenario is stable, because φ(t) between t = 0 and t = t2
is steeper than φ(t) between t2 and T/2.

Scenario (3). φ2 < φs < φ3; 0 < t2 < T/2. If ε− < ω0 then

φs + (−ε− + ω0)T/2 + ω0T/2 = φs + 2π. (A25)

This equation does not depend on ti . There is only one period
that fits the solution:

T = 2π

ω0 − ε−/2
. (A26)

This period is on the boundary of the Arnold tongue of scenario
(2). This solution seems degenerate, being neither stable nor
unstable.

If ε− > ω0, the equation that solves φ(t) is

φs + (−ε− + ω0)t2 + ω0T/2 = φs + 2π. (A27)

The solution is

t2 = 2π − ω0T/2

−ε− + ω0
, (A28)

φs = φ2 + ω0T/2 − 2π. (A29)

The requirement that t2 > 0 yields the inequality

T >
4π

ω0
, (A30)

because the denominator of Eq. (A28) is negative. The require-
ment that t2 < T/2 yields

2π − T (ω0 − ε−/2)

ω0 − ε−
< 0. (A31)

Since the denominator is negative for ε− > ω0, this means
that [2π − T (ω0 − ε−/2)] > 0. When ε− > 2ω0, this is true
for any T . When ε− < 2ω0 (but still larger than ω0 because
otherwise there is no solution at all; see above), then

T <
2π

ω0 − ε−/2
. (A32)

The constraints φ2 < φs < φ3 yield

T >
4π

ω0
, (A33)

T <
2(
φ23 + 2π )

ω0
. (A34)

This solution is rather strange. When the light comes up, the
clock is being driven backwards. The solution seems stable,
though. In fact, it seems extremely stable: after one period, the
system is back on its limit cycle.

Scenario (4). φ3 − 2π < φs < φ1; 0 < t1 < T/2 < t2. The
equation that determines the steady state is

φs+ (ω0 + ε+)t1+ ω0(T/2− t1)+ ω0T/2 = φs + 2π. (A35)

The solution is

t1 = 2π − ω0T

ε+
< T/2 and > 0, (A36)

t2 = t1 + 
φ12

ω0
> T/2, (A37)

φs= φ1 − (ε++ ω0)t1 = φ1 − (ε++ ω0)(2π−ω0T )/ε+.

(A38)
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The conditions for T are

T � 2π

ω0
, (A39)

T >
2π

ω0 + ε+/2
, (A40)

T <
2π + 
φ12ε+/ω0

ε+/2 + ω0
, (A41)

T >
ε+
φ13 + 2πω0

ω0(ω0 + ε+)
. (A42)

Scenario (5). φ3 − 2π < φs < φ1; t1 > T/2. The govern-
ing equation is

φs + (ε+ + ω0)T/2 + ω0T/2 = φs + 2π. (A43)

This means that

T = 2π

ω0 + ε+/2
. (A44)

Clearly, for each ε+ there is only one period, not a range of
periods. Since φ(T/2) = φs + (ε+ + ω)T/2, which must be
smaller than φ1, and φs > φ3 − 2π , we find that there exists
only a solution if 
φ13 < 2πω0/(ε+ + 2ω0). Hence, for given
φ1 and φ3, this puts an upper bound on ε+. If a solution
exists, the starting phase φs must lie in the range φ3 − 2π <

φs < φ1 − π (ε+ + ω0)/(ε+/2 + ω0). Moreover, the solution
is neutral; it does not relax back to a unique φs . In fact, this is
a very general observation: if the solution is neutral, it means
that there can only be locking for one value of the period. Being
able to lock over a range of periods of the driving signal means
that the clock should be able to adjust its period by changing
the phase, but a neutral solution means that changing the phase
does not lead to a change in its period.

Scenario (6). φ3 − 2π < φs < φ1; 0 < t1 < t2 < t3 <

T/2. This scenario can only arise when ε− < ω0, because
otherwise the system never makes it to φ3 before the sun sets.
The equation to be solved is then

φs + (ε+ + ω0)t1 + 
φ13 + (ω0 + ε+)(T/2 − t3) + ω0T/2 = φs + 2π. (A45)

This equation can be solved by noting that 
φ12 = ω0(t2 − t1) and 
φ23 = (−ε− + ω0)(t3 − t2). It follows that there is only one
period that satisfies the above equation:

T = 2π − 
φ23 + ε+
φ12/ω0 + (ε+ + ω0)
φ23/(−ε− + ω0)

ω0 + ε+/2
. (A46)

Clearly, for a given ε− and ε+ there is only one period, not a
range of periods, to which the system can entrain. This means
that the solution is neutral, which can indeed be understood by
noting that the initial slope at t = 0, ω0 + ε+, is the same as t =
T/2. The condition for the solution to exist is that φ(T/2) =
2π + φs − ω0T/2 > φ3. This yields for φs

φ3 − 2π + ω0T/2 < φs < φ1. (A47)

There is thus only a solution when

T <
2(2π − 
φ13)

ω0
. (A48)

One could use this condition to determine the range of ε+/−
over which there is a solution, given φ1,φ2,φ3. But since this
scenario only yields one line in the phase diagram, we do not
pursue this further.

Scenario (7). φ1 < φs < φ2; 0 < T/2 < t2 < t3 < t1. The
governing equation is

φs + ω0T/2 + ω0T/2 = φs + 2π. (A49)

This indeed yields only one solution,

T = 2π

ω0
. (A50)

Indeed, there only exists a solution when the driving frequency
equals the intrinsic frequency, which is to be expected, since
with this solution the system does not see the driving. The
solution exists only if 
φ12 > π . This solution is neutral, in
that all solutions φ1 < φs < φ2 are valid, for all values of
ε−/+. One may wonder what that implies for the dynamics.
If one would perform a simulation for ε−/+ > 0 and ω = ω0,
and if one would then start with φ1 < φs < φ2, then due to

the noise the simulation would initially perform a random
walk where initially, at the beginning of each day, the phase
of the clock would fluctuate between φ1 and φ2. However,
once the oscillator due to noise would cross the boundary φ1,
then the system will be driven to a solution that is described
under scenario (1).

Scenario (8). φ1 < φs < φ2; 0 < t2 < t3 < T2 < t1. There
can only be a solution, if it exists, when ε− < ω0. For ε− > ω0

the system never makes it to φ3 before T/2. The governing
equation is

φs + ω0t2 + 
φ23 + (ε+ + ω0)(T/2 − t3) + ω0T/2

= φs + 2π. (A51)

To solve this, we note that

t3 = t2 + 
φ23/(−ε− + ω0). (A52)

This yields

t2 = T (ω0 + ε+/2) − 2π − 
φ23(ε+ + ε−)/(ω0 − ε−)

ε+
.

(A53)

We further have

φs = φ2 − ω0t2. (A54)

The condition t2 > 0 yields

T >
2π + 
φ23(ε+ + ε−)/(ω0 − ε−)

ω0 + ε+/2
. (A55)

The condition t3 < T/2 yields

T <
2π + 
φ23ε−/(ω0 − ε−)

ω0
. (A56)
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The condition φ1 < φs = φ2 − ω0t2 yields

T <
2π + ε+
φ12/ω0 + 
φ23(ε+ + ε−)/(ω0 − ε−)

ω0 + ε+/2
.

(A57)

The Arnold tongue of this scenario is embedded in those
of scenarios (1) and (2). The solution corresponding to this
scenario is indeed unstable: the system either converges
to the solution of scenario (1) or (2). This can be easily
proven by noting that the time it takes to cross 
φ23 is
constant, as is the time to cross the night. The change in
the phase a period later is then the change in the phase
at φ(T/2). This is given by δφ(T/2) = ∂φ(T/2)/∂t3δt1 =
∂φ(T/2)/∂t3δφs/ω0 = (ε+ + ω0)/ω0δφs , where we have
noted that δt1 = −δφs/ω0 and ∂φ(T/2)/∂t3 = −(ε+ + ω0).
Because (ε+ + ω0)/ω0 > 1, the change in the phase after a
full period is larger than the initial change in the phase:
δφ(T ) = δφ(T/2) > δφs . The solution is unstable.

Scenario (9). φ1 < φs < φ2; t2 < t3 < t1 < T2. There can
only be a solution if ε− < ω0. The equation to be solved is

φs + ω0t2 + 2π − 
φ12 + ω0(T − t1) = φs + 2π, (A58)

which gives

T = 
φ12/ω0 + t1 − t2. (A59)

We further have

t1 − t2 = 2π − 
φ13

ω0 + ε+
+ 
φ23

ω0 − ε−
. (A60)

Hence,

T = 
φ12

ω0
+ 2π − 
φ13

ω0 + ε+
+ 
φ23

ω0 − ε−
, (A61)

which we could have written down right away upon somewhat
more careful thinking. We can obtain a bound on the parameters
that allow a solution by noting that 0 < t1 − t2 < T/2. Com-
bining with Eq. (A59) yields 
φ12/ω0 < T < 2
φ12/ω0.
Combing this with Eq. (A61) yields


φ12

ω0
<

2π − 
φ13

ω0 + ε+
+ 
φ23

ω0 − ε−
. (A62)

A visual inspection illustrates this constraint very clearly. The
parameter ε− should be small, that is not close to unity. A large
ε+ also helps.

Scenario (10). φ2 < φs < φ3; 0 < T2 < t3,t1,t2. Both for
ε− < ω0 and ε− > ω0, the scenario corresponds to that of
scenario (3), but with ε− < ω0 in that scenario. There is only
a solution for

T = 2π/(ω0 − ε−/2). (A63)

Scenario (11). φ2 < φsφ3; 0 < t3 < T/2 < t1,t2. Only if
ε− < ω0 may a solution exist: if ε− > ω0, we are back to

scenario (3) or (10). The governing equation is

φs + (−ε− + ω0)t3 + (ε+ + ω0)(T/2 − t3) + ω0T/2

= φs + 2π. (A64)

The solution is

t3 = T (ω0 + ε+/2) − 2π

ε+ + ε−
, (A65)

φs = φ3 − (ω0 − ε−)t3. (A66)

The condition t3 > 0 yields

T >
2π

ω0 + ε+/2
. (A67)

The condition t3 < T/2 yields the inequality

T <
2π

ω0 − ε−/2
. (A68)

The condition φs > φ2 yields

T <

φ23(ε+ + ε−)/(ω0 − ε−) + 2π

ω0 + ε+/2
. (A69)

The condition t1 > T/2 yields the inequality

T >
2π − (2π − 
φ13)(ε+ + ε−)/(ε+ + ω0)

ω0 − ε−/2
. (A70)

The solution space overlaps with those of scenarios (1)–(3).
Interestingly, we find again that this solution is unstable:
δφ(T ) = δφ(T/2) = ∂φ(T/2)/∂t3δt3 = −(ω0 + ε+)δt3 =
−(ω0 + ε+)∂t3/∂φsδφs = (ω0 + ε+)/(ω0 − ε−)δφs > δφs .
We thus can see that when φ(t) is convex for 0 < t < T/2,
the solution tends to be unstable.

Scenario (12). φ2 < φs < φ3; t3,t1 < T/2 < t2. Only if
ε− < ω0 may a solution exist. The governing equation is

φs + (−ε− + ω0)t3 + (2π − 
φ13) + ω0(T/2 − t1)

+ ω0T/2 = φs + 2π. (A71)

Exploiting that t1 = t3 + (2π − 
φ13)/(ε+ + ω0), the solu-
tion is

t3 = ω0T − 
φ13 − ω0(2π − 
φ13)/(ε+ + ω0)

ε−
, (A72)

φs = φ3 − (ω0 − ε−)t3. (A73)

The condition t3 > 0 yields the inequality

T >

φ13

ω0
+ 2π − 
φ13

ε+ + ω0
. (A74)

The condition t1 < T/2 gives

T <

φ13 + (ω0 − ε−)(2π − 
φ13)/(ε+ + ω0)

ω0 − ε−/2
. (A75)

The condition t2 = t1 + 
φ12/ω0 > T/2 yields

T >

φ13+ (ω0 − ε−)(2π−
φ13)/(ε+ + ω0) − ε−
φ12/ω0

ω0 − ε−/2
.

(A76)
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The condition φs > φ2 yields the inequality

T <

φ13+ ω0(2π− 
φ13)/(ε+ + ω0)+ ε−
φ23/(ω0 − ε−)

ω0
.

(A77)

This curve is convex, that is, the part of φ(t) that really
matters is convex: the initial slope near t = 0, ω0 − ε−, is
smaller than the slope near t = T/2, which is ω. This gives
an unstable solution.

Scenario (13). φ2 < φs < φ3; t3,t1,t2 < T/2. Again, a so-
lution may only exist if ε− < ω0. The central equation is

φs + (−ε− + ω0)t3 + (2π − 
φ23) + (−ε− + ω0)(T/2 − t2)

+ ω0T/2 = φs + 2π. (A78)

The solution is

T = 
φ23

ω0
+ (ω0 − ε−)(t2 − t3)

ω0
. (A79)

The time difference is

t2 − t3 = 
φ12

ω0
+ 2π − 
φ13

ω0 + ε+
, (A80)

which gives for the period

T = 
φ23

ω0
+ ω0 − ε−

ω0

(

φ12

ω0
+ 2π − 
φ13

ω0 + ε+

)
. (A81)

APPENDIX B: HEAT MAPS MUTUAL INFORMATION
AS A FUNCTION OF COUPLING STRENGTH AND

INTRINSIC FREQUENCY

Figure 3(a) shows the mutual information as a function of
the coupling strength ε = ε+ = ε− and intrinsic frequency ω0,
for one value of the diffusion constant, D = 0.1/T . Figure 9
shows the same plot, but then also for D = 1/T and D =
10−4/T . For D = 10−4/T , the mutual information shows very
rich behavior, corresponding to intricate locking behavior.

APPENDIX C: LINEAR-RESPONSE THEORY

As shown in the main text, the evolution of p1(φ,t) is
given by

∂tp1(φ,t) − D∂2
φp1(φ,t) − ω0∂φp1(φ,t)

= L(t)p0(φ,t)∂φZ(φ). (C1)

The solution to this nonhomogeneous heat equation is

p1(φ,t) =
∫ 2π

0
dξG(φ − ω0t,ξ,t)f (ξ )

+
∫ 2π

0

∫ t

0
dτdξG(φ − ω0t,ξ,t − τ )A(ξ,τ ),

(C2)

where f (φ) is the initial condition, G(φ − ω0t,φ0,t,t0)
is the Green’s function of the unperturbed diffu-
sion operator, and A(φ,t) ≡ L(t)p0(φ,t)∂φZ(φ) =
L(t)/(2π )[−δ(φ − φ1) − δ(φ − φ2) + 2δ(φ − φ3)].

The Green’s function is given by

G(φ − ω0t,φ0,t) =
∞∑

j=0

e−j 2Dt {Aj (φ0) cos[j (φ − ω0t)]

+ Bj (φ0) sin[j (φ − ω0t)]}, (C3)

with

Aj (φ0) = 1

π

∫
dφδ(φ − ω0t − φ0) cos[j (φ − ω0t)]

= 1

π
cos jφ0, (C4)

Bj (φ0) = 1

π

∫
dφδ(φ − ω0t − φ0) sin(jφ′) = 1

π
sin jφ0,

(C5)

A0 = 1

2π
, (C6)

B0 = 0. (C7)

1.5 1.5 1.50.5 1 2 2.5 0.5 1 2 2.5 0.5 1 2 2.5

(a) (b) (c)
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FIG. 9. The mutual information as a function of the coupling strength ε and the intrinsic frequency ω0, for three different values of the
diffusion constant D. In all panels, 
φ12 = 
φ23 = π/2. Superimposed in black is the deterministic Arnold tongue for scenarios (1) and (4).
(a) D = 1/T . (b) D = 0.1/T [the same panel as Fig. 3(a)]. (c) D = 10−4/T . Note the rich behavior of the mutual information, corresponding
to higher-order locking scenarios.
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This yields

G(φ,φ0,t) = 1

2π
+ 1

π

∞∑
j=1

e−i2Dt {cos(jφ0) cos[j (φ − ω0t)]

+ sin(jφ0) sin[j (φ − ω0t)]}. (C8)

Substituting this expression into Eqs. (C1) and (C2) gives

p1(φ,t) =
∫ 2π

0
dξG(φ,ξ,t)f (ξ )

+
∫ 2π

0

∫ t

0
dτdξG(φ,ξ,t − τ )

L(τ )

2π

× [−δ(ξ − φ1) − δ(ξ − φ2) + 2δ(ξ − φ3)] (C9)

= G0(φ,t) + 1

2π

∫ t

0
dτL(τ )
G(φ,t − τ ), (C10)

where

G0(φ,t) =
∫ 2π

0
dξG(φ,ξ,t)f (ξ ),


G(φ,t − τ ) = − G(φ,φ1,t − τ ) − G(φ,φ2,t − τ )

+ 2G(φ,φ3,t − τ ). (C11)

We can integrate the second term of Eq. (C10) by parts. Calling
the primitive of 
G

C(φ,τ ; t) =
∫

dτ
G(φ,t − τ ), (C12)

we find

p1(φ,t) =G0(φ,t) + [L(τ )C(φ,τ ; t)]τ=t
τ=0

−
∫ t

0
dτ

dL(τ )

dτ
C(φ,τ ; t). (C13)

Since L(τ ) is a sequence of step functions,

dL(τ )

dτ
=

∞∑
n=0

δ(τ − nT ) − δ[τ − (nT + T/2)], (C14)

which yields

p1(φ,t) = G0(φ,t) + [L(τ )C(φ,τ ; t)]t0

−
nT <t∑
n=0

[C(φ,nT ; t) − C(φ,nT + T/2; t)]. (C15)

Equation (C1) was derived assuming that the system is in
steady state, and p(φ,t) = p(φ,t + T ). This means that we
only have to consider times 0 < t < T , in which case only the
first two terms in the last sum on the right-hand side remain.
More specifically, in steady state, the initial condition f (φ)
equals the steady-state distribution, and f (φ) = p(φ,t = 0) =
p(φ,t = T ), meaning that the above expression reduces to

f (φ) = G0(φ,T ) + Q(φ)

=
∫ 2π

0
f (ξ )G(φ,ξ,t = T ) + Q(φ), (C16)

where Q(φ) is defined as

Q(φ) ≡ − 2C(φ,τ = 0; T ) + C(φ,τ = T ; T )

+ C(φ,τ = T/2; T ). (C17)

Equation (C16) is an integral equation, more specifically a
Fredholm equation of the second type. The integration kernel
G(φ,ξ,T ) has the form

G(φ,ξ,T ) = 1

2π
+ 1

π

∞∑
j=1

e−j 2DT {cos[j (φ − ω0T )] cos(jξ )

+ sin[j (φ − ω0T )] sin(jξ )}. (C18)

We define G∗(φ,ξ ) = G(φ,ξ ) − 1/(2π ), and rewrite
Eq. (C16) as

f (φ) =
∫ 2π

0
dξf (ξ )G∗(φ,ξ,t = T )

+ 1

2π

∫ 2π

0
dξf (ξ ) + Q(φ) (C19)

=
∫ 2π

0
dξf (ξ )G∗(φ,ξ,t = T ) + 1

2π
+ Q(φ) (C20)

=
∫ 2π

0
dξf (ξ )G∗(φ,ξ,t = T ) + Q∗(φ), (C21)

where in going from the first to the second line we have
exploited that f (φ) is normalized, and in the last line we
have defined Q∗(φ) ≡ Q(φ) − 1/(2π ). The kernel G∗(φ,ξ,T )
is separable, and we can rewrite Eq. (C16) as

f (φ) =
∞∑

j=1

e−j 2DT

∫ 2π

0
dξf (ξ ){cos[j (φ − ω0T )] cos(jξ )

+ sin[j (φ − ω0T )] sin(jξ )} + Q∗
j (φ) (C22)

with Q∗(φ) = ∑
j Q∗

j (φ).
To solve this integral equation, we define

c1j ≡
∫ 2π

0
dξe−j 2DT f (ξ ) cos(jξ ), (C23)

c2j ≡
∫ 2π

0
dξe−j 2DT f (ξ ) sin(jξ ), (C24)

so that

f (φ) =
∑

j

{cos[j (φ − ω0T )]c1j

+ sin[j (φ − ω0T )]c2j + Q∗
j (φ)}. (C25)

We now multiply both sides, once with e−j 2DT cos(jφ) and
once with e−j 2DT sin(jφ), and integrate from 0 to 2π . On the
left-hand side, this gives c1j and c2j , respectively. We then
arrive at the following set of linear equations:

c1j =
∑

k

Ajkc1k + Bjkc2k + Q∗
1k, (C26)

c2j =
∑

k

Cjkc1k + Djkc2k + Q∗
2k, (C27)
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FIG. 10. Information transmission is not much affected by the relative magnitudes of ε+ and ε− in the coupling function Z(φ) (see Fig. 1).
We vary ε+ and ε− via a parameter α, defined as ε+ = (1 − α)ε and ε− = αε; varying α thus keeps the total absolute coupling strength constant.
We vary α and the diffusion constant D, and optimize over ε and ω0, keeping 
φ12 = 
φ23 = π/2 constant in all simulations. (a) The maximal
mutual information I ∗(φ,t), obtained by optimizing I (φ,t) over ε and ω0, as a function of α, for different values of D. It is seen that for most
values of D, I ∗(φ; t) is quite independent of α. (b) The size of the Arnold tongue of the stochastic system as a function of α, for different values

of D. The size is defined as
∫ ωmax

0

ωmin
0

dω0

∫ εmax

εmin dεI (φ; t)/I ∗(φ; t), with ωmin
0 /ω = 0.4, ωmax

0 = 2.7, εmin/ω = 0, εmax/ω = 5. It is seen that, except

for the low and high values of α, the size of the Arnold tongue of the stochastic system is fairly independent of α.

where

Ajk =
∫ 2π

0
dφe−j 2DT cos(jφ) cos[k(φ − ω0T )], (C28)

Bjk =
∫ 2π

0
dφe−j 2DT cos(jφ) sin[k(φ − ω0T )], (C29)

Cjk =
∫ 2π

0
dφe−j 2DT sin(jφ) cos[k(φ − ω0T )], (C30)

Djk =
∫ 2π

0
dφe−j 2DT sin(jφ) sin[k(φ − ω0T )], (C31)

Q∗
1k =

∫ 2π

0
dφe−j 2DT cos(jφ)Q∗

k(φ), (C32)

Q∗
2k =

∫ 2π

0
dφe−j 2DT sin(jφ)Q∗

k(φ). (C33)

We can define the vectors c1 and c2 with elements c1j and
c2j , respectively, as well as the matrices A, B, C, D, with
elements Ajk,Bjk,Cjk,Djk , respectively, and the vectors q1

and q2 with elements Q∗
1j and Q∗

2j , respectively. This allows
us to define the vectors cT ≡ (cT

1 : cT
2 ) and qT ≡ (qT

1 : qT
2 ),

where T denotes the transpose, and the matrix

M =
(

A B
C D

)
. (C34)

We can then rewrite Eqs. (C26) and (C27) as

c = Mc + q, (C35)

which has as its solution

c = (I − M)−1q, (C36)

with I the identity matrix. With the coefficients c1j and c2j thus
found, f (φ) can be obtained from Eq. (C25), yielding, finally,
the steady-state solution pss(φ) = 1/(2π ) + f (φ).

APPENDIX D: MUTUAL INFORMATION AS A FUNCTION
OF ε+ AND ε−

Figure 10 addresses how the mutual information depends
on ε+ and ε−. To this end, the parameters are varied as
ε+ = (1 − α)ε and ε− = αε; varying α thus keeps the total
absolute coupling strength ε constant. The figure shows that
the mutual information is rather insensitive to the relative
values of ε+ and ε−.
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