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Abstract. In computer simulations of dry foams and of epithelial tissues, vertex models are often used
to describe the shape and motion of individual cells. Although these models have been widely adopted,
relatively little is known about their basic theoretical properties. For example, while fourfold vertices in real
foams are always unstable, it remains unclear whether a simplified vertex model description has the same
behavior. Here, we study vertex stability and the dynamics of T1 topological transitions in vertex models.
We show that, when all edges have the same tension, stationary fourfold vertices in these models do indeed
always break up. In contrast, when tensions are allowed to depend on edge orientation, fourfold vertices can
become stable, as is observed in some biological systems. More generally, our formulation of vertex stability
leads to an improved treatment of T1 transitions in simulations and paves the way for studies of more
biologically realistic models that couple topological transitions to the dynamics of regulatory proteins.

1 Introduction

From the lining of the gut to the surface of the skin, ep-
ithelial tissues are one of the essential building blocks of
animal organs. The motion of epithelial cells over time
correspondingly drives many aspects of animal develop-
ment and morphogenesis, and understanding this move-
ment is thus a central problem in quantitative biology.
Although there has been remarkable progress in identify-
ing and imaging the proteins involved in the development
of specific epithelia [1–6], it remains a major challenge
to translate this molecular knowledge into a higher level
picture of how the organization of epithelial cells emerges
from local mechanical interactions. Computational model-
ing represents an important tool to address this question,
and it is hence essential to have well-understood models
available to describe epithelia. Here, we begin to address
this need by deriving some general results on the stability
of fourfold vertices in a widely used class of vertex mod-
els [7–11].

A simple epithelium is a quasi-two-dimensional sheet
of cells characterized by strong inter-cellular adhesion [12,
13]. This adhesion occurs primarily at a belt of adherens
junctions, composed largely of cadherins, which hold the
adjacent cell membranes together. Additionally, each cell
has a band of contractile cortical acto-myosin running
along the inside of the adherens junctions. The combina-
tion of adherens junction and contractile actin ring leads
to an effective line tension along cell-cell junctions which
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the cell can modulate by targeting adhesion molecules or
myosin and their regulators. Thus, for example, the ten-
sion can be made to vary as a function of junctional orien-
tation as a result of regulation by the planar cell polarity
pathway [1–6] (as seen, e.g., in Drosophila germ band ex-
tension [12]).

When viewed as a two-dimensional sheet of tightly
packed cells, the epithelium strongly resembles a dry soap
film. Indeed, interfacial tension plays a central role in the
physics of both systems, and foam-inspired models are
thus frequently used to describe epithelia. The standard
model for the mechanics of a dry foam, which we here refer
to as the Plateau model, goes back to the work of Plateau
in the 1800s [14]. It posits that the final shape of a group
of bubbles is determined by minimizing a surface tension
energy proportional to the total bubble surface area (in 3
dimensions) or the total length of the interfaces between
bubbles (in two dimensions).

Many recent computational descriptions of epithelia
have been based on so-called vertex models [7–11], a class
of simplified variants of the Plateau model that have been
applied to systems including epithelia, foams, and metal
grains [7,15–18]. The two models share the basic fea-
ture of an energy that grows with the total length of the
bubble-bubble or cell-cell interfaces. They differ in that,
whereas the Plateau model allows the interfaces between
bubbles or cells to take arbitrary shapes, vertex models
impose that (in two dimensions) these interfaces must al-
ways be straight lines, which we refer to as edges. (Exten-
sions which allow for curved edges [19–22] and for three-
dimensional cells [23] have been proposed but are beyond
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Fig. 1. A: Cartoon of cells in an epithelial sheet. A single cell is shaded blue. The interface between two cells forms an edge
(one edge is highlighted by the bold green line). The red dot indicates a vertex, defined as a point at which three or more cells
touch. We treat the epithelium as a two-dimensional sheet, focusing on the level of the adherens junctions near the apical (top)
surface. B: Cartoon of epithelial cells undergoing a T1 topological transition (viewed from above). An edge shrinks down until
a fourfold vertex is formed, then a new edge elongates in a roughly perpendicular direction. As a result, the cells exchange
neighbors, altering the topology of the cell packing. The middle panel shows the moment at which a fourfold vertex (light green
dot) appears. The fourfold vertex has four neighboring cells and four neighboring edges and could in principle either be stable
or resolve into either of the two different topologies shown to the left and right.

the scope of this paper.) The major degrees of freedom in
vertex models are then the positions of the vertices where
three or more cells meet and which are joined by edges to
form polygonal cells (fig. 1A).

A fourfold vertex occurs whenever a vertex has four
neighboring cells and edges as opposed to the much more
common three. Fourfold vertices generally resolve into two
threefold vertices by pairing the edges of the fourfold ver-
tex and growing a new edge between them. There are two
different ways to pair the edges, resulting in two differ-
ent final cell arrangements (fig. 1B). Cellular rearrange-
ments that switch between these two topologies, through
the intermediate of a fourfold vertex, allow the epithelial
sheet to change shape and enable cells of specific types to
find their correct location and morphology. Indeed, this
process, known as a T1 transition, has been shown to
play a central role in morphogenetic movements like tis-
sue elongation [24–26]. Though fourfold vertices usually
break up, tissues in which fourfold vertices remain stable
over a relatively long timescale have also recently been
observed [27–31].

Although vertex models (proposed by Honda in the
1980s [15,32,33]) clearly ignore many features of real cell
shape, they are thought to capture the essential physics
when cells are close to polygonal, and they have been ap-
plied successfully to study many features of epithelial mor-
phogenesis [7,10,34,35]. Moreover, they have the advan-
tage of being both simple and straightforwardly extensible
to include effects ranging from the dynamics of proteins
localized at the edges to buckling into the third dimen-
sion [20,35,36]. Despite their increasing popularity, how-
ever, some of these models’ fundamental theoretical prop-
erties are poorly understood [37,38]. Most notably, in the
Plateau model of dry foams which inspired vertex models,
fourfold vertices (fig. 1B) are always unstable, breaking
up into two threefold vertices [14]. Because vertex models
demand that cell-cell junctions remain straight, cell pres-

sure plays a somewhat different role in them from their
role in the Plateau model (where edges can take on any
shape), and the standard arguments leading to this in-
stability cannot be taken over directly from the Plateau
model. It is thus unclear whether the instability is like-
wise always present in vertex models. Here, we show that
the vertex model does not allow for stable fourfold ver-
tices at mechanical equilibrium when all edges have the
same tension. In contrast, we find that introducing a sim-
ple dependence of tensions on edge orientation is sufficient
to stabilize fourfold vertices. This result may help to ex-
plain the observation of long-lived fourfold vertices in some
biological systems [16,24,27–31,39]. Moreover, our exam-
ination of the dynamics of fourfold vertices suggests an
improved algorithm for treating T1 transitions in simula-
tions which removes the potential for spurious oscillations
and incorrect resolutions present in some prior ad hoc ap-
proaches. This procedure will be especially useful as we
develop more complex models of epithelia that couple cell
shape and the dynamics of junctional proteins [20].

In the remainder of this paper, we investigate the sta-
bility of fourfold vertices and dynamics near topological
transitions in vertex models. We begin with a full de-
scription of the model, and we then proceed to develop
equations describing the dynamics near fourfold vertices.
In sect. 3, we state the conditions under which a fourfold
vertex is stable. The subsequent two sections then show
that it is impossible to satisfy all of the stability conditions
simultaneously for stationary vertices with equal tensions,
demonstrating that the model does not admit stable four-
fold states in this case. In sect. 6, we argue that stable
fourfold vertices do become possible when the assump-
tions of mechanical equilibrium or of equal tensions are
relaxed, potentially shedding light on why fourfold vertices
are observed in some biological systems. We conclude by
touching on the implications of our results for the design
of algorithms to simulate vertex models.
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2 The vertex model

2.1 Definition

Although we will eventually consider generalizations
where the forces on vertices cannot be derived from an en-
ergy, the vertex model is most commonly stated in terms
of an effective energy that is a function of the vertex po-
sitions; the final tissue shape is then given by a minimum
of the energy function. The form of this energy differs
slightly between authors, but a basic version is [33]

E =
∑

i

Γili +
K

2

∑

α

(Aα − A0α)2 . (1)

The first term describes the interfacial tension along the
edges and combines the effects of both cell-cell adhesion
and actomyosin contractility in the adherens band [12,13].
The sum over i runs over all edges, with edge i having
tension Γi and length li. The second term describes the
energy cost of deforming cells from their preferred area.
The sum over α runs over all of the cells in the tissue. A0α

is the preferred area of cell α, Aα is the cell’s actual area,
and the constant K parameterizes cells’ resistance to area
changes. A common further simplification is to assume
that all edges have the same properties so that Γi = Γ for
all i; we will call this assumption the equal tension vertex
model.

From eq. (1) we can immediately find the force on a
vertex by taking the derivative with respect to the vertex
position

Fr0 = − ∂E

∂r0
, (2)

where r0 is the position of the vertex in the two-
dimensional plane of the epithelium. We evaluate this
force using eq. (1)

∂E

∂r0
= K

∑

[α]

(Aα − A0α)
∂Aα

∂r0
+

∑

[i]

Γi
∂li
∂r0

. (3)

The movement of a single vertex only affects the lengths
and areas of its neighboring cells and edges, so the sums
over all edges i and cells α become sums over neighboring
edges [i] and cells [α]. In order to work out the derivatives,
it is helpful to introduce some new notation. Let li =
ri − r0 be the edge between the vertex at r0 and the
adjacent vertex at position ri, as shown in fig. 2. The cell
is taken to be in the two-dimensional x-y plane, with z
normal to its surface. The change in the edge length is

∂li
∂r0

= −l̂i, (4)

where l̂i is a unit vector which points out from r0 along
edge li. The only change to the area of the adjacent cells
comes from the triangle made by the two edges adjacent
to the vertex (shown as the shaded region in fig. 2). The
change in the area of this triangle is given by

∂A

∂r0
=

∂

∂r0

[
1
2
ẑ · (l1 × l2)

]

=
1
2
ẑ × (l2 − l1). (5)

r
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Fig. 2. Cartoon of a cell with vertices at positions r0, r1 and
r2. Movement of vertex r0 affects the lengths of the adjacent
edges l1 and l2 and the area of the shaded triangle bounded
by these edges. We assume that the face of the cell is in the
x-y plane of a standard right-handed coordinate system with
the ẑ axis projecting out of the plane. The area of the shaded
region is then 1

2
ẑ · (l1 × l2).

The change in the energy from a small movement of one
vertex is then given by

∂E

∂r0
=

K

2

∑

[α]

(Aα−A0α) [ẑ × (lα2 − lα1)]+
∑

[i]

−Γil̂i, (6)

where lα1 and lα2 are the two edges which are neighbors of
both vertex r0 and cell α, ordered such that ẑ·(lα1×lα2) >
0. Let the pressure in cell α be given by Pα. By definition

Pα = − ∂E

∂Aα
= −K(Aα − A0α). (7)

Therefore the total force on any vertex r0 is given by

Fr0 =
∑

[α]

Pα

2
[ẑ × (lα2 − lα1)] +

∑

[i]

Γil̂i. (8)

Note that the direction of the pressure force from a given
cell on a given vertex depends on the lengths of the two
edges that the cell and vertex share; the force vector does
not in general bisect the angle between the two edges.
The second term gives the force from the tension on the
neighboring edges.

Although we have derived eq. (8) from a particular
energy function, its physical interpretation, in which each
vertex is directly affected by the pressures of the surround-
ing cells and the tensions of the surrounding edges, sug-
gests a wider validity. In fact, we can take eq. (8) to define
a broader class of vertex models in which the pressure Pα

in cell α and the tension Γi on edge i are given functions of
variables that could include edge length and orientation,
cell shape, cell types, protein concentrations, and so on.
This class includes as a special case models that posit vari-
ants of the energy of eq. (1), like those that include a term
quadratic in cell perimeter [10]; the pressures and ten-
sions are then given as Pα = −∂E/∂Aα and Γi = ∂E/∂li.
A vertex model defined directly in terms of the force on
a vertex, however, also encompasses models that cannot
be derived from any underlying global energy, including
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examples in which tensions depend on the protein con-
centration on an edge [20] or on edge orientation. In the
remainder of this section and in sect. 3, we will formulate
vertex dynamics and the conditions for local stability of
fourfold vertices in terms of arbitrary pressures Pα and
tensions Γi; starting in sect. 4, we will then turn to con-
sider what our stability conditions imply for some specific,
simple choices of the Γi.

2.2 Dynamics

To determine the motion of the vertices we make the com-
mon assumption that the vertices experience a drag force
proportional to their velocity, so that

Fr0 = μṙ0, (9)

where μ is the drag constant. (Other assumptions about
the form of dissipation have also been proposed [40] but
will not be considered here.) An arbitrary vertex then
moves according to

ṙ0 =
1
μ

⎛

⎝
∑

[α]

Pα

2
[ẑ × (lα2 − lα1)] +

∑

[i]

Γil̂i

⎞

⎠ . (10)

The sum over the neighboring cells [α] includes taking
the difference between neighboring edges, which also ap-
pear in the second sum over the neighboring edges [i]. By
expressing the forces in terms of the pressure difference
across an edge, we can combine these sums into a sin-
gle sum over neighboring edges [41]. To illustrate how the
sums are merged let us consider an arbitrary vertex, which
happens to be fourfold, with cells L, M , N , O, and edges
1, 2, 3, 4 as shown in fig. 3A. Explicitly writing out the
force on the vertex from eq. (8) gives

Fr0 = Γ1l̂1 + Γ2l̂2 + Γ3l̂3 + Γ4l̂4

+
PL

2
ẑ × (l4 − l1) +

PM

2
ẑ × (l1 − l2)

+
PN

2
ẑ × (l2 − l3) +

PO

2
ẑ × (l3 − l4). (11)

We regroup the terms so that each term contains only one
edge

Fr0 = Γ1l̂1 + Γ2l̂2 + Γ3l̂3 + Γ4l̂4

+
PL − PO

2
(ẑ × l4) +

PM − PL

2
(ẑ × l1)

+
PN − PM

2
(ẑ × l2) +

PO − PN

2
(ẑ × l3). (12)

We can further simplify this expression by introducing the
notation

pi = Pα − Pα′ , (13)

where α and α′ are the cells on either side of edge i, so
that pi represents the difference in pressure across an edge
taken counterclockwise around the vertex. For example in

the configuration show in fig. 3B, p1 = PM − PL. In this
simplified notation the force on our fourfold vertex is

Fr0 = Γ1l̂1 +
p1

2
(ẑ × l1) + Γ2l̂2 +

p2

2
(ẑ × l2)

+Γ3l̂3 +
p3

2
(ẑ × l3) + Γ4l̂4 +

p4

2
(ẑ × l4). (14)

In general we can write the force on any vertex r0 as

Fr0 =
∑

[i]

[
Γil̂i +

pi

2
(ẑ × li)

]
. (15)

3 Fourfold vertex stability

In this section we will work out the criteria which a four-
fold vertex must satisfy in order to be stable. As prepara-
tion, we first in sect. 3.1 examine the dynamics of neigh-
boring threefold vertices as the length of their shared edge
approaches zero. When the edge length reaches zero, a
fourfold vertex can be formed; once formed, it can either
persist as a fourfold vertex, or it can resolve into three-
fold vertices in one of two possible topologies (fig. 3D). We
call a fourfold vertex stable if, when it is broken apart into
two threefold vertices separated by a small shared edge lδ,
the forces on the two threefold vertices push them back
together, causing the edge lδ to shrink to zero; this con-
dition must hold for both possible resolution topologies.
Section 3.2 makes this notion of stability more precise and
addresses some technical questions that it raises. Finally,
in sect. 3.3 we work out the criterion for a fourfold ver-
tex to be stable against resolving in one topology. The
criterion for the other topology then follows immediately,
and combining the two gives us our final set of stability
conditions.

3.1 Dynamics of a small edge

Consider the dynamics of a pair of threefold vertices ra

and rb which share an edge as shown in fig. 3C. Define the
shared edge lδ as lδ = ra−rb. This edge evolves according
to

l̇δ = ṙa − ṙb =
1
μ

(Fra
− Frb

) , (16)

where Fra
and Frb

are the forces on the two vertices given
by eq. (15). This equation uses the conventions that the di-
rection of li is taken outward from the vertex and that the
pressures pi are taken counterclockwise around the vertex.
As we are now dealing with two vertices, we modify these
conventions slightly to (arbitrarily) take vertex a as the
reference vertex, so that the contribution from the tension
on lδ is positive in the force on vertex a and negative in the
force on vertex b. Similarly, we define the pressure differ-
ence pδ across lδ to be taken counterclockwise around ra;
because both pδ and lδ then flip signs when forces on the
vertex rb are considered, the pressure difference across the
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Fig. 3. A: Cartoon of a fourfold vertex with neighboring cells L, M , N , O and edges l1, l2, l3, l4. Note that the direction of the
edges is outward from the vertex, and the edges are numbered clockwise. B: Cartoon showing eight different forces acting on
the fourfold vertex, two associated with each edge (eq. (15)). The four edges produce a tension Γi l̂i. The effect of the pressures
from the four cells can be written in terms of the pressure differences across the edges; if pi is the pressure difference across
edge i, we can view the pressures as exerting a force pi

2
(ẑ × li) perpendicular to each edge. C: Cartoon of two threefold vertices

which share an edge lδ. As its length lδ shrinks to zero, the vertices ra and rb will merge to form a single fourfold vertex. D:
Cartoon of the resolution of a fourfold vertex. The fourfold vertex (center) can break apart into two threefold vertices in either
of two topologies (left, right). In each case, we can associate a told force fi with each edge i that includes tension and pressure
jump contributions. In Topology 1 (left), forces f3 and f4 act one of the new vertices and forces f1 and f2 act on the other
new vertex, so that the net force trying to extend the new edge lδ is f1 + f2 − f3 − f4; this is counteracted by the tension Γδ

on the new edge (eq. (18)). The situation is the same in Topology 2 (right), but with the edges paired differently.

shared edge contributes with the same sign to the forces
on both vertices. Substituting

l̇δ =
1
μ

[
Γ1l̂1 +

p1

2
(ẑ × l1)

+ Γ2l̂2 +
p2

2
(ẑ × l2) − Γδ l̂δ +

pδ

2
(ẑ × lδ)

]

− 1
μ

[
Γ3l̂3 +

p3

2
(ẑ × l3)

+ Γ4l̂4 +
p4

2
(ẑ × l4) + Γδ l̂δ +

pδ

2
(ẑ × lδ)

]
, (17)

where Γδ is the tension of the shared edge.
Define fi as the contribution to the force associated

with edge i, fi = Γil̂i + pi

2 (ẑ × li). Then the shared edge
follows the equation of motion

μl̇δ = f1 + f2 − f3 − f4 − 2Γδ l̂δ. (18)

The forces f1 through f4 can in general depend on lδ,
and indeed on the positions of all the other vertices. Im-
portantly, however, all four forces generically approach a
finite, non-zero limit as lδ → 0. (This contrasts with the
situation in a standard linear stability problem in which

forces would go to zero linearly with lδ.) As we discuss in
more detail in the next section, when looking at vertex
stability we will always be interested in the limit of small
lδ. To leading order in this limit, f1 through f4 can thus
be evaluated at lδ = 0 and treated as constants. Our sub-
sequent development always assumes that this limit has
been taken.

3.2 Defining fourfold vertex stability

To think about vertex stability, we would like to imagine,
informally, that the fourfold vertex is constantly subject
to noise or other small perturbations and that, from time
to time, these perturbations cause it to break up into a
pair of barely separated threefold vertices, with more or
less random topology and orientation. If, for small enough
perturbations, the fourfold vertex always re-forms, then
we should call it stable. On the other hand, if the ver-
tex dynamics ever tend to move the two newly formed
threefold vertices apart, we would like to call the fourfold
vertex unstable. Thus, to define stability more carefully,
we ask what happens if, at some instant, a fourfold vertex
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is replaced by two threefold vertices whose separation lδ
is infinitesmally small (and whose average position is at
most infinitesmally different from the position of the orig-
inal fourfold vertex). The separation lδ is then allowed
to evolve according to eq. (18). If, when the magnitude
lδ = |lδ| of the separation between the two vertices is
small enough, its time derivative dlδ/dt is always nega-
tive, for both possible resolution topologies and for any
choice of orientation l̂δ, then the fourfold vertex is sta-
ble. If there is any choice of separation orientation l̂δ and
topology for which dlδ/dt remains positive for arbitrarily
small lδ, then the vertex is unstable. Finally, if, as lδ goes
to zero, dlδ/dt approaches zero for one or more choices of
l̂δ but is otherwise negative, then the fourfold vertex is
either marginally stable or marginally unstable, and the
calculation must be pursued to higher order in lδ than we
consider in this paper.

Several aspects of this definition of stability deserve
further comment. First, the positions of vertices, and
hence the forces in eq. (18) and the stability of a given
fourfold vertex, may change with time. Thus, vertex sta-
bility is an instantaneous notion, and we should really talk
about the stability or instability of a vertex at some time
t0; in particular, in the most general case it is possible for a
fourfold vertex to be stable at time t0 but then, because of
the natural time evolution of the cell packing and without
any change in system parameters, to go unstable at some
later time t1 > t0. (Of course, often we will be interested in
cell packings that have reached a local mechanical equilib-
rium and are no longer changing with time, in which case
these concerns do not apply.) Second, to determine sta-
bility at some time t0 in practice, we evaluate the forces
in eq. (18) as if both new vertices were located exactly
at the position of the fourfold vertex in question and all
other vertices were frozen at their positions at time t0.
This is appropriate because of the observation that all of
the force terms in eq. (18) generically have finite, non-zero
limits as lδ approaches zero at fixed orientation l̂δ. Except
in the marginal case described in the preceding paragraph,
for small enough lδ these finite terms must dominate any
corrections due to infinitesmal deviations of vertices from
their positions at time t0. Finally, the same reasoning ex-
plains why we can focus exclusively on the dynamics of the
separation lδ and can ignore the possibility of collective
instability modes that involve the motion of many ver-
tices: As long as dlδ/dt is finite and non-zero as lδ → 0,
infinitesmal perturbations to other vertex positions can
change its magnitude infinitesmally, but cannot affect its
sign.

3.3 Stability conditions

In accordance with the notion of stability described in the
previous section, we now imagine that the fourfold ver-
tex momentary splits into two infinitesimally close three-
fold vertices as shown in fig. 3D. In order for the vertex
to be stable we want the vertex dynamics to force the
two vertices back together. We know that in general the

vertices’ shared edge evolves according to eq. (18). Let
F = f1 + f2 − f3 − f4, and let θ be the angle between F
and the edge lδ. The time derivatives of the length lδ and
direction θ of the newly formed edge are given by

lδ θ̇ = −F
μ

sin θ, (19)

l̇δ =
F
μ

cos θ − 2Γδ

μ
, (20)

where F = |F |. From eq. (20), we conclude that the
shared edge grows the fastest when θ = 0. Therefore it
is sufficient to look at new edges which form along the
line of force F to prove stability. In this case eq. (20)
reduces to

l̇δ =
F − 2Γδ

μ
. (21)

The edge shrinks whenever

Γδ >
F
2

. (22)

We note in passing that when the forces are derived
from an energy, we can also see that eq. (22) must be the
stability criterion by looking at the energy. The change in
energy to lowest order in lδ is δE = −F · lδ + 2Γδ|lδ|, so
that the change in energy is positive whenever Γδ > F ·lδ

2lδ
.

The right hand side is minimized when F is in the direc-
tion of the new edge, and so the vertex is stable whenever
Γδ > F

2 .
It is important to remember that the vertex can resolve

in two different topologies (fig. 3D) which have different
F . Therefore, for the vertex to be stable, both of the fol-
lowing conditions must be met

Γδ ≥ |f1 + f2 − f3 − f4|
2

, (23)

Γδ ≥ |f2 + f3 − f1 − f4|
2

. (24)

The condition in eq. (23) ensures that the fourfold ver-
tex is stable against resolution into two threefold vertices
in topology 1 (fig. 3D), by enforcing the stability crite-
rion derived in eq. (22). Similarly, condition (24) ensures
that the vertex is stable against resolution in topology 2
(fig. 3D).

Except in sect. 6.1, we will primarily be interested in
what follows in the stability of fourfold vertices that are in
mechanical equilibrium —that is, on which the net force
is zero. (Because of our assumption of local dissipation
at the vertex, eq. (9), mechanical equilibrium of a vertex
is equivalent to its being stationary.) If this additional
condition holds, then f1 + f2 + f3 + f4 = 0, and one can
replace −f3 − f4 by f1 + f2 and −f1 − f4 by f2 + f3

in eqs. (23)-(24) (thereby removing all dependence on f4

in both inequalities). The two inequalities can then be
rewritten explicitly in terms of the pi and Γi as

Γδ ≥
∣∣∣∣Γ1l̂1 +

p1l1
2

(ẑ × l̂1) + Γ2l̂2 +
p2l2
2

(ẑ × l̂2)
∣∣∣∣ , (25)

Γδ ≥
∣∣∣∣Γ3l̂3 +

p3l3
2

(ẑ × l̂3) + Γ2l̂2 +
p2l2
2

(ẑ × l̂2)
∣∣∣∣ . (26)
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Similarly, the equation of mechanical equilibrium takes
the form

0 = Γ1l̂1 +
p1l1
2

(ẑ × l̂1) + Γ2l̂2 +
p2l2
2

(ẑ × l̂2)

+Γ3l̂3 +
p3l3
2

(ẑ × l̂3) + Γ4l̂4 +
p4l4
2

(ẑ × l̂4). (27)

A physical interpretation of these stability conditions is
that eq. (25) and eq. (26) require that the tension on the
new edge is high enough that it counteracts the forces from
the tensions and pressure differences across the edges. This
stops the vertex from resolving in either of the possible
topologies. Equation (27) constrains the vertex to be in
mechanical equilibrium.

4 No stable, stationary fourfold vertices exist
in Plateau’s model

In sect. 5 we will show that there are no stable, stationary
fourfold states under the condition that all of the edges
have the same tension, and in sect. 6 we will give some
examples of stable fourfold vertices that arise when we lift
this requirement. In this section, we first work through the
simplest special case of eqs. (25)-(27) to give the reader
some intuition about the main proof presented in sect. 5.
We will use the same structure for our proof in both sec-
tions.

The simplest possible situation is one in which pi = 0
and Γi = Γ . This is equivalent to Plateau’s model of a
dry foam, because in Plateau’s model the pressure does
not affect the motion of the vertices directly but instead
changes the angle of vertices’ neighboring edges. (Equiv-
alently, changes to cell areas when a new edge is created
are higher order in δ than are changes in edge lengths and
thus can be neglected in calculations of vertex stability in
Plateau’s model [14].)

To begin the proof that stationary vertices cannot be
stable in this case we first rewrite the criteria for stability
from eqs. (25)-(27). After dividing by Γ , we have

1 ≥ |l̂1 + l̂2|, (28)

1 ≥ |l̂3 + l̂2|, (29)

0 = l̂1 + l̂2 + l̂3 + l̂4. (30)

As in fig. 3A, we label the edges in the clockwise direc-
tion from 1 through 4, and we assume that each pair of
successively numbered edges bounds a single cell: cell M
lies between l1 and l2, cell N lies between l2 and l3, and
so on. For our model to be physically reasonable we can-
not have two or more cells occupying the same space, so
we must reject any configurations in which edge 1 moves
through edge 2 in such a way that cell M inverts and par-
tially overlaps cell N . In order to avoid such unphysical
overlap, we require that the ordering of the edges around
the vertex remain fixed, and thus in particular that the
labels 1 through 4 always appear in increasing order in
the clockwise direction.

 θ3

  θ1

l̂2

l̂1

l̂3

l̂4

l

l

ˆ

ˆ

l̂

1

l̂2

3

4

(l l )3  l1 2

(l l )3  l1 4

A

B

Fig. 4. A: The two angles ∠(l1l3)l2 and ∠(l1l3)l4 between
the non-adjacent edges l1 and l3 are shown. The quantities
∠(lilj)lk are defined as the unsigned magnitudes of the angles,
so ∠(lilj)lk = ∠(lj li)lk . The angles ∠(l1l3)l2 and ∠(l1l3)l4 to-
gether make a full circle, implying ∠(l1l3)l2 + ∠(l1l3)l4 = 2π.
B: The angles θ1 and θ3 are defined in the usual manner as the
signed angles between the positive x axis (which here coincides
with l2) and, respectively, l1 and l3. Hence, as drawn, θ1 > 0
and θ3 < 0.

As shown in fig. 4A, the non-adjacent edges 1 and 3
are separated by two angles, one encompassing edge 2 and
the other encompassing edge 4, which together make up a
full circle. We call the (necessarily positive) magnitudes of
these two angles ∠(l1l3)l2 and ∠(l1l3)l4 ; more generally, we
refer to the magnitude of the angle between non-adjacent
edges li and lj that encompasses lk as ∠(lilj)lk .

To show that a fourfold vertex cannot be stable in
the Plateau model, begin by taking an arbitrary pair of
non-adjacent edges li and lj . Either ∠(lilj)lk ≤ π or
∠(lilj)lm ≤ π (where lk and lm are the other two edges
at the vertex); we choose without loss of generality to la-
bel the edges so that ∠(lilj)lk ≤ π. We may then apply
a rotation followed by (if needed) a reflection to the four-
fold vertex and relabel the edges so that ∠(lilj)lk becomes
∠(l1l3)l2 and l̂2 = x̂ (fig. 5 and sect. 5.2). Let θi be the
signed angle between edge i and the x axis, as shown in
fig 4B. Then θ1 > 0 and θ3 < 0. (Note also that because
∠(l1l3)l2 ≤ π by assumption, neither θ1 nor θ3 can have
magnitude larger than π.) We will continue to use this
convention in sect. 5.
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1 3  l

l̂4

ρ (z×l )ˆ ˆ
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(l l )
2

Fig. 5. Cartoon of the procedure in sect. 5.2 to exploit the
symmetries of the problem in order to reduce the number of free
variables. An arbitrary angle ∠(lilj)lk between non-adjacent
edges can be transformed under rotations such that lk lies on
the positive x axis; if needed, a reflection through the x axis
ensures that ρk(ẑ× l̂k) lies on the positive y axis and thus that
ρk ≥ 0. (Note that ρk changes sign under reflections.) Finally,
the edges can be renumbered from 1 to 4 in the clockwise
direction. θ1 and θ3 are the signed angles that l̂1 and l̂3 make
with the positive x axis, as shown, so that the magnitude of
the angle between l̂1 and l̂3 is ∠(l1l3)l2 = θ1 − θ3.

The next step is to convert eqs. (28) and (29) to polar
coordinates

1 ≥ (cos θ1 + 1)2 + (sin θ1)
2
, (31)

1 ≥ (cos θ3 + 1)2 + (sin θ3)
2
, (32)

and to solve the system of inequalities. In this case we
can immediately deduce that, for these conditions to hold
and the vertex to be stable, we must have θ1 ≥ 2π/3 and
θ3 ≤ −2π/3. It follows that ∠(l1l3)l2 = θ1 − θ3 ≥ 4π/3,
which contradicts our initial assumption that ∠(l1l3)l2 ≤
π. Hence, the vertex must be unstable.

Our proof that there are no stable states in the equal
tension vertex model will follow the same basic structure.
First we will express the conditions (25)-(26) in polar coor-

dinates. We will solve the resulting system of inequalities
to get bounds on the angle between any two non-adjacent
edges ∠(lilj)lk . We will then show that the given bounds
lead to a contradiction.

5 No stable, stationary fourfold vertices exist
in the equal tension vertex model

Throughout sect. 5 we will work with a special case of
the vertex model, which we call the equal tension vertex
model, which shares important features with the Plateau
model of foams. In the equal tension vertex model, as
in the Plateau model, every edge has the same tension
Γi = Γ ; unlike the Plateau model, however, the equal ten-
sion vertex model does not put any restrictions on the cell
pressures Pα. In this section, we consider only fourfold ver-
tices that are stationary and in mechanical equilibrium.

Our argument that such fourfold vertices can never be
stable in the equal tension model proceeds as follows: In
sect. 5.1 we introduce the variables ρi, which are dimen-
sionless ratios of an edge’s length, tension, and pressure
difference. This reduces the number of variables in the
problem to eight (four edge directions and four ρi). In
sect. 5.2, we express the stability conditions (25)-(26) in
polar coordinates and use the symmetries of the problem
to reduce the number of free variables to seven. In sect. 5.3
we analyze the resulting system of inequalities, conclud-
ing that fourfold vertices are unstable unless ∠(lilj)lk = π
for any choices of non-adjacent edges li and lj and in-
tervening edge lk. Finally, in sect. 5.4 we show that if
∠(lilj)lk = π for all pairs of non-adjacent edges, it is
impossible to satisfy all three stability and equilibrium
conditions (25)-(27). Thus, no stable, stationary fourfold
vertices are possible in the equal tension model.

5.1 Streamlining notation

We begin by writing a more compact version of the general
stability conditions given in eqs. (25)-(26). Let

ρi =
pi|li|
2Γ

(33)

be a scalar which is proportional to the force exerted by
the pressure difference across edge i. Recall that the pres-
sure difference is taken counterclockwise around vertex ra

(fig. 3C), so the sign of ρ depends on which neighboring
cell has the higher pressure. The stability criteria can then
be expressed as

1 ≥ |l̂1 + ρ1(ẑ × l̂1) + l̂2 + ρ2(ẑ × l̂2)|, (34)

1 ≥ |l̂3 + ρ3(ẑ × l̂3) + l̂2 + ρ2(ẑ × l̂2)|, (35)

0 = l̂1 + ρ1(ẑ × l̂1) + l̂2 + ρ2(ẑ × l̂2)

+l̂3 + ρ3(ẑ × l̂3) + l̂4 + ρ4(ẑ × l̂4). (36)

By absorbing the lengths of the edges into the coefficients
ρi, the problem is now poised entirely in terms of unit
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vectors. The problem is reduced to eight variables: the
four angles of the edges with respect to the x-axis θ1, θ2,
θ3, θ4, and the four ρ coefficients.

As an aside, if we further assume the pressures have
the simple form of eq. (7) and express the ρi in terms of
the areas of the cells,

ρi =
pili
2Γ

=
(Pα − Pα′) li

2Γ

=
Kli [(Aα′ − Aα) + (A0α − A0α′)]

2Γ
, (37)

it becomes clear that the preferred area A0α of the cells
does not affect the stability in the common case in which
A0α is the same for all cells.

5.2 Exploiting symmetries

The stability criteria (34) and (35) both contain terms
with edge two. We would like to use the symmetries of
the problem to fix this shared edge and reduce the number
of free variables. The problem has rotation and reflection
symmetry as well as arbitrary edge labels.

Let us look at an arbitrary pair of non-adjacent edges
li and lj (fig. 5, top). Either ∠(lilj)lk ≤ π or ∠(lilj)lm ≤ π,
since the two angles together make up a full circle. With-
out loss of generality, label the edges so that ∠(lilj)lk ≤ π.
We can then use the problem’s rotational symmetry to im-
pose l̂k = x̂. It will be useful later in the proof to place
restrictions on the sign of ρk. If ρk is initially negative we
can reflect the system about the x axis, as shown in fig. 5.
This reflection has the effect of changing the sign of ρk, so
that we can impose that ρk ≥ 0. We are free to relabel lk
as l2 and to relabel the rest of the edges in order clockwise
from 1 to 4. Since we can perform this procedure starting
from any pair of non-adjacent edges li and lj , our argu-
ments in the remainder of this section hold for all pairs of
non-adjacent edges.

5.3 Bounds on the angle between non-adjacent edges

We next turn to the central problem of determining the
implications of the stability criteria of eqs. (34) and (35)
for the angles between edges. Let θi be the signed angle
between an edge and the x-axis, where θ1 is positive and
θ3 is negative due to the clockwise labeling of edges as
shown in fig. 5. The stability conditions can be written in
terms of the θi and ρi as

1 ≥ 2 + ρ2
1 + ρ2

2 + 2(1 + ρ1ρ2) cos θ1 + 2(ρ2 − ρ1) sin θ1,

(38)
1 ≥ 2 + ρ2

3 + ρ2
2 + 2(1 + ρ3ρ2) cos θ3 + 2(ρ2 − ρ3) sin θ3.

(39)

Our goal is to put a lower bound on the angle ∠(l1l3)l2 =
θ1 − θ3. An important property of our system of inequal-
ities is that the conditions on θ1 are completely indepen-
dent of the value of θ3 and vice versa. Neither variable
depends on the other, but they both depend on ρ2. This
allows us to break the overall optimization problem of find-
ing the minimum value of θ1 − θ3 into two separate sub-
problems: finding the minimum value of θ1 as a function
of ρ2 and finding the maximum value of θ3 as a function
of ρ2.

For our first optimization problem, we would like to
find the minimum value of θ1 that can be obtained by
varying ρ1 for an arbitrary, fixed value of ρ2 and subject
to the constraint of eq. (38). Due to the inequality con-
straint we cannot use the method of Lagrange multipliers
to solve this optimization problem. Instead, we use its gen-
eralization to the case where the optimum can occur ei-
ther on the boundary of a region or within that region, the
Karush-Kuhn-Tucker conditions [42,43]. Let the function
to be maximized be h(θ1, ρ1) = −θ1 and the constraining
function be g(θ1, ρ1) = 1 + ρ2

1 + ρ2
2 + 2(1 + ρ1ρ2) cos θ1 +

2(ρ2 − ρ1) sin θ1 ≤ 0. The optimality conditions are then

∇h(θ1, ρ1) − λ∇g(θ1, ρ1) = 0, (40)

λ[g(θ1, ρ1) − 0] = 0, (41)

g(θ1, ρ1) ≤ 0, (42)

λ ≥ 0, (43)

where the gradient is taken with respect to the variables θ1

and ρ1, and λ ∈ R is the Karush-Kuhn-Tucker multiplier.
This produces the system of equations

0 = −1 + 2λ [(1 + ρ1ρ2) sin θ1 + (ρ1 − ρ2) cos θ1] , (44)

0 = −2λ (ρ1 + ρ2 cos θ1 − sin θ1) , (45)

0 = λg(θ1, ρ1), (46)

0 ≥ g(θ1, ρ1), (47)

0 ≤ λ. (48)

In sect. 5.2, we showed that we can use symmetry oper-
ations to make ρ2 positive without loss of generality. We
also chose to focus on the smaller of the two angles be-
tween a pair of non-adjacent edges, so that ∠(l1l3)l2 ≤ π,
and we numbered the edges clockwise as show in fig. 5
(bottom). This gives additional constraints on the solu-
tion

0 ≤ ρ2, (49)

0 < θ1 ≤ π, (50)

where θ1 cannot be zero because edges must be separated
by cells of non-zero area. The solution to the full system
of equations is

θ1 = arctan [−ρ2, 1] , (51)

where arctan[x, y] is the angle whose tangent is y/x and
that lies the quadrant is given by the signs of x and y.



Page 10 of 17 Eur. Phys. J. E (2017) 40: 2

We may now independently optimize θ3 for an arbi-
trary value of ρ2. Let the function to be maximized be
h(θ3, ρ3) = θ3 and the constraining function be g(θ3, ρ3) =
1+ρ2

3 +ρ2
2 +2(1+ρ3ρ2) cos θ3 +2(ρ2 −ρ3) sin θ3 ≤ 0. The

optimality conditions are the same as eqs. (40)-(43), which
produces the system of equations

0 = 1 + 2λ [(1 + ρ3ρ2) sin θ3 + (ρ3 − ρ2) cos θ3] , (52)

0 = −2λ (ρ3 + ρ2 cos θ3 − sin θ3) , (53)

0 = λg(θ3, ρ3), (54)

0 ≥ g(θ3, ρ3), (55)

0 ≤ λ. (56)

We have an additional two constraints given by the way
we set up the problem

0 ≤ ρ2, (57)

0 > θ3 ≥ −π. (58)

This system of equations has two real solutions

θ3 = arctan

[
−2 − ρ2

√
ρ2
2 − 3

1 + ρ2
2

,
−2ρ2 +

√
ρ2
2 − 3

1 + ρ2
2

]
, (59)

θ3 = arctan [ρ2,−1] . (60)

For all ρ2 ∈ [0,
√

3], the solution of eq. (60) is greater
than that of eq. (59), and elsewhere the solution given by
eq. (59) has a non-zero imaginary part, so the true max-
imum θ3 is given by the solution in eq. (60). Subtracting
our two independently optimized solutions we have that
the minimum possible value of the angle ∠(l1l3)l2 is

∠(l1l3)l2 = θ1 − θ3

≥ arctan [−ρ2, 1] − arctan [ρ2,−1]
= π, (61)

where the last identity holds for all non-negative ρ2. As
we began by choosing ∠(l1l3)l2 ≤ π, either ∠(l1l3)l2 =
π or the fourfold vertex is unstable. Moreover, because
∠(l1l3)l2 + ∠(l1l3)l4 = 2π, stability then also implies that
∠(l1l3)l4 = π. The same holds for any pair of non-adjacent
edges, by the argument in sect. 5.2. In other words, the
fourfold vertex is unstable unless l̂1 = −l̂3 and l̂2 = −l̂4.
In the next section, we show that under these assumptions
it is impossible to satisfy all three stability conditions (34)-
(36).

5.4 Finding a contradiction when non-adjacent edges
have 180◦ separation

Suppose that l̂1 = −l̂3 and l̂2 = −l̂4. It is easy to show
that condition 36 (mechanical equilibrium) is then only
satisfied when ρ1 = ρ3 and ρ2 = ρ4. Since ∠(l1l3)l2 =
θ1 − θ3 = π, θ3 = θ1 − π. Substituting this equality and

Topology 1 Topology 2

Fig. 6. Cartoon of the unphysical resolution of a fourfold ver-
tex due to large pressure effects. In the left topology the two
resulting threefold vertices are pushed through each other by
the pressure of the neighboring cells. This creates a physically
impossible state in which cells overlap.

ρ3 = ρ1 into eqs. (38) and (39) yields

0 ≥ 1 + ρ2
1 + ρ2

2 + 2(1 + ρ1ρ2) cos θ1 + 2(ρ2 − ρ1) sin θ1,

(62)
0 ≥ 1 + ρ2

1 + ρ2
2 − 2(1 + ρ1ρ2) cos θ1 − 2(ρ2 − ρ1) sin θ1.

(63)

Together these two conditions imply

0 ≥ 1 + ρ2
1 + ρ2

2, (64)

which is a contradiction because the right-hand side is al-
ways greater than one. Thus, there can be no stable, sta-
tionary fourfold vertices in the equal tension vertex model.

Before moving on from the stationary, equal tension
case, we should finally note that, strictly speaking, our
proof of instability applies to a vertex model that allows
cell overlap. Although such a situation is not common in
practice, it can occur that pressure differences between
cells are large enough that they overwhelm the tensions
and cause the fourfold vertex to try to resolve by pushing
the cells through each other as shown in fig. 6. If such
resolution with overlap is forbidden, the vertex’s stability
increases, and we cannot at the moment rigorously rule
out the possibility that in this case fourfold vertices could
become stable in the equal tension model. In reality, of
course, if cell overlap is a concern then there is a good
chance the model is being studied in a pathological pa-
rameter regime.

6 Examples of modifications that allow for
stable fourfold vertices

It was already known that Plateau’s model of soap foams,
on which the vertex model is based, does not allow for
stable fourfold vertices. In the last section we gave a proof
that, even with the addition of pressure effects which arise
in vertex models with straight edges, there are still no sta-
ble fourfold vertices. Given that fourfold vertices are seen
in various epithelial tissues [16,27–30], one might natu-
rally wonder what extensions of the model would allow
stable fourfold vertices to form. One well-studied example
occurs in the avian oviduct epithelium, where two different
types of cells are arranged in a checkerboard pattern with
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edges between like cell types having higher tension [16].
In this section we will give two examples of modifications
which allow for stable fourfold vertices in epithelia even
when only a single cell type is present. This gives us some
insight into what additional biological mechanisms might
exist in epithelia which are not present in simple foams
and which could lead to higher order vertices.

6.1 Vertices not in mechanical equilibrium

So far we have only considered fourfold vertices which are
in mechanical equilibrium. If the vertex is moving relative
to the epithelial tissue, eq. (27) no longer holds, and the
forces associated with the four edges can become very un-
balanced. It turns out that the vertex model then does
admit stable fourfold vertices. An example of such a sta-
ble state is given in fig. 7. The observation that moving
fourfold vertices tend to be more stable than their sta-
tionary counterparts might explain why they have been
observed to persist in tissues undergoing rapid morpho-
genetic movements [44,29].

6.2 Anisotropic tension

In previous sections, we investigated vertex stability in a
model in which all edges have the same tension. Unlike
foams, however, cells can regulate their tensions so that
these differ from one edge to the next. One example of
this is the anisotropic edge tensions produced through the
planar cell polarity pathway [1–6,30] (which breaks rota-
tional symmetry by defining a preferred direction in the
plane of the epithelium).

A very simple model of planar cell polarity is to as-
sume that tension regulating proteins (such as myosin)
are recruited to edges based on the edges’ angle with
the overall polarity orientation, so that edges have an
anisotropic tension given (in appropriate dimensionless
units) by Γi = 1 + γ cos 2θi, where γ ∈ [0, 1] gives the
strength of the anisotropy, and θi is the angle between the
edge and the planar polarity axis (which we will always
take to be the x axis) [5,45,46]. We will make the fur-
ther assumption that there is some time lag for proteins
to move onto the newly forming edge, so that the new
edge tension will not depend on the angle, but instead
will simply be the unit tension Γδ = 1. In order to further
simplify the model we will also assume that effects from
pressure are negligible. The force on a fourfold vertex is
then described by five variables: γ and the four angles θi

between the edges and the polarity axis.
With the additional effects of polarization some sta-

ble fourfold states exist. We begin our examination of the
stable states by looking only at states which are symmet-
ric about both the x and y axes (fig. 7E, inset). Let θ be
the angle between the high tension x-axis and the edges.
From the conditions given in eqs. (25)-(26) it is easy to
show that the vertex is stable if it satisfies both

1 > 2(1 + γ cos 2θ) cos θ, (65)

1 > 2(1 + γ cos 2θ) sin θ. (66)

The solutions to this series of inequalities are shown in
fig. 7E. In general we have stable fourfold vertices when
the strength of the polarization is fairly high and θ is near
π
2 . This makes intuitive sense because this represents all of
the edges being near the low tension axis and the strength
of the tension being relatively low.

We now lift the restriction of symmetry in order to
look for more general instances of stability. We will as-
sume that the edges come in equal and opposite pairs
(l̂1 = −l̂3 and l̂2 = −l̂4), so that mechanical equilibrium
is ensured and the number of free parameters is still low.
(With this restriction, we still cannot explore all possi-
ble states of the model, but the variety of available vertex
geometries is large enough to clearly demonstrate how po-
larized tensions can lead to stability.) We now have three
free parameters. Let θ be the angle between the high ten-
sion axis (the x-axis) and the first edge, ϕ be the angle
between the first and second edges, and γ be the strength
of the polarization. We then have that θ1 = θ, θ2 = θ +ϕ,
θ3 = θ + π, and θ4 = θ + ϕ + π. In order to have stability
the following two inequalities must hold:

1 >
(
(1 + γ cos 2θ) cos θ

+[1 + γ cos 2(θ + φ)] cos(θ + φ)
)2

+
(
(1 + γ cos 2θ) sin θ

+[1 + γ cos 2(θ + φ)] sin(θ + φ)
)2

, (67)

1 >
(
(1 + γ cos 2θ) cos θ

+[1 + γ cos 2(θ + φ − π)] cos(θ + φ − π)
)2

+
(
(1 + γ cos 2θ) sin θ

+[1 + γ cos 2(θ + φ − π)] sin(θ + φ − π)
)2

. (68)

The solution to this series of inequalities is shown in
fig. 7F. This is reasonable because more angles are stable
as the amount of polarization increases and once again
these angles represent the edges placed near the low ten-
sion axis.

Stable fourfold vertices are seen in some systems with
planar cell polarity [27,28,30]. The stability of these ver-
tices may be due to the decreased tension on edges along
the low tension axis.

7 Implications for computational models

Although vertex models are widely used to simulate ep-
ithelial dynamics, there is currently no standard proce-
dure for dealing with T1 transitions in such simulations.
Some naive implementations can resolve fourfold vertices
in ways that produce unphysical behavior. For example,
approaches that automatically perform a T1 transition
whenever an edge becomes too small, or more generally
that assume that a fourfold vertex must always break up
into two threefold vertices, can lead to spurious oscilla-
tions when the fourfold vertex should in fact be stable;
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Fig. 7. Situations in which fourfold vertices can become stable. A–B: Example of a fourfold vertex stabilized through movement.
All Γi = Γ = 1, so that the tension force from each edge is 1. The vertex is then stable for the quoted values of the pressure
differences A: The fourfold vertex and adjacent cells. B: The force from the pressure differences across each edge ρi(ẑ × l̂i) is
shown as a dashed line. The magnitudes are to scale. C: Solid black arrows represent the two values of F corresponding to
the two possible resolution topologies. D: All of the forces on the vertex are shown. Solid colored arrows represent the edges,
which contribute a force of l̂i. The dashed colored arrows represent the force from the pressure across each edge ρi(ẑ× l̂i). Solid
black arrows are the two values of F , and the dashed black arrow is the velocity vector. Values of ρi, F and the total force are
given on the right. Note that both solid black arrows are shorter than the four arrows giving the edge tensions, indicating that
|F| < Γ < 2Γ , amply satisfying the stability conditions of eqs. (22)–(24). E–F: Parameter space in which fourfold vertices with
anisotropic edge tensions are stable. E: Stability for symmetric vertices; γ gives the strength of the anisotropy in the tension
and θ gives the angle of the edges with respect to the x-axis (inset). The region of parameter space in which fourfold vertices
are stable is shown in green. F: Stability for asymmetric vertices with paired edges; γ gives the strength of the anisotropy in
the tension, θ gives the angle of l̂1 with respect to the x-axis, and ϕ gives the angle between l̂1 and l̂2 (inset). The region of
parameter space in which fourfold vertices are stable is shown in green.

importantly, as we showed in the preceding section, mov-
ing vertices can become stable even when all tensions are
equal, so this issue can in principle arise in almost all ver-
tex model simulations. Something similar can occur when
a fourfold vertex is resolved into two threefold vertices
with a separation lδ that is not parallel to F (though
this phenomenon can be avoided —see below— if |lδ| is
chosen small enough). In this section we briefly describe
a method, based on the theoretical developments of the
previous sections, that carries out T1 transitions in a con-
sistent fashion and so avoids these and similar difficulties.
Complete pseudo-code for this algorithm appears in ap-
pendix A.

The essential idea of our algorithm is that T1 transi-
tions must be dealt with in two steps: First, an edge whose
length is below a chosen cutoff is removed and the two

threefold vertices joined by that edge are merged into a
single fourfold vertex. Then, one checks the stability of the
fourfold vertex against breaking in both allowed topolo-
gies (recognizing, as shown in sect. 6, that the fourfold
vertex could be stable). This requires creating temporary
threefold vertices, with zero separation, and correspond-
ing edges, so that the forces on the two new vertices can
be calculated in each topology. Depending on the stability
of the fourfold vertex, three outcomes are possible: 1) The
fourfold vertex is found to be stable and allowed to per-
sist. (In this case, the vertex could still become unstable at
some later time, so one must continue to monitor its sta-
bility as the simulation progresses.) 2) The fourfold vertex
resolves into two threefold vertices in the same topology
as the original threefold vertices. One thus effectively re-
jects the proposed T1 transition even though the initial
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edge length is less than the cutoff. If one observes a series
of such events involving the same edge, one can conclude
that the dynamics is trying to drive the edge towards a
non-zero length less than the cutoff length, and thus that
the cutoff has been chosen too large for the system being
studied. (One can readily imagine schemes to dynamically
update the cutoff length in such circumstances, or even to
assign different cutoff lengths to different edges, but for
simplicity we do not include them in our pseudocode.)
3) The fourfold vertex resolves into two threefold vertices
in the new topology, and a T1 transition occurs.

Once it has been determined that a fourfold vertex is
unstable one needs to make a new edge of finite length,
which raises the question of the most appropriate orienta-
tion for the new edge. From eq. (19) the new edge rotates
at a rate

θ̇ = − F
μlδ

sin θ, (69)

and its length changes according to

l̇δ =
F
μ

cos θ − 2Γδ

μ
. (70)

The edge orientation must clearly relax to θ = 0 as long
as F remains approximately constant over the relaxation
timescale. Because θ̇ diverges like 1/lδ, it is reasonable to
guess that this will be the case if the initial edge length
l0δ is chosen small enough. More precisely, one can esti-
mate that the edge relaxes to θ = 0 on a timescale μl0δ

F .
Over that time, the change in edge length will be of order
l0δ. Thus, the fractional change in the new edge’s length
during the relaxation process is of order one. Nonetheless,
if l0δ is small compared to the scale, typically of order
a cell size, over which F changes appreciably, then the
variation in F over the time it takes θ to rotate to zero
can still be neglected. We thus conclude that if they are
short enough, new edges will always quickly rotate to be-
come parallel with F , whatever their initial orientation. It
is then reasonable in simulations simply always to create
new edges with θ = 0.

8 Discussion

Vertex models are important tools to study the interplay
between local cell mechanics and global tissue shape and
motion. One aspect of this interaction during tissue re-
modeling and development is the T1 transition, in which
a fourfold vertex is formed as an intermediary stage. More
generally, the local behavior of fourfold vertices affects cell
shape and mechanics, and thereby morphogenesis at larger
scales.

Here, we have introduced a formulation of the stability
of fourfold vertices in vertex models with straight edges
that holds for arbitrary edge tensions and cell pressures
(whether or not derived from an underlying energy func-
tion). Using this formulation, we have given the first proof
that, in the simplest case of equal edge tensions and ver-
tices in mechanical equilibrium —analogous to the condi-
tions in a dry foam— fourfold vertices are never stable in

vertex models, just as they are not in the Plateau model
of foams.

We have also shown that if either of the assumptions of
equal edge tensions or mechanical equilibrium is relaxed,
fourfold vertices can become stable. Interestingly, long-
lived fourfold and higher order vertices have been observed
in epithelia moving relative to the surrounding fluid [29,
44] and in tissues where junctional tensions are influenced
by planar cell polarity [27,28,30], suggesting that both
stabilization scenarios may have biological relevance.

Lastly, our treatment of vertex stability has clear im-
plications for the simulation of vertex models and espe-
cially for the implementation of T1 transitions in compu-
tational modeling (see appendix A). Moreover, whereas
our analytic results apply to models that in principle al-
low for cell overlap, in computational formulations this
problem can be addressed by checking for overlap after
T1 transitions. Disallowing overlap may stabilize some
fourfold vertices in the limit where the force on the ver-
tex from the cell pressure dominates over the tension on
the edges (though such parameter regimes are not those
thought to be physically relevant in most studies of vertex
models, and in particular one could question whether it is
a good approximation to force edges to remain straight
when pressures are high enough). Our discussion in this
paper has been limited to fourfold vertices, but higher
order vertices, like the rosettes seen during Drosophila
germband extension [25], can be investigated in an en-
tirely analogous manner, by checking whether the vertex
is stable against breaking up into every possible combina-
tion of two lower order vertices; of course, the number of
stability conditions will increase rapidly with the order of
the vertex.

Although the relatively simple models for determin-
ing pressures and edge tensions that we have adopted
here capture many aspects of the behavior of real ep-
ithelia, certain systems clearly require more sophisticated
descriptions. For example, in the pupal dorsal notum of
Drosophila pten mutants, vertices are seen to undergo os-
cillatory T1 transitions that appear to be driven by dis-
parities in the timescales for transport of different proteins
to newly formed edges [28,47]. Our description of vertex
stability can readily be extended to include many effects
along these lines. In particular, as long as the new edge is
much shorter than the existing edges, the stability prob-
lem can still be expressed in terms of the dynamics of the
new edge lδ, which in turn are determined by the —now
possibly time-dependent— tensions and pressures of the
surrounding edges and cells. Similarly, our formalism can
encompass buckling of the epithelial sheet into the third
dimension [35,36] without any significant modifications,
because even a bent epithelium appears locally flat when
lδ is much less than the sheet’s radius of curvature, as it
must be immediately after a fourfold vertex has broken
up.

On the other hand, our formalism assumes that ver-
tex stability is solely a consequence of local edge tensions
and cell pressures; it does not include the effects of other
phenomena that might be relevant in some biological sys-
tems and that would require more substantial changes to
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Algorithm 1: T1
Input: e0 the edge to undergo T1
Output: None. The function will update the effected edges cell and vertices so they are in the correct locations and

have the correct neighbors following a T1 transition.
1 v1 ← e0.vertex1;
2 v2 ← e0.vertex2;
3 c1 ← e0.cell1;
4 c2 ← e0.cell2;

� Do not T1 edges which neighbor triangles. This would produce cells with only two sides.

5 if c1.EdgeNumber ≤ 3 or c2.EdgeNumber ≤ 3 then
6 EXIT

� Get the edges which will make the fourfold vertex

7 forall e ∈ {v1.edges or v2.edges} do
8 if e �= e0 then
9 list4foldedges ← e

� set the next position of the two vertices to the center of the edge

10 v1.xnext ← e0.center ;
11 v2.xnext ← e0.center ;

� move vertices updating any periodic boundary flags if nessacary

12 MoveVertex(v1) ;
13 MoveVertex(v2) ;

� make the new vertex

14 vnew ← e0.center;
15 forall e ∈ list4edges do
16 vnew ← e

� delete two old vertices

17 Delete(v1);
18 Delete(v2);

� Remove e0 from the list of edges in its two neighboring cells

19 for c ∈ {c1, c2} do
20 forall e ∈ c do
21 if e = e0 then
22 remove e ;

23 Delete(e0) ; � delete the central edge e0

24 ResolveFourfoldVertex(vnew) ; � Resolve the fourfold vertex

our basic model. For example, it is possible that in some
circumstances cells could recruit proteins specifically to
fourfold vertices to stabilize or destabilize them. Similarly,
the models studied here neglect effects associated with the
fluid dynamics of molecular transport to and from ver-
tices [48] and include interactions between the epithelium
and its substrate only in the coarsest fashion, as one of the
sources of the local friction force on vertices. Our calcu-
lations thus represent only an initial step towards under-
standing the rich physics of topology changes and vertex
stability in epithelia and planar foams.
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Appendix A. Pseudo-code for T1 transitions

Algorithms 1–4 give pseudo-code implementing T1 transi-
tions as described in sect. 7. The code assumes an object-
oriented language (such as C++ or Java) with cell, edge,
and vertex objects already defined. We will assume that
the edges store data on their neighboring vertices and
cells. The cells and vertices only store data on their neigh-
boring edges, and functions have been written to get the
other neighboring objects if needed. Objects are referred
to in C++ style so that someobject.somedata refers to the
data somedata stored by the object someobject.
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Algorithm 2: ResolveFourfoldVertex

Input: v0 the fourfold vertex to resolve
Output: None
� Make lists of the edges and cells in clockwise order

1 e ← v.CWEdges
2 c ← v.CWCells

� find the stability of each configuration

3 f1 ← CheckStability(v, e[0], e[1], e[2], e[3], c[0], c[1], c[2], c[3])
4 f2 ← CheckStability(v, e[3], e[0], e[1], e[2], c[3], c[0], c[1], c[2])
5 case f1=0 and f2=0
6 EXIT � The vertex is stable so exit

7 case f1 ≥ f2
� The vertex is unstable and should resolve in the first topology

8 BreakFourfoldVertex(v, e[0], e[1], e[2], e[3], c[0], c[1], c[2], c[3])

9 case f2 > f1
� The vertex is unstable and should resolve in the second topology

10 BreakFourfoldVertex(v, e[3], e[0], e[1], e[2], c[3], c[0], c[1], c[2])

Algorithm 3: CheckStability

Input: v, e1, e2, e3, e4, c1, c2, c3, c4
v: the fourfold vertex
e1, e2, e3, e4: the four edges of v in clockwise order such that (e1,e2) will be neighbors and (e3,e4) will be neighbors
when the vertex is split
c1, c2, c3, c4: The four cells of v in clockwise order such that c1 has edges e1, and e2.
Output: Creates temporary objects representing the vertex splitting such that edges (e1,e2) and (e3,e4) are paired and

cells c2 and c4 are neighbors. It returns the magnitude of the force pulling the vertices apart. If the vertex is
stable against breaking in this topology it returns 0.

1 CoppyAll v′ ← v, e1′ ← e1, c1′ ← c1, ... � Make temporary objects

� Make the new edge (enew) and vertices (v12, and v34) resulting from the split into two threefold

vertices

2 v12 ← v.x � the vertex on edges e1’ and e2’

3 v12 ← {enew, e1′, e2′}
4 v34 ← v.x � the vertex on edges e3’ and e4’

5 v34 ← {enew, e3′, e4′}
6 enew.length ← 0
7 enew ← {v12, v34}
8 enew ← {c2′, c4′}
9 for e ∈ {e1′, e2′, e3′, e4′} do

10 e delete v � Update the four edges

11 if e ∈ {e1′, e2′} then
12 e ← v12

13 else
14 e ← v34

15 c2′ ← enew � Update the cells

16 c4′ ← enew
� Calculate F as given in Sect3A. Let e.FindForce(v) return the force on vertex v from edge e given by

Γe l̂e + pe
2

(ẑ × le).
17 F ← (e1.FindForce(v12) + e2.FindForce(v12) + e3.FindForce(v34) + e4.FindForce(v34))/2
18 if F > enew.tension then
19 return magnitude(F)

20 else
21 return 0;
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Algorithm 4: BreakFourfoldVertex

Input: v, e1, e2, e3, e4, c1, c2, c3, c4
v: the fourfold vertex
e1, e2, e3, e4: the four edges of v in clockwise order such that (e1,e2) will be neighbors and (e3,e4) will be neighbors
when the vertex is split
c1, c2, c3, c4: The four cells of v in clockwise order such that c1 has edges e1, and e2.
Output: None
� Make the new edge (enew) and vertices (v12, and v34) resulting from the split into two threefold

vertices

1 v12 ← v.x + (L
2
F̂) � Where L specifies new edge lengths

2 v12 ← {enew, e1′, e2′}
3 v34 ← v.x − (L

2
F̂) � Where L specifies new edge lengths

4 v34 ← {enew, e3′, e4′}
5 enew.length ← L
6 enew ← {v12, v34}
7 enew ← {c2, c4}
8 for e ∈ {e1, e2, e3, e4} do
9 e delete v � Update the four edges

10 if e ∈ {e1, e2} then
11 e ← v12

12 else
13 e ← v34

14 c2 ← enew � Update the cells

15 c4 ← enew
16 Delete v

The function T1 takes a small edge and replaces it
with a new fourfold vertex, and then calls the function
ResolveFourfoldVertex on the new vertex.

The function ResolveFourfoldVertex takes as input a
fourfold vertex. It calls CheckStability on each of the
possible resolution topologies to determine their sta-
bility. Once the correct resolution topology has been
established the function calls BreakFourfoldVertex to up-
date the edges, cells, and vertices involved in the T1 tran-
sition.

The function CheckStability takes as input a fourfold
vertex and its associated edges and cells. The cells and
edges must be given in clockwise order. The function will
create temporary objects representing breaking the four-
fold vertex such that edges e1 and e2 share a common
vertex. The force F is calculated and returned, and the
temporary objects are deleted.

The function BreakFourfoldVertex takes a resolution
topology for a fourfold vertex as input and creates the new
edge and correctly resigns the neighboring edges, vertices,
and cells in the new topology.

(Including both the CheckStability and BreakFour-
foldVertex functions may seem redundant, but it is vi-
tal to have both to deal with the rare but possible case
in which a fourfold vertex is unstable to breaking up in
both topologies. In this case the vertex should break in
the topology in which it is most unstable.)
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