Publications

Recent Publications

47. Mitigating Cobalt Phthalocyanine Aggregation in Electrocatalyst Films through Codeposition with an Axially Coordinating Polymer.
Dean, W. S.; Soucy, T. L.; Terry, B. D.; McCrory, C. C. L. submitted.

46. Bimetallic Molecular Co-Co and Co-Zn Complexes for Electrocatalytic CO2 Reduction: Understanding the Interrelated Effects of Intramolecular Electrostatics and Electronic Coupling on Activity
Zhou, J.; Nie, W.-X.; Tarnopol, D. E.; McCrory, C. C. L. in press.
Equally contributing first authors.

45. Selective Reduction of Aqueous Nitrate to Ammonia with an Electropolymerized Chromium Molecular Catayst.
Askari, M. J.; Kallick, J. D.; McCrory, C. C. L.  J. Am. Chem. Soc., 2024, 146, 7439-7455.

44. Electrochemical CO2 Reduction to Methanol by Cobalt Phthalocyanine: Quantifying CO2 and CO Binding Strengths and Their Influence on Methanol Production.
Yao, L.; Rivera Cruz, K. E.; Zimmerman, P. M.; Singh, N.; McCrory, C. C. L. ACS Catal. 2024, 14, 366-372.
Equally contributing first authors

43. Atomic Layer Deposition of Cu Electrocatalysts on Gas Diffusion Electrodes for CO2 Reduction.
Lenef, J., Lee, S. Y.; Fuelling, K.; Rivera Cruz, K. E.; Prajapati, A.; Delgado Cornejo, D.; Cho, T.; Sun, K.; Alvarado, E.; Arthur, T.; Roberts, C.; Hahn, C.; McCrory, C. C. L.; Dasgupta, N.
Nano Lett., 2023, 23, 10779-10787.

42.  Challenges and Opportunities in Translating Immobilized Molecular Catalysts for Electrochemical CO2 Reduction from Aqueous-Phase Batch Cells to Gas-Fed Flow Electrolyzers
Yao, L.; Rivera-Cruz, K. E.; Singh, N.; McCrory, C. C. L.  Curr. Opin. Electrochem., 2023, 41, 101362.
*Invited Review/Perspective Article to Special Issue: Organic and Molecular Electrocatalysis (2023).

41. The Influence of pH and Electrolyte Concentration on Fractional Protonation and CO2 Reduction Activity in Polymer-Encapsulated Cobalt Phthalocyanine
Soucy, T. L.; Dean, W. S.; Rivera-Cruz, K. E.; Eisenberg, J. B.; McCrory, C. C. L. J Phys. Chem. C, 2023, 127, 14041-14052.
*Invited article in Journal of Physical Chemistry Virtual Special Issue: Early-Career and Emerging Researchers in Physical Chemistry Volume 2.

40. Translating Catalyst-Polymer Composites from Liquid to Gas-fed CO2 Electrolysis: A CoPc-P4VP Case Study.
Yao, L.; Yin, C.; Rivera-Cruz, K. E.; McCrory, C. C. L.; Singh, N. ACS Appl. Mater. Interfaces, 2023, 15, 31438-31448.

39. Electrochemical Oxidation of Primary Alcohols using a Co2NiO4 Catalyst: Effects of Alcohol Identity and Electrochemical Bias on Product Distribution
Michaud, S. E.; Barber, M. M.; Rivera-Cruz, K. E.; McCrory, C. C. L. ACS Catal., 2023, 13, 515-529.

Abstract Image

38. Strategies for Breaking Molecular Scaling Relationships for the Electrochemical CO2 Reduction Reaction.
Nie, W.-X.; McCrory, C. C. L. Dalton Trans.202251, 6993-7010.
*Invited perspective/review article to Themed Collection: 2022 Frontier and Perspective Articles.
**Included in Themed Collection: Dalton Transactions HOT Articles.

Graphical abstract: Strategies for breaking molecular scaling relationships for the electrochemical CO2 reduction reaction

37. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO2 Reduction Reaction.
Soucy, T. L.; Dean, W. S.; Zhou, J.; Rivera-Cruz, K. E.; McCrory, C. C. L. Acc. Chem. Res., 2022, 55, 252-261.
*Invited perspective/review article to Special Issue: CO2 Reductions via Photo and Electrochemical Processes.

36. Enhancing Electrochemical Carbon Dioxide Reduction by Polymer-Encapsulated Cobalt Phthalocyanine through Incorporation of Graphite Powder
Soucy, T. L.; Liu, Y.; Eisenberg, J. B.; McCrory, C. C. L. ACS Appl. Energy Mater., 2022, 5, 159-169.
Equally contributing first authors.

35. Increasing the CO2 Reduction Activity of Cobalt Phthalocyanine by Modulating the σ-donor Strength of Axially Coordinating Ligands
Rivera-Cruz, K. E.; Liu, Y.; Soucy, T. L.; Zimmerman, P. M.; McCrory, C. C. L. ACS Catal., 2021, 11, 13203-13216.
Equally contributing first authors.

34. Enhancing a Molecular Electrocatalyst’s Activity for CO2 Reduction by Simultaneously Modulating Three Substituent Effects
Nie, W.-X.; Tarnopol, D. E.; McCrory, C. C. L. J. Am. Chem. Soc. 2021, 143, 3764-3778.

33. The Effect of Extended Conjugation on Electrocatalytic CO2 reduction by Molecular Catalysts and Macromolecular Structures.
Nie, W.-X.; Tarnopol, D. E.; McCrory, C. C. L. Curr. Opin. Electrochem. 2021, 28, 100716.
*Invited Review/Perspective Article to Special Issue: Innovative Methods in Electrochemistry (2021)

32. A CoV2O4 Precatalyst for the Oxygen Evolution Reaction: Highlighting the Importance of Postmortem Catalyst Characterization in Electrocatalysis Studies.
Michaud, S. E.; Riehs, M. T.; Feng, W.-J.; Lin, C-C.; McCrory, C. C. L. Chem. Commun. 2021, 57, 883-886.
*Invited article in Themed Collection: (Photo)electrocatalysis for Renewable Energy.

https://pubs.rsc.org/en/Image/Get?imageInfo.ImageType=GA&imageInfo.ImageIdentifier.ManuscriptID=D0CC06513G&imageInfo.ImageIdentifier.Year=2021

31. Controlled Formation of Multilayer Films of Discrete Molecular Catalysts for the Oxygen Reduction Reaction using a Layer-by-Layer Growth Mechanism Based on Sequential Click Chemistry.
Kallick, J. K.; Feng, W.-J.; McCrory, C. C. L. ACS Appl. Energy Mater.2020, 3, 7, 6222-6231.

30. Determining the Coordination Environment and Electronic Structure of Polymer-Encapsulated Cobalt Phthalocyanine under Electrocatalytic Conditions using In Situ X-Ray Absorption Spectroscopy
Liu, Y.; Deb, A.; Leung, K.-Y.; Nie, W.-X.; Dean, W. S.; Penner-Hahn, J. E.; McCrory, C. C. L. Dalton Trans., 2020, 49, 16329-16339.
*Invited article to Themed Collection: New Talent: Americas, 2020.

Graphical abstract: Determining the coordination environment and electronic structure of polymer-encapsulated cobalt phthalocyanine under electrocatalytic CO2 reduction conditions using in situ X-Ray absorption spectroscopy

29. Electrocatalytic CO2 Reduction by Co Bis(pyridylmonoimine) Complexes: Effect of Ligand Flexibility on Catalytic Activity.
Nie, W.-X.; Wang, Y.; Zheng, T.; Ibrahim, A.; Xu, Z.; McCrory C. C. L. ACS Catal., 2020, 10, 4942-4959.

28. The Effect and Prevention of Trace Ag+ Contamination from Ag/AgCl Reference Electrodes on CO2 Reduction Product Distributions at Polycrystalline Copper Electrodes
Leung, K-Y.; McCrory, C. C. L. ACS Appl. Energy Mater., 2019, 2, 8283-8293.

27. Controlled Substrate Transport to Electrocatalyst Active Sites for Enhanced Selectivity in the Carbon Dioxide Reduction Reaction
Liu, Y.; Leung, K-Y.; Michaud, S. E.; Soucy, T. L.; McCrory, C. C. L. Comment. Inorg. Chem. 2019, 39, 242-269.
*Invited Review/Perspective Article

26. Modulating the Electrocatalytic Mechanism of Selective CO2 Reduction by Cobalt Phthalocyanine through Polymer Coordination and Encapsulation
Liu, Y.; McCrory, C. C. L. 2019, Nat. Commun., 10, 1683.
Related Blog Post on Nature Research Chemistry Community: “Behind the Paper”

25. Imidazole for Pyridine Substitution Leads to Enhanced Activity Under Milder Conditions in Co Water Oxidation Electrocatalysis
McMillion, N. D.; Wilson, A. W.; Goetz, M. K.; Chang, M-C.; Lin, C-C.; Feng, W-J.; McCrory, C. C. L.; Anderson, J. S. 2019, Inorg. Chem., 58, 1391-1397.

Figure 1

24. Evaluating Electrocatalysts for Solar Water-Splitting Reactions.
McCrory, C. C. L., Jung, S.; Kallick, J., in Integrated Solar Fuels Generators.  The Royal Society of Chemistry: 2019, pp. 154-181.

23. Electrocatalytic CO2 reduction by a cobalt bis(pyridylmonoimine) complex: effect of acid concentration on catalyst activity and stability.
Nie, W.; McCrory, C. C. L., 2018, Chem. Commun., 54, 1579-1582.

22. Gastight Hydrodynamic Electrochemistry: Design for a Hermetically Sealed Rotating Disk Electrode Cell.
Jung, S.; Kortlever, R.; Jones, R. J.; Lichterman, M. F.; Agapie, T.; McCrory, C. C. L.; Peters, J. C. 2017, Anal. Chem., 89, 581-585.

21. Effect of Chromium Doping on Electrochemical Water Oxidation Activity by Co3-xCrxO4 Spinel
Lin, C-C.; McCrory, C. C. L. ACS Catal., 20177, 443-451.

20. Polymer Coordination Promotes Selective CO2 Reduction by Cobalt Phthalocyanine
Kramer, W. W.; McCrory, C. C. L. Chem. Sci., 2016, 7, 2506-2515.
*Cover Article (Inside Front Cover) Volume 7, Issue 4
**Selected as part of RSC Themed Collection “Global Energy Challenges: Fossil Fuels”

Prior Publications

19. Benchmarking Nanoparticulate Metal Oxide Electrocatalysts for the Alkaline Water Oxidation Reaction.
Jung, S.; McCrory, C. C. L.; Ferrer, I. M.; Peters, J. C.; Jaramillo, T. F. ; J. Mater. Chem. A, 2016, 4, 3068-3076
**Invited article: themed collection on Water Splitting and Photocatalysis.

18. Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide.
McCrory, C. C. L.; Szymczak, N. K; Peters, J. C.; Electrocatalysis, 2016, 7, 87-96.

17. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices.
McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F.; J. Am. Chem. Soc¸ 2015, 137, 4347-4357.

16. Molecular Mixed-Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts.
Suseno, S.; McCrory, C. C. L.; Tran, D.; Gul, S.; Yano, J.; Agapie, T. Chem. Eur. J.2015, 21, 13420-13430.

15. The Selective Electrochemical Conversion of Preactivated CO2 to Methane.
Luca, O. R.; McCrory, C. C. L.; Dalleska, N. F.; Koval, C. A.; J. Electrochem. Soc., 2015, 162, H473-H476.

14. Tuning Complex Transition Metal Hydroxide Nanostructures as Active Catalysts for Water Oxidation by a Laser-Chemical Route.
Ni, K.-Y.; Lin, F.; Jung, S.; Fang, L.; Nordlund, D.; McCrory, C. C. L.; Weng, T-C.; Ercius, P.; Doeff, M. M.; Zheng, H.; Nano Lett., 2015, 15, 2498-2503.

13. Electrochemical Surface Science Twenty Years Later. Expeditions into the Electrocatalysis of Reactions at the Core of Artificial Photosynthesis.
Soriaga, M. P.; Baricuatro, J. H.; Cummins, K. D.; Kim, Y.-G.; Saadi, F. H.; Sun, G.; McCrory, C. C. L.; McKone, J. R.; Velazquez, J. M.; Ferrer, I. M.; Carim, A. I.; Javier, A.; Chmielowiec, B.; Lacy, D. C.; Gregoire, J. M.; Sanabria-Chinchilla, J.; Amashukeli, X.; Royea, W. T.; Brunschwig, B. S.; Hemminger, J. C.; Lewis, N. S.; Stickney, J. L.; Surf. Sci., 2015, 641, 285-294.

12. A 106-fold Enhancement in N2-binding Affinity of an Fe2(µ-H)2 Core upon Reduction to a Mixed-Valence FeIIIFeI State.
Rittle, J.; McCrory, C. C. L.; Peters, J. C. J. Am. Chem. Soc., 2014, 136, 13853-13862.

11. Operando Synthesis of Macroporous Molybdenum Diselenide Films for the Electrocatalysis of the Hydrogen Evolution Reaction.
Saadi, F. H.; Carim, A. I.; Velazquez, J. M.; McCrory, C. C. L.; Soriaga, M. P.; Lewis, N. S. ACS Catal., 2014, 4, 2866-2873.

10. Electrocatalytic CO2 Reduction by a Cobalt Complex with a Redox-Active Tetraazamacrocyclic Ligand: Molecular and Electronic Structure Studies of Reduced Species.
Lacy, D. C.; McCrory, C. C. L.; Peters, J. C. Inorg. Chem., 2014, 53, 4980-4988.

9. Redox Active Iron Nitrosyl Units in Proton Reduction Electrocatalysis.
Hsieh, C.-H.; Erdem, O. F.; Ding, S.; Crouthers, D. J.; Liu, T.; McCrory, C. C. L.; Lubitz, W.; Popescu, C. V.; Reibenspies, J. H.; Hall, M. B.; Darensbourg, M. Y.; Nature Commun., 2014, 5, 3684.

8. Heterogenization of a Water-Insoluble Molecular Complex for Catalyst of the Proton-Reduction Reaction in Highly Acidic Aqueous Solutions.
Baricuatro, J. H.; Kim, Y.-G.; Saadi, F.; McCrory, C. C. L.; Sanabria-Chinchilla, J.; Crouthers, D.; Darensbourg, M. Y.; Soriage, M. P. Electrocatalysis, 2014, 5, 226-228.

7. Benchmarking Heterogeneous Electrocatalysts for the Oyxgen Evolution Reaction.
McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F.; J. Am. Chem. Soc., 2013, 135, 16977-16987.
**Featured as Editor’s Choice article in Science Magazine.
**Highlighted in ACS Select Virtual Issue on Inorganic Chemistry Driving the Energy Sciences.

6. Electrooxidation of Alcohols Catalyzed by Amino Alcohol Ligated Ruthenium Complexes.
Brownell, K.; McCrory, C. C. L.; Chidsey, C. E. D.; Perry, R. H.; Zare, R. N.; Waymouth, R. M.; J. Am. Chem. Soc., 2013, 135, 14299-14305.

5. Electrocatalytic Hydrogen Evolution in Acidic Water with Molecular Cobalt Tetraazamacrocycles.
McCrory, C. C. L.; Uyeda, C.; Peters, J. C.; J. Am. Chem. Soc., 2012, 134, 3164-3170.

4. Electrocatalytic O2 Reduction by Covalently Immobilized Copper(I) Complexes: Evidence for a Binuclear Cu2O2 Intermediate.
McCrory, C. C. L.; Devadoss, A.; Ottenwaelder, X.; Lowe, R. D.; Stack, T. D. P.; Chidsey, C. E. D.; J. Am. Chem. Soc., 2011, 133, 3696-3699.

3. Mechanistic and Kinetic Studies of the Electrocatalytic Reduction of O2 to H2O with Mononuclear Cu Complexes of Substituted 1,10-Phenathroline.
McCrory, C. C. L.; Ottenwaleder, X.; Stack. T. D. P.; Chidsey, C. E. D.; J. Phys.Chem. A, 2007, 111, 12641-12650.

2. Aerobic Alcohol Oxidation with a Cationic Palladium Complex: Insights into Catalyst Design and Decomposition.
Conley, N. R.; Pearson, D. M.; Labios, L. A.; McCrory, C. C. L.; Waymouth, R. M. Organometallics, 2007, 26, 5447-5453.

1. Nucleated Deliquescence of Salt.
Cantrell, W.; McCrory, C.; Ewing, G. E.; J. Chem. Phys., 2002, 116, 2116-2120.

 

Patents

McCrory, C.; Jung, S.; Jones, R. J. R.; Rotating Disk Electrode Cell, U.S. Patent 10,451,580 B2, Oct. 22, 2019.