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Abstract

Estimators that exploit an instrumental variable to correct for misclassification
in a binary regressor typically assume that the misclassification rates are invariant
across all values of the instrument. We show this assumption is invalid in routine
empirical settings. We derive a new estimator which allows misclassification rates to
vary across values of the instrumental variable. Our key identifying assumption, that
the sum of misclassification rates remains constant across instrument values, follows
from the empirical examples we present. We also show this assumption can be relaxed
using moment inequalities that arise from our model. We demonstrate the usefulness
of our estimator through Monte Carlo simulations and a re-analysis of the extent to
which Medicaid eligibility crowds out other forms of health insurance. Correcting for
measurement error substantially reduces estimates of crowd out and the extent to which
Medicaid eligibility lowers the share of the uninsured.
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1 Introduction

It has long been recognized that measurement error is pervasive in applied economic research

(e.g., Bound, Brown, and Mathiowetz 2001). It is well-known that standard instrumental

variables (IV) estimation yields a consistent estimate when the measurement error in a re-

gressor is “classical,” i.e., uncorrelated with the true regressor. This approach does not work

with a misclassified binary regressor because the measurement error is negatively correlated

with the true regressor. Numerous methods are available to consistently estimate the impact

of a misclassified binary regressor, many of which make use of an instrumental variable.1

A key identifying assumption in this literature is that the conditional probabilities of

misclassifying the binary regressor, the “misclassification rates,” are constant across values

of the instrumental variable.2 This seemingly innocuous assumption is, in fact, rather strong.

For example, in the literature that examines the impact of Medicaid (e.g., Currie and Gruber

1996; Cutler and Gruber 1996; Gross and Notowidigdo 2011), the observed binary indicator

for Medicaid eligibility is computed (primarily) by determining whether measured household

income is below a given threshold (e.g., a state-specific threshold that depends on family size

and structure) and changes in the threshold over time are used to construct an instrumental

variable. Intuitively, those with true income that is relatively close to the threshold are more

likely to have measured income fall on the wrong side of the threshold and, consequently,

have their eligibility be misclassified. Because the share of households close to the threshold

can vary as the threshold moves through the income distribution, the misclassification rate

1For example, see Card 1996; Kane, Rouse, and Staiger 1999; Black, Berger, and Scott 2000; Frazis and
Lowenstein 2003; Mahajan 2006; Lewbel 2007; Hu 2008; Chen, Hu, and Lewbel 2008a,b; Battistin, De Nadai,
and Sianesi 2014; DiTraglia and Garcia-Jimeno 2019; Calvi, Lewbel, and Tommasi 2017; and Yanagi 2019.

2Specifically, the misclassification rates are the probabilities of misclassifying the binary regressor condi-
tional on the true value of the regressor.
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of Medicaid eligibility can vary across values of the instrumental variable.

We refer to misclassification rates that vary with the instrumental variable as “varying

misclassification” in contrast to the standard “fixed misclassification” assumption.3 Solutions

leveraging instruments for identification that assume fixed misclassification are inconsistent

when binary regressors suffer from varying misclassification. In addition, under fixed mis-

classification, standard IV estimation overestimates the parameter of interest leading prior

researchers to suggest using the IV estimator as an upper bound (Kane, Rouse, and Staiger

1999; Black, Berger, and Scott 2000).4 In contrast, we show that with varying misclassi-

fication IV estimation can either overestimate or underestimate the parameter of interest.

Because prior estimators are inconsistent and IV estimation does not yield an upper bound, it

is important to develop new estimation strategies that account for varying misclassification.

In this paper, we present a method to consistently estimate the impact of a misclassified

binary regressor when the misclassification rates vary across instrument values. Identifica-

tion requires a discrete instrumental variable that takes on three or more values. Our key

identifying assumption is that the sum of the misclassification rates is fixed, while allowing

the underlying misclassification rates to vary with the instrument values. We present evi-

dence from multiple empirical settings that illustrate misclassification rates do indeed vary

while satisfying this identifying assumption. We also show how to relax this key assumption

3Although some earlier papers allow misclassification rates to vary with other observable characteristics,
they do not allow the misclassification rates to vary with the instrumental variable. Recent exceptions are Ura
(2018) and Yanagi (2019), which we discuss below. Additionally, our estimator can allow for misclassification
that varies both with other observable characteristics and the instrumental variable.

4Ura (2018) develops an alternative upper bound based on differences in the joint distribution of the
outcome and the misclassified regressor between groups with different values of the instrument. Jiang and
Ding (2020) and Tommasi and Zhang (2020) also develop methods for constructing bounds in this setting.
Nguimkeu, Denteh, and Tchernis (2019) show that the IV estimator will not be an upper bound in the case
of endogenous misreporting. The Ordinary Least Squares (OLS) regression of an outcome on a misclassified
binary regressor yields a corresponding lower bound (Aigner 1973; Bollinger 1996).
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using moment inequalities. Using prior information on the extent to which the sum of the

misclassification rates can vary across instrument values, we are able to construct bounds

for the parameter of interest. In addition, it is straightforward to include covariates in our

framework, and we can allow the misclassification rates to vary with the covariates.

We demonstrate the performance of our estimator both through simulations and an em-

pirical example. Through a series of Monte Carlo simulations, we show the usefulness of our

estimator under a variety of conditions when many alternative estimators are inconsistent.

As an empirical example, we apply our estimator to the question of whether Medicaid eligi-

bility, which is calculated by the researcher and likely mis-measured, crowds out the take-up

of private health insurance. Re-examining the pioneering work by Cutler and Gruber (1996),

we find that correcting for misclassification substantially lowers estimated crowd out and the

extent to which non-insurance rates are reduced by Medicaid.

A variety of methodological approaches have been developed to estimate the impact

of a mismeasured binary regressor. Our paper is most closely related to those which point

identify the parameter of interest using an instrumental variable (Frazis and Lowenstein 2003;

Mahajan 2006; Lewbel 2007; Hu 2008; DiTraglia and Garcia-Jimeno 2019); however, these

methods require fixed misclassification. Another set of papers relies on the availability of

multiple measures of the misclassified treatment (Card 1996; Kane, Rouse, and Staiger 1999;

Black, Berger, and Scott 2000; Battistin, De Nadai, and Sianesi 2014). Two recent papers

require both an instrumental variable and at least one additional variable that provides

information on the measurement error to achieve identification (Calvi, Lewbel, and Tommasi

2017; Yanagi 2019), whereas our approach requires a single instrumental variable. Another

set of papers utilizes restrictions on higher order moments (e.g., Chen, Hu, and Lewbel
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2008a,b; DiTraglia and Garcia-Jimeno 2019), while our approach does not require such

assumptions.

Two recent papers allow for varying misclassification. Ura (2018) bounds the impact of a

mismeasured treatment allowing for general forms of misclassification. Yanagi (2019) point

identifies the impact of a mismeasured binary regressor, but requires both an instrumental

variable and an additional covariate that provides identifying information on the measure-

ment error process. We point identify the impact of a mismeasured binary regressor in the

presence of varying misclassification using only a single, discrete-valued instrument.

The paper proceeds as follows. In the next section, we provide motivating empirical

examples to demonstrate that misclassification rates can vary with the instrumental variable.

We then develop our main theoretical result. After discussing model estimation, including

how to include moment inequalities when our key identifying assumption does not exactly

hold, we provide a Monte Carlo simulation study to illustrate our main findings. We then

use our estimator to re-examine Cutler and Gruber (1996), which estimates the extent to

which Medicaid eligibility crowds out private health insurance. The final section concludes.

2 Examples of Varying Misclassification

To illustrate the importance of varying misclassification, we present examples from multiple

data sources. We first use data from the March 1973 Current Population Survey (CPS) linked

to tax returns filed with the Internal Revenue Service (IRS) (Social Security Administration

2005).5 Because the IRS earnings are from tax filings which only contain a single, combined

5The data also contain Social Security (SS) Earnings records. We use the IRS earnings data because the
available SS earnings records are top-coded at the annual ceiling for earnings subject to the SS tax, which
censors earnings for nearly half of privately employed men. The IRS earnings data as well as self-reported
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earnings measure for all household members, we restrict our sample to men and women

whose marital status on their tax return is single. We further restrict the analysis to those

who are privately employed, have positive IRS and CPS earnings, and have non-imputed

CPS earnings, yielding 8,031 observations. We use sample weights that account for selection

into the CPS and the match between the CPS and IRS records.6

The top panel of Figure 1 shows the probability density function of both (log) adminis-

trative and self-reported earnings in 1972. We treat IRS earnings as “true” earnings E∗ and

CPS earnings as the observed, mis-measured earnings E. The two distributions are quite

similar throughout with the most noticeable differences in the middle of the distributions.

For this example, we construct a hypothetical program eligibility indicator, T ∗, which

equals one if true earnings E∗ are at or below a threshold c and equals zero otherwise. At the

threshold c1, the leftmost vertical line in the top panel of Figure 1, 39.1 percent of individuals

are assigned T ∗ = 1.7 However, the researcher typically only observes the indicator T which

is determined by whether E is at or below c. At c1, T = 1 for 40.4 percent of individuals.

As discussed below, the misclassification rates, α0 = P [T = 1|T ∗ = 0] and α1 = P [T =

0|T ∗ = 1], are key inputs in deriving the bias of the OLS and IV estimators due to misclas-

sification. At c1, we calculate that α0 = 0.068 and α1 = 0.072. At c2, the second threshold

in the top panel of Figure 1, P [T ∗ = 1] is 0.872 while P [T = 1] is 0.877. However, the

misclassification rates at c2, α0 = 0.149 and α1 = 0.016, differ markedly from those at c1.

The bottom panel of Figure 1 plots the misclassification rates for numerous values of

earnings in the CPS are top-coded at $50,000, which affects less than one-half of one percent of privately
employed men in the data.

6More details on the linked data and selection criteria are provided in Appendix Section A.1.1.
7This threshold, log(c1) = 7.65, is approximately $2,100 which was the poverty line for a single, unrelated

individual in 1972.
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Figure 1: Misclassification Example - 1973 CPS-IRS Matched Earnings
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Notes: Both panels use data from the 1973 CPS-IRS matched earnings data. Details about the data are
discussed in the text and in Appendix section A.1.1. Panel 1a plots the PDFs of both self-reported earnings
and earnings reported on IRS tax returns from a sample of single men and women. Panel 1b reports
misclassification rates; the details for constructing these rates can be found in Section 2.6



c, placing P [T ∗ = 1] on the horizontal axis. Notice that α1 is decreasing in P [T ∗ = 1].

Intuitively, when a larger fraction of the population is eligible for the program (T ∗ = 1),

the share of eligible individuals who are close to the eligibility threshold is smaller. For

analogous reasons, α0 increases with P [T ∗ = 1].

In a typical program eligibility setting, such as the Medicaid example mentioned in the

Introduction, changes in the eligibility threshold are the basis for an instrumental variable.

For example, Currie and Gruber (1996) treat the change in a state’s eligibility threshold as

an exogenous source of variation for the fraction of individuals in the state who have access

to Medicaid. However, as with the example in Figure 1, the misclassification rates will sys-

tematically vary with these thresholds, which violates the fixed misclassification assumption.

The distinction between varying and fixed misclassification has important implications

for interpreting IV estimation results. The IV estimator for the impact of T ∗ on Y when us-

ing Z as an instrument is COV (Y, Z)/COV (T ∗, Z), whereas when using T the IV estimator

is COV (Y, Z)/COV (T, Z). Note that the difference between these estimands is the denom-

inators. In the case where Z is a binary instrument, the denominators are COV (T ∗, Z) =

P [T ∗ = 1|Z = 1]− P [T ∗ = 1|Z = 0] and COV (T, Z) = P [T = 1|Z = 1]− P [T = 1|Z = 0].

Thus, the difference in the IV estimator using T versus T ∗ is seen by comparing the changes

in P [T = 1] and P [T ∗ = 1] when the instrument changes values.

Figure 2 plots the relationship between P [T = 1] and P [T ∗ = 1] under the assumption

of fixed misclassification (the line labeled “Hypothetical Fixed Misclassification” in the top

panel) and for what is observed in the actual data (the line labeled “Actual P [T = 1]” in

the bottom panel).8 For the fixed misclassification case shown in the top panel, the slope of

8For the hypothetical fixed misclassification case, we use α0 = 0.068 and α1 = 0.072, which are the values
corresponding the c1 threshold shown in Figure 1.
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Figure 2: Misclassification Example - 1973 CPS-IRS Matched Earnings - P [T = 1] vs.
P [T ∗ = 1]
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Notes: Panel 2a plots the hypothetical relationship between P [T = 1] and P [T ∗ = 1] under the assumption
of fixed misclassification rates, where the α0 and α1 used to construct this figure correspond to the threshold
c1 shown in Figure 1. Panel 2b plots the actual relationship between P [T = 1] and P [T ∗ = 1] found in the
1973 CPS-IRS matched earnings data. Details about the data are discussed in the text and in Appendix
section A.1.1.
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the line is constant and always less than one (i.e., flatter than the 45 degree line).9 Thus,

a given change in a threshold c will always result in a smaller change in P [T = 1] than the

corresponding change in P [T ∗ = 1] (i.e., COV (T, Z) < COV (T ∗, Z)). As a result, when

using T instead of T ∗, the IV estimator will overestimate the impact of T ∗ on Y .10

However, as shown in the bottom panel of Figure 2, the actual relationship between

P [T = 1] and P [T ∗ = 1] is non-linear. Around P [T ∗ = 1] = 0.5, the slope of this curve is

less than one, similar to what occurs in the fixed misclassification case. On the other hand, at

both small and large values of P [T ∗ = 1], the change in P [T = 1] exceeds the corresponding

change in P [T ∗ = 1]. In these ranges, in contrast to the fixed misclassification case, applying

the IV estimator to T will underestimate the impact of T ∗ on Y .

To foreshadow our key identifying assumption, Panel A of Figure 3 plots the sum of

the misclassification rates along with bootstrapped 95% confidence intervals. As is readily

apparent, the sum is relatively constant for much of the interior of the range of P [T ∗ = 1].

The remaining panels in Figure 3 provide analogous plots for the sum of the misclassification

rates in additional examples where both survey and administrative data are available: wages

in the January 1977 CPS (Panel D) and, using the 1999-2016 waves of the Continuous

National Health and Nutrition Examination Survey (Continuous NHANES), height for males

(Panel B) and females (Panel C) and weight for males (Panel E) and females (Panel F).11

Across this range of outcomes, we find that the sum of the misclassification rates is roughly

9Since P [T = 1] = α0 + (1 − α0 − α1)P [T ∗ = 1], the slope of this line will be less than one unless T is
perfectly measured. In addition, under the standard assumption that α0 + α1 < 1, which is routinely made
in this literature, T and T ∗ will be positively correlated and the slope of this line will exceed zero.

10For example, see Kane, Rouse, and Staiger 1999; Black, Berger, and Scott 2000; and Ura 2018.
11Appendix Section A.1.2 provides detailed descriptions of these data and how we construct the panels in

Figure 3. Appendix Figures A1-A3 show that the plots of α0 and α1 for these additional examples move
very similarly what we observe in Figure 1.
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constant, especially when P [T ∗ = 1] takes on values towards the middle of its range.

Overall, these examples yield three main implications. First, the misclassification rates

vary with the instrument (here, the threshold), a finding at odds with the predominant

assumption of fixed misclassification.12 Second, changes in P [T = 1] may be greater than,

less than, or very close to changes in P [T ∗ = 1] when moving between thresholds. As such,

the IV estimator is no longer guaranteed to yield an upper bound for the true impact of T ∗

on the outcome of interest, in contrast to the fixed misclassification case. Third, the sum of

the misclassification rates is fairly constant for a wide range of values of P [T ∗ = 1].

3 The Model and Identification

The equation relating the outcome Y to the true, binary regressor T ∗ = {0, 1} is

Y = γ + βT ∗ + ε (1)

However, instead of observing T ∗, we observe T , which is subject to misclassification, i.e., T

is also a binary variable in which either T = T ∗ or T = 1− T ∗.13

Let Z be a discrete-valued instrumental variable with J+1 values, j = 0, 1, . . . , J . Define

the misclassification rates, α0j and α1j, j = 0, 1, . . . , J , as α0j = P [T = 1|T ∗ = 0, Z = j] and

α1j = P [T = 0|T ∗ = 1, Z = j], respectively. Defining p∗j = P [T ∗ = 1|Z = j], it follows that

12While our motivating examples focus on misclassification rates varying when a threshold varies, the
results we present in the next section apply more generally to whenever misclassification rates vary with an
instrument. See Bound, Brown, and Mathiowetz (2001) for an exhaustive review of validation studies for
labor market outcomes, including for evidence of when misclassification rates vary.

13Our main result can be extended to a non-parametric regression framework such as that used in Mahajan
(2006) and Lewbel (2007). We adopt a parametric regression framework for parsimony of notation and to
accommodate covariates in a manner consistent with much applied work.

11



pj = P [T = 1|Z = j] = (1− α1j) p
∗
j + α0j

(
1− p∗j

)
= α0j + (1− α0j − α1j) p

∗
j .

Assumption 1 The following conditions are assumed to hold

i. There is a discrete instrumental variable, Z, with (at least) three values, i.e., J ≥ 2

ii. E [Y |Z = j] = γ + βp∗j , ∀j

iii. 0 < p∗j < 1, ∀j; p∗j 6= p∗k, ∀ j 6= k

iv. E [Y |T, T ∗, Z] = E [Y |T ∗, Z]

v. α0j + α1j < 1, ∀j

Assumption 1.ii is the usual IV exclusion condition and Assumption 1.iii is the usual IV

relevance condition. The last two parts of Assumption 1 are standard in the misclassifica-

tion literature (e.g., Frazis and Loewenstein 2003; Mahajan 2006; Lewbel 2007; DiTraglia

and Garcia-Jimeno 2019). Assumption 1.iv implies “nondifferential” measurement error, i.e.,

no additional independent information is contained in the mis-measured regressor once the

true value of the regressor is known. This assumption is analogous to the classical mea-

surement error assumption for continuous variables.14 Assumption 1.v requires that there is

not “too much” misclassification. With this restriction, the OLS regression of Y on T using

observations Z = j will yield an estimated coefficient on T that has the same sign as β.

Assumption 2 For all j, E [Y |T ∗ = t, Z = j] = E [Y |T ∗ = t]

Assumption 2 requires the expected value of the outcome Y for a given value of the true

regressor T ∗ to be the same across all values j of the instrument Z. The same assumption

14Recently, Nguimkeu, Denteh, and Tchernis (2019) allows for differential measurement error.
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is made by Mahajan (2006) to identify the impact of a misclassified binary regressor with

fixed misclassification. Similar assumptions are made elsewhere in this literature (e.g., Kane,

Rouse, and Staiger 1999, Black, Berger, and Scott 2000; Frazis and Loewenstein 2003). This

assumption also is proposed as a test of no selection bias in the literature on instrumental

variables (Black et al. 2015; Brinch, Mogstad, and Wiswall 2017). While T ∗ is exogenous

under Assumption 2, we relax this assumption below to admit some forms of endogeneity.

3.1 Identification

For a discrete instrumental variable Z that takes on exactly three discrete values, Assumption

1.ii yields three equations based on the exclusion restriction

E [Y |Z = j] = γ + βp∗j , j = 0, 1, 2 (2)

Assumption 2 yields two equations for any pair of instrument values, j and k

E [Y |T ∗ = 1, Z = j] = E [Y |T ∗ = 1, Z = k] (3)

E [Y |T ∗ = 0, Z = j] = E [Y |T ∗ = 0, Z = k] (4)

Equations (3) and (4) are based on unobserved quantities. For a given value of Z, the

expected value of the outcome Y conditional on T is a weighted average of these unknown

quantities, with the weights based on the misclassification rates. As shown in Appendix

Section A.2, inverting these relationships yields the following expressions for the unknown

13



quantities in (3) and (4) in terms of observed quantities and the misclassification rates

E [Y |T ∗ = 1, Z = j] =
COV (Y, T |Z = j)

pj − α0j

+ E [Y |Z = j] (5)

E [Y |T ∗ = 0, Z = j] = E [Y |Z = j]− COV (Y, T |Z = j)

1− pj − α1j

(6)

where COV (Y, T |Z = j) is the covariance of Y and T among those with Z = j.

Subtracting equation (4) from equation (3) and then inserting equations (5) and (6) into

the resulting expression yields (see Appendix Section A.3)15

1

(1− α0j − α1j)
· COV (Y, T |Z = j)

p∗j
(
1− p∗j

) =
1

(1− α0k − α1k)
· COV (Y, T |Z = k)

p∗k (1− p∗k)
(7)

For a discrete instrument with three values, these substitutions provide five equations:

three equations found in (2) and two additional equations by applying (7) to two pairs of

instrument values. However, eleven unknown parameters appear in these five equations: β, γ,

the three p∗j , the three α0j, and the three α1j. Noting that misclassification rates only appear

in (7) as the sum α0j+α1j, we can instead view the problem as containing five equations with

eight parameters: β, γ, the three p∗j , and the three sums α0j +α1j. Moving to an instrument

with more discrete values will not solve this identification issue because each additional

instrument value adds two equations but also two parameters: another p∗j and another sum

α0j + α1j. Instead, we make the following assumption regarding the misclassification rates.

Assumption 3 The sum of the misclassification rates is constant, i.e., α0j + α1j = α, ∀j.
15By first subtracting equation (4) from equation (3) yields E [Y |T ∗ = 1, Z = j]− E [Y |T ∗ = 0, Z = j] =

E [Y |T ∗ = 1, Z = k]− E [Y |T ∗ = 0, Z = k]. An alternative approach, discussed in Section 3.2, is to replace
Assumption 2 with this expression (as in Lewbel (2007)).
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Assumption 3 allows both α0j and α1j to vary across instrument values j. Importantly,

this assumption nests the typical fixed misclassification assumption, making our estimator

applicable under the conditions assumed in previous papers. In addition, this assumption is

consistent with the empirical examples in Section 2: α0j and α1j move in opposite directions

as P [T ∗ = 1] changes while their sum, α0j +α1j, is relatively constant for much of the range

of P [T ∗ = 1] for all six examples in Figure 3.

Equation (7) is greatly simplified under Assumption 3 because replacing α0j + α1j with

α leads the misclassification rates to drop out of the expression to yield

COV (Y, T |Z = j)

p∗j
(
1− p∗j

) =
COV (Y, T |Z = k)

p∗k (1− p∗k)
(8)

Theorem 1 The parameters β, γ, p∗0, p
∗
1, and p∗2, and α are identified under Assumptions

1, 2, and 3.

We provide the detailed proof in Appendix Section A.4.16 We note that the equations yield

two solutions for β and Assumption 1.v allows us to select between the two options.

3.2 Relaxing the Exogeneity Assumption

The estimator derived above can be applied to settings with a weaker exogeneity assumption.

Assumption 4 For all j, k, E [Y |T ∗ = 1, Z = j]−E [Y |T ∗ = 0, Z = j] = E [Y |T ∗ = 1, Z = k]−

E [Y |T ∗ = 0, Z = k]

16Under Assumptions 1 through 3, equation (2) holds for all J + 1 instrument values while the model
generates J independent equations based on equation (8) using pairs of instrument values. If only a two-
valued instrument were available, we would have three equations but four unknown parameters (β, γ, p∗0,
and p∗1). However, an instrument with three values will generate five unique equations, three due to equation
(2) and two due to equation (8), allowing us to identify the five parameters β, γ, p∗0, p∗1, and p∗2.
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In contrast to Assumption 2, Assumption 4 only requires the difference in the expected

value of Y between the two values of T ∗ to be the same across all values of the instrument.

A similar assumption is made by Lewbel (2007).17 Assumption 4 also allows T ∗ to be

endogenous under some conditions such as those found in Olsen’s (1980) selection model

(e.g., see Brinch, Mogstad, and Wiswall 2017).

Corollary 1.1 The magnitude of β, but not the sign, is identified under Assumptions 1i.-iv.,

3, and 4.

Therefore, swapping Assumption 4 for Assumption 2 allows us to accommodate some forms

of endogeneity. However, Assumption 1.v is not enough to sign β as in Theorem 1. We can

use this result, however, to test the null hypothesis of there being no impact of T ∗ on Y .

We can sign β by assuming that the sign of the IV estimator does not change when using

T instead of T ∗.

Assumption 5 sgn (pj − pk) = sgn
(
p∗j − p∗k

)
∀ j, k

This assumption is consistent with Figure 2b because P [T = 1] in an increasing function of

P [T ∗ = 1] and is sufficient to state our last corollary.

Corollary 1.2 β, γ, p∗0, p∗1, and p∗2 are identified under Assumptions 1, 3, 4, and 5.

Thus, by additionally invoking Assumption 5, we immediately sign β, although we still

cannot identify α.18

17However, in addition to Assumption 4, Lewbel requires T ∗ to be (conditionally) exogenous.
18As shown in Appendix Section A.5, one can identify α if, in addition to Assumptions 1, 3, and 4, it is

assumed that the error term in equation (1) is homoskedastic.
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4 Estimation and Inference

We first discuss the estimation of our model using Generalized Methods of Moments (GMM),

and then discuss the inclusion of covariates. We also demonstrate how to replace the moments

in (7) with inequality moments to relax Assumption 3. However, as we discuss in Appendix

Section A.6.1, the GMM estimator will not always converge when β is small and/or the

instruments are weak. As such, we briefly discuss how to estimate our model by incorporating

bounds on β via inequality moments.

4.1 GMM Estimation

Equations in (2) and (8) are conditional on instrument values. It is straightforward to create

unconditional moment conditions to use in GMM estimation. The unconditional moment

analogous to equation (2) is

Zj ·
(
Y − γ − βp∗j

)
(9)

where · is the element-by-element product operator, Zj = 1(Z = j), and 1(...) is the indicator

function.19

The equality conditions in (8) are analogous to requiring COV (Y, T |Z = j) /
(
p∗j
(
1− p∗j

))
=

φ, where φ is an unknown constant. The corresponding unconditional moment is

Zj ·

[
Y · T − Y · pj
p∗j
(
1− p∗j

) − φ] (10)

because averaging the term (Y · T − Y · pj) is an estimator for COV (Y, T |Z = j) since we are

19We suppress the i subscripts for the outcome Y and the indicator Zj for expositional convenience.
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conditioning on Zj. These moments introduce additional parameters pj = P [T = 1|Z = j]

that must be estimated for each instrument value.

Letting W ′ = (Y, T, Z) (and continuing to suppress the i subscript), our unconditional

moment conditions are thus given by E[g(W, δ)] = 0, where

g(W, δ) =


Zj ·

(
Y − γ − βp∗j

)
Zj ·

[
(Y · T − Y · pj)

/(
p∗j
(
1− p∗j

))
− φ
]

Zj · (T − pj)

 (11)

and δ = (β, γ, p∗j , pj, φ) is the vector of unknown parameters. When the instrument takes

on three discrete values, this vector contains nine moment conditions because each row of

(11) provides a moment for each instrument value. As δ contains nine parameters, the

system is exactly identified. Instruments with more than three discrete values will yield an

over-identified system. Given our assumptions and our identification results, standard GMM

results can be applied, providing us with consistency and asymptotic normality of δ̂ (e.g.,

see Wooldridge 2010).

The moment conditions in (11) are applicable under either Assumption 2 or Assumption

4. If we invoke Assumption 5, then we can identify the sign of β with this set of moments,

regardless of which exogeneity assumption we use. In addition, under Assumption 2, as

shown in Appendix Section A.4, COV (Y, T |Z = j) /
(
p∗j
(
1− p∗j

))
= β (1− α). Thus, with

Assumption 2, we can replace φ with β (1− α) in (11) and also estimate α.
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4.2 Including Covariates

We present two approaches to including covariates. The first approach can incorporate both

continuous and discrete covariates by assuming a standard parametric relationship between

the outcome and the covariates. However, this approach requires that the model parameters

do not vary with the covariates (although we continue to allow the misclassification rates to

vary with the instrument values). The second approach allows for the misclassification rates

to vary with the covariates as well as the instrument, but requires discrete covariates.

For the first approach to include covariates, we specify the equation of interest to be

Y = γ + βT ∗ +Xψ + ε (12)

where X is a vector of exogenous covariates (i.e., ε is uncorrelated with each element of X)

and classification error in T ∗ does not vary with X (e.g., P [T = 1|T ∗ = 0, Z = j,X] =

P [T = 1|T ∗ = 0, Z = j]). An advantage of assuming (12) is that it embodies specifications

typically used in applied work, as illustrated by our empirical application in Section 6.

As shown in Appendix Section A.6.2, by updating the assumptions to condition on X

and defining Ỹ = Y −Xψ, we derive moment conditions analogous to (2) and (8) to account

for X. The moment conditions analogous to equations (2) and (8) are

E[Ỹ |Z = j,X]− γ − βp∗j = 0 (13)

COV
(
Ỹ , T |Z = j,X

)
p∗j
(
1− p∗j

) =
COV

(
Ỹ , T |Z = k,X

)
p∗k (1− p∗k)

(14)

For estimation, the moments corresponding to pj = P [T = 1|Z = j,X] require the
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additional assumption that pj does not vary with X. The empirical analogs of (13) and (14)

can be implemented by replacing Y with Ỹ in the first two lines in (11). Doing so requires

knowledge of ψ which we can consistently pre-estimate by regressing Y on T and X while

using Z to instrument for T (see Appendix Section A.6.2). Using the pre-estimated value of

ψ to first compute Ỹ , we can apply GMM although the variances need to be adjusted for

using pre-estimated parameters (Newey 1984) or the procedure can be bootstrapped.

Our second approach allows for the misclassification rates and the other parameters to

vary with discrete covariates by expanding the estimating equations (e.g., Mahajan 2006,

Lewbel 2007). For example, suppose that there is a dichotomous exogenous covariate V .

We can allow the empirical moment conditions in (11) to depend on V , thereby allowing all

parameters to vary with V . This expanded set of moments can be estimated using GMM. In

addition, we can impose restrictions on these parameters, e.g., β does not vary with V , that

can be readily tested. While this second approach for including covariates provides more

flexibility, it requires variation in the instrument within each cell defined by the exogenous

regressors. It is common in empirical work, however, for the instrument to vary across, but

not within, cells (e.g., the instrument varies across states and years but not within a state

at a point in time), which makes the former approach relevant for many applications.

4.3 Relaxing Assumption 3

Although the Figures in Section 2 indicate that Assumption 3 approximately holds for a wide

range of P [T ∗ = 1] values across multiple domains, it does not hold exactly and especially so

when P [T ∗ = 1] is close to either 0 or 1. However, we can relax Assumption 3 by replacing

the moment equalities in (8) with moment inequalities as shown below.
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Letting αj = α0j + α1j, we can re-write (7) as

[
COV (Y, T |Z = j)

p∗j
(
1− p∗j

) /
COV (Y, T |Z = k)

p∗k (1− p∗k)

]
= Rjk (15)

where Rjk = (1− αj) / (1− αk). Assumption 3 imposes that Rjk = 1. Based on the data

from Figure 3a, we see that αj ranges from 0.119 to 0.158 when P [T ∗ = 1] lies in [.29, .95].

Within this range, the smallest value that Rjk can take on is (1− 0.158) / (1− 0.119) ≈ 0.95.

Letting Rjk be the smallest value for Rjk, the corresponding inequality moment is

[
COV (Y, T |Z = j)

p∗j
(
1− p∗j

) /
COV (Y, T |Z = k)

p∗k (1− p∗k)

]
−Rjk ≥ 0 (16)

Using the above example from Figure 3a, we would set Rjk = 0.95 to implement (16).

The same data imply a corresponding upper bound for Rjk. However, the upper bound

for Rjk is simply a lower bound for Rkj, where we switch the instrument values j and k.

This observation yields a second moment inequality for each pair of instrument values

[
COV (Y, T |Z = k)

p∗k (1− p∗k)

/
COV (Y, T |Z = j)

p∗j
(
1− p∗j

) ]
−Rkj ≥ 0 (17)

While the discussion motivating this pair of moment inequalities does not take a stand on

whether αj ≥ αk or αj ≤ αk (which leads to assuming Rjk = Rkj), we may choose to apply

additional knowledge. For example, in Figure 3 we observe that αj tends to increase as we

move away from P [T ∗ = 1] = 0.5 in either direction. Therefore, if pj = 0.2 and pk = 0.4,

then we would suspect that αj ≥ αk. We can impose this relationship by setting Rjk to some

preselected value that is less than 1 and setting Rkj equal to 1.
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It is important to note that, although Rjk and Rkj must be selected by the researcher for

each pair of moment inequalities, this choice involves the relative level of misclassification

across instrument values as opposed to the absolute level of misclassification. Such an

assumption is likely to be appropriate when αj and αk fall into the same small range.

Estimation requires the combination of moments equalities and inequalities. The moment

equalities in the first and third lines of (11) remain the same above. The second line of (11)

is replaced with two sets of moments (in the case with three instrument values). First, we in-

clude moment equalites analogous to (10) for instrument values Z = 0 and 1 except replacing

φ with φ0 and φ1, respectively, which yields estimates of COV (Y, T |Z = j) /
(
p∗j
(
1− p∗j

))
for j = 0, 1. Second, we include six moment inequalities corresponding to (16) and (17) for

all pairwise comparisons of instrument values. In these moment inequalities, we replace ex-

actly one COV (Y, T |Z = j) /
(
p∗j
(
1− p∗j

))
term with its corresponding φj parameter while

conditioning on the other instrument value in order create unconditional moment inequal-

ities. While inference can be performed using the moment inequality methods of Andrews

and Soares (2010), their approach requires the joint confidence set for all parameters to be

constructed. To focus on the marginal confidence set for β, we apply the methods found in

Bugni, Canay, and Shi (2017).

4.4 Inference with Weak Identification

There is an important caveat to implementing GMM. While our estimator exists as long as

β 6= 0 in the population, its sample analog may not exist when at least one of the following

holds: i) β is close to zero, ii) there are small differences between p∗j values, and iii) the

sample size is relatively small; see Appendix Section A.6.1 for further details. Under these
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conditions, the GMM estimator is weakly identified and may not converge in finite samples.20

In an earlier working paper version of this paper (Haider and Stephens 2020), we demonstrate

how to address this issue by constructing the marginal confidence set for β by combining

bounds on β with moments from our model.21

5 Monte Carlo Simulations

We present Monte Carlo simulations to highlight multiple aspects of our estimator. For each

simulation, we randomly assign observations to one of three instrument values, j = 0, 1, 2.22

We generate a random variable E∗ ∼ N(7.85, 1.18) and set T ∗ equal to one if E∗ falls below

an instrument value-specific cutoff which, for our baseline simulations, are chosen such that

p∗0 = 0.35, p∗1 = 0.50, and p∗2 = 0.65.23 We construct Y using equation (1) by setting

γ = β = 1 and drawing the error term ε ∼ N(0, σ2
ε ).

24

Finally, we construct the misclassified binary indicator T . For our baseline simulations,

we base our misclassification rates on Figure 1b, but impose Assumption 3 that α0j+α1j = α.

We set α = 0.130 and allow α0j (and thus α1j) to vary with Z where α00 = 0.055, α01 = 0.070,

and α02 = 0.085. We then draw the random variable u ∼ uniform[0, 1]. For observations

with T ∗ = 0 and instrument value j, T = 1 if u < α0j and T = 0 otherwise. For observations

20DiTraglia and Garcia-Jimeno (2019) note a similar issue with their estimator.
21There are a variety of choices for bounds on β. For lower bounds, see Aigner (1973) and Black, Berger,

and Scott (2000). We develop an alternative lower bound using an instrument which, as shown in our working
paper (Haider and Stephens 2020), is tighter than OLS. For upper bounds, see Bollinger (1996), Ura (2018),
Jiang and Ding (2020), and Tommasi and Zhang (2020). Recall, as noted earlier, the IV estimator no longer
yields an upper bound with varying misclassification.

22These were constructed from an underlying standard normal random variable where we assign j = 0 if
the random variable is less than −0.3, j = 2 if the random variable is greater than or equal to 0.3, and j = 1
otherwise. The assignment probabilities are 0.382, 0.236, and 0.382, respectively.

23The distribution of E∗ is matches the 1973 CPS/IRS administrative log earnings data from Section 2.
24For all simulations in the main text, the error term ε is assumed to have a standard deviation of 0.25.
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with T ∗ = 1 and instrument value j, T = 0 if u < α1j and T = 1 otherwise.

Table 1 illustrates the performance of our estimator in large samples (N = 100, 000) as

we vary the misclassification values across each column. In column (1) we impose “fixed

misclassification,” a special case of Assumption 3, using α0j = 0.070 and α1j = 0.060 for

all j. Consistent with standard results, OLS using T yields an attenuated point estimate of

0.87 with a standard deviation (SD) across iterations of 0.002 while 2SLS yields an upwards

biased estimate of 1.150 (SD=0.011) that aligns with the standard misclassification formula

(β/(1−α0−α1)).
25 Our estimator is well-centered with a mean estimate of 1.003 (SD=0.033).

Table 1: Monte Carlo Simulations - Varying Misclassification

(1) (2) (3) (4)

Panel A: Data generating process

α00 0.070 0.055 0.035 0.110

α01 0.070 0.070 0.070 0.140

α02 0.070 0.085 0.105 0.170

α0j + α1j ∀j 0.130 0.130 0.130 0.260

Panel B: Estimates of β

OLS 0.870 0.877 0.886 0.750
(.002) (.002) (.002) (.003)

2SLS 1.150 1.032 0.907 1.065
(.011) (.009) (.008) (.012)

Our estimator 1.003 1.003 1.002 1.004
(.033) (.033) (.033) (.047)

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found
in (11). Each simulation is based on 1,000 iterations, with a sample size of 100,000 observations. The mis-
measured variables T are constructed so that misclassification rate α0j and the sum of the misclassification
rates α0j +α1j for instrument value j match the values shown in the top panel. The values for the remaining
parameters are discussed in Section 5. Panel B contains average estimates of β across iterations for the listed
estimation methods. The standard deviations of the estimates across iterations are shown in parentheses.

We examine results under varying misclassification in the remainder of Table 1. In column

25With β = 1, α0 = 0.070, and α1 = 0.060, the 2SLS estimator converges to 1/(1−0.070−0.060) = 1.149.
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(2), the average 2SLS estimate of 1.032 (SD=0.009) substantially differs from the estimate

with fixed misclassification in column (1).26 Our estimator is centered on the true value

(1.003 with SD=0.033). In column (3), we increase the rate at which the misclassification

rates vary with p∗, but continue to maintain α = .13. We find that the average 2SLS estimate

is below the true value of β (0.907 with SD=0.008). This result is consistent with our earlier

analytical finding: under varying misclassification, the 2SLS estimator no longer provides an

upper bound for β. Again, our estimator is well-centered (1.002 with SD=0.033). In column

(4), we double the misclassification rates specified in column (2). Both the OLS and 2SLS

estimates are further from the true value of 1 as compared to column (2) while our estimator

remains well-centered (1.004 with SD=0.047).

Some papers in this literature impose assumptions on the distribution of the error term

such as symmetry and/or homoskedasticity (e.g., Chen, Hu, Lewbel 2008a, 2008b; DiTraglia

and Garcia-Jimeno 2019). By circumventing such assumptions, we can apply our estimator

to binary outcomes as is frequently the case in applied settings such as the empirical example

section 6. In Appendix Section A.7.1, we replicate the simulations of Table 1 with a binary

outcome. The resulting takeaway is the same as above: OLS is inconsistent, 2SLS can be

either downward or upward inconsistent, and our estimator remains well-centered.

Another advantage of our estimator is that it is consistent with certain forms of endogene-

ity, as discussed in Section 3.2. In Appendix Section A.7.1, we provide a series of simulations

that build on those in Table 1, but allow for such endogeneity. With both misclassification

and endogeneity present, neither OLS nor 2SLS systematically bound the true parameter

value. However, in all cases, our estimator remains well-centered.

26Given the distribution of observations across the instrument values, the average misclassification rates for
column (2) are the same as the fixed misclassification rates in column (1) (i.e., α0 = 0.070, and α1 = 0.060).

25



We also examine the performance of alternative estimators in Appendix Section A.7.1.

We show that three estimators relying on fixed misclassification and a single instrumental

variable (Frazis and Lowenstein 2003; Mahajan 2006; Lewbel 2007) are not well-centered

in simulations with varying misclassification as examined in Table 1. Similarly, three es-

timators that rely on assumptions place on higher-order moments of the error term such

as homoskedasticity and/or symmetry (Chen, Hu, and Lewbel 2008a, 2008b; DiTraglia and

Garcia-Jimeno 2019) yield inconsistent estimates of β when we specify error distributions

that deviate from these assumptions. In contrast, our estimator again remains well-centered.

6 Empirical Application: Medicaid and Crowd Out

We apply our estimator to examine whether Medicaid eligibility crowds out private health

insurance coverage. In the pioneering work of Cutler and Gruber (1996), binary measures of

health insurance coverage are regressed on a binary indicator for being eligible for Medicaid.

During the years examined by Cutler and Gruber (1987 to 1992), a series of federal and

state legislative decisions decoupled Medicaid eligibility from being tied to the receipt of Aid

to Families with Dependent Children (AFDC) payments. We focus on the impact of the

Medicaid expansions for children in our analysis. Cutler and Gruber estimate that the share

of children eligible for Medicaid rose by 50 percent during this period from 18% to 27%.

Medicaid eligibility is a binary indicator that is computed based on federal and state-

specific eligibility criteria along with household demographic and income information data

found in the survey data. For a given set of demographic characteristics (including the num-

ber of family members, single or dual headed, age of child, and state of residence), eligibility
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for Medicaid depends upon whether household income is below a particular threshold. Prior

to these expansions, the eligibility threshold was determined by a state’s AFDC income

threshold. The federal expansions increased thresholds for children of certain ages and birth

years and gave states the option to raise eligibility thresholds for non-AFDC recipients.27

Cutler and Gruber estimate specifications of the form

Y = γ + βELIG+Xψ + ε (18)

where Y is a binary measure of insurance coverage (Medicaid, private, or uninsured) and

X is a set of exogenous regressors, including household demographic variables and state

and time period indicators.28 ELIG is the binary Medicaid eligibility indicator constructed

using federal and state rules as noted above. Cutler and Gruber instrument for ELIG given

concerns about spurious correlations between computed eligibility and insurance coverage.

They develop a “simulated eligibility” instrument that only exploits variation in Medicaid

eligibility rules across states over time.29

We use data on 266,421 children from the CPS covering the same period as Cutler and

Gruber.30 However, we use an alternative instrumental variable to align our analysis with

the examples from the earlier sections of this paper. Reported household income in the CPS

27See Currie and Gruber (1996) and Shore-Sheppard (2008) for more details of these Medicaid expansions.
28The vector X includes the number of people in the household and indicators for state of residence,

calendar year, and child age as well as for male, white, household head type, and number of workers.
29Cutler and Gruber draw a random sample of 300 children for each age. The simulated Medicaid eligibility

instrument for a child of age a in state s is the share of children in the age a random sample that are eligible
when using the state s eligibility calculator. The process is repeated for each age in each state during each
time period. For more details, see Cutler and Gruber (1996). This methodology, which isolates changes in
programmatic rules to use as an instrument, has been used to study a variety of social programs. For recent
examples, see Frean, Gruber, and Sommers (2017) and Brown, Kowalski, and Lurie (2020).

30We thank Lara Shore-Sheppard for generously providing her data and programs, which we use as the
basis for our analysis, from her 2008 article.
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is mismeasured, which leads Medicaid eligibility to be misclassified for some children. For a

child of age a in a family of size n and structure f (single vs. dual headed) residing in state

s during year t, we compute the highest income threshold under the prevailing federal and

state Medicaid legislation that would allow them to be eligible for Medicaid. We convert this

threshold to a percentage of the federal poverty line (FPL) for a family of size n in year t.

As our estimator leverages a discrete instrument with three (or more) values, we construct

an instrument by dividing observations into three groups based the Medicaid FPL threshold

that determines their eligibility: thresholds less than 100% of the FPL, between 100% and

133% of the FPL, and greater than or equal to 133% of the FPL.

The results of our analysis are shown in Table 2. Each column corresponds to a different

insurance coverage outcome: Medicaid, private, and uninsured. Row (A) presents the 2SLS

estimates of β found in Table IV of Cutler and Gruber while row (B) shows our replication

of their estimates. Our replication estimate for Medicaid coverage as the outcome is nearly

identical to the Cutler and Gruber estimate, while our replications for the other two outcomes

differ slightly from their estimates. Row (C) of Table 2 shows that the 2SLS estimates using

our alternative, discrete-valued instrument are similar to our replication results, although

the Medicaid and private coverage estimates are somewhat smaller in magnitude.31

As we noted above, many methods to address a misclassified binary regressor assume that

the regressor is exogenous in the absence of measurement error and would not be applicable

in this setting. Indeed, row (D) of Table 2 shows that the corresponding OLS estimates

31We use indicators for the discrete categories of FPL as separate instruments with FPL < 100 as the
excluded category. The first stage parameter estimates for the two included instrument values, 100 ≤ FPL <
133 and FPL ≥ 133 are 0.088 (SE=0.033) and 0.184 (0.003), respectively. Thus, as expected, higher state
income thresholds, measured as a percentage of the federal poverty line, yield higher fractions of children
that are eligible for Medicaid. The joint F-statistic for these instruments exceeds 2, 500.
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Table 2: Empirical Application - Medicaid Eligibility and Health Insurance Crowd-Out

Outcome: Medicaid Private Uninsured
(1) (2) (3)

(A) 2SLS: Cutler and Gruber (1996) 0.235 -0.074 -0.119
(.017) (.021) (.018)

(B) 2SLS: Replication 0.236 -0.101 -0.089
(.016) (.021) (.018)

(C) 2SLS: Discrete instrument 0.186 -0.053 -0.091
(.015) (.019) (.016)

(D) OLS 0.358 -0.403 0.084
(.003) (.003) (.003)

(E) Our estimator with equality moments 0.151 -0.032 -0.037
(.023) (.025) (.016)

(F) Our estimator with inequality moments
Rjk = 0.95, Rkj = .95 ∀j > k [0.11, 0.32] [-0.56, -0.02] [-0.08, -0.03]

Rjk = 1, Rkj = 0.95 ∀j > k [0.12, 0.23] [-0.65, -0.02] [-0.07, -0.03]

Rjk = 1, Rkj = 0.89 ∀j > k [0.11, 0.33] [-0.79, -0.01] [-0.07, -0.03]

Notes: This table reports estimates of β from equation (18). Standard errors robust to heteroskedasticity
are reported in the first four rows while those in the fifth row are bootstrapped. All estimates use the
CPS sampling weights. Each column uses a different insurance coverage outcome (Medicaid, Private, No
Insurance). The CPS sample from 1988 to 1993 (calendar years 1987 to 1992) contains 266,421 children.
The analysis in rows (A) and (B) use the Cutler and Gruber (1996) simulated instrument. The analysis in
the rows (C), (E), and (F) use the discrete, three-valued instrument discussed in the text. The results in
row (F) present the 95% confidence intervals using inequality moments with different choices for Rjk and
Rkj . The controls include the number of people and workers in the household and indicators for state of
residence, calendar year, child age, and householder characteristics (male, white, and type).

are substantially larger in magnitude than the 2SLS estimates in the first two columns and,

in the final column, is opposite in sign. These results suggest that ELIG is endogenous,

consistent with Cutler and Gruber’s main motivation for using a 2SLS strategy.

We present results using our estimator with equality moments in row (E) of Table 2.32

For all three outcomes, our estimates of β are the same sign but smaller in magnitude, sub-

stantially so for private insurance coverage and being uninsured, as the corresponding 2SLS

32With endogenous T ∗, our estimator is identified under Corollary 1.2 after accounting for covariates as
in Appendix Section A.6.2.
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estimate. Thus, accounting for mis-measured Medicaid eligibility has important implications

for estimates of the extent to which Medicaid eligibility impacts the use of health insurance.

Finally, we apply our inequality moment estimator (equations (16) and (17)) and present

results for three sets of bounds. The first set of bounds are symmetric with Rjk = Rkj =

0.95 ∀j > k following from the discussion in section 4.3 based on Figure 3a. Next, noting

that in the sample we observe p0 = 0.15, p1 = 0.29, and p2 = 0.44 which, based on Figure 3a,

suggests that αj ≥ αk, ∀j < k, the second set of bounds are asymmetric with Rjk = 1, Rkj =

0.95 ∀j > k. The third set of bounds are also asymmetric, Rjk = 1, Rkj = 0.89 ∀j > k, to

allow for larger differences in the misclassification rates between instrument values.33

The final row of Table 2 shows 95% confidence sets for β using our inequality moment

estimator. The confidence sets when Medicaid is the outcome change as expected, getting

larger when Rjk gets smaller (i.e., when the differences in the misclassification rates between

instrument values are allowed to be larger) and when we use the asymmetric bounds.34

Interestingly, the confidence sets for the no insurance outcome (column (3)) are relatively

small and vary little across the three sets of bounds with the 2SLS point estimate falling

outside of all these confidence sets. However, the confidence sets for the private insurance

outcome (column (2)) are large, driven by a long tail in the confidence curve (see Appendix

Section A.8). Overall, our findings suggest that allowing for realistic bounds on relative

misclassification rates across instrument values can produce informative confidence sets.

33Rkj = 0.89 is based on Figure 3a when P [T ∗ = 1] lies in [.09, .99].
34As a point of reference, when we use inequality bounds with Rjk = Rkj = 1 ∀j > k which imposes

the same restriction as Assumption 3, the 95% confidence set for the Medicaid outcome is [0.13, 0.20]. See
Appendix Section A.8 for additional discussion and results using our inequality moment estimator.

30



7 Conclusion

In this paper, we add a new dimension to estimation with a misclassified, binary regressor:

allowing the misclassification rates to vary across values of the instrumental variable. We

first show that such variability both arises in empirically relevant settings and overturns

some key results relied upon in the previous literature. We derive a new estimator that

matches the conditions found in these empirical settings. We extend our analytic results

along several dimensions, including demonstrating how to include covariates and extending

the main results to relax the exogeneity assumption. We demonstrate the usefulness of our

estimator with Monte Carlo evidence and by applying our method to the analysis of the im-

pact of Medicaid eligibility on private health insurance. Our reexamination of the pioneering

work of Cutler and Gruber (1996) yields a notably smaller impact of Medicaid eligibility on

reducing the share of children without insurance after accounting for misclassification error

in Medicaid eligibility, their key regressor.

One appealing feature of our identifying assumption, α0j+α1j = α, ∀j, is that it nests the

standard fixed misclassification assumption. Alternative features of varying misclassification

could be exploited in order to identify the model, such as parameterizing α0 and/or α1 as

function(s) of p∗. Such an approach will almost certainly not nest the fixed misclassification

model. Future work should explore the fruitfulness of alternative modeling choices for varying

misclassification given the empirical results we present here.
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A Appendix: Supplementary Material

A.1 Details for Misclassification Examples

A.1.1 Dataset Descriptions

We use the March 1973 CPS that is linked both to Social Security earnings records and to

tax returns filed with the IRS. The earnings data used in our examples refer to the prior

calendar year, 1972. The available SS earnings records are top-coded at the annual ceiling

for earnings subject to SS tax, which is $9,000 in 1972. Nearly half of privately employed

men in the sample have top-coded SS earnings data. On the other hand, the IRS earnings

records and self-reported earnings in the CPS are top-coded at $50,000, which affects less

than one-half of one percent of privately employed men in the data.

A drawback to the available IRS earnings data is that these come directly from tax filings

in which only the combined earnings of all household members is reported, not individual

eanrings. To circumvent this issue, we restrict our sample to men and women who designate

their household status as single on the tax return such that the IRS earnings amount should

only reflect their own earnings. In addition, we restrict the analysis to men and women who

are report to the CPS that they are privately employed, have positive IRS and CPS earnings,

and have non-imputed CPS earnings. We also restrict the data to individuals in households

that are deemed to be “good” matches (where the variable V1255 is not equal to 4) and

to individuals with matches to available IRS data (the variable V1253 equals 0). Our final

sample includes 8,031 single men and women. All our analyses are weighted using the “final”

CPS-IRS-SSA STATS unit administrative weight (the variable V1264), which account for

selection into the CPS and the match between the CPS and the administrative records.
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We also use data from a special supplement to the January 1977 CPS. A subsample

of survey respondents was asked additional questions regarding union status, earnings, and

hours worked. These individuals were also asked to provide the name and address of their

employer. Their employers were subsequently asked to provide information for the survey

respondent, including the aforementioned variables. These data have been used previously

to examine misclassification in union status (Freeman 1984; Card 1996) and measurement

error in wages (Mellow and Sider 1983; Angrist and Krueger 1999). See Mellow and Sider

(1983) for a more detailed data descxription. We thank David Card, Hank Farber, and Alan

Krueger for making this data available. In particular, Alan Krueger graciously provided the

code from Angrist and Krueger (1999) allowing us to employ the same sample restrictions.

We also use data from the 1999-2016 waves of the Continuous National Health and Nutri-

tion Examination Survey, which is a survey of the health and diet of Americans conducted

by the National Center for Health Statistics and is conducted on a two-year cycle. This

survey replaced the prior National Health and Nutrition Examination Surveys which had

previously been fielded on an idiosyncratic schedule. Households and sample persons are

selected using a stratified, multistage sampling design for each cycle. A screener and basic

questionnaire are completed as part of initial in-home visits. A randomizing computer al-

gorithm selects a sample person from each household roster. Survey respondents complete

a questionnaire covering demographic, dietary, socioeconomic, and health topics. During

this in-home interview, respondents are also asked to provide their self-reported height (in

inches) and weight (in pounds). Following the in-home interview, the selected sample persons

make appointments to visit a Mobile Examination Center for a detailed physical examination

about two weeks later. During this subsequent physical examination, the individual’s height
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(in centimeters) and weight (in kilograms) are measured by survey staff. All of our analyses

are weighted to account for selection into the NHANES and completing both the in-home

interview and the physical exam (the variable WTMEC2YR).

The final data set that we employ is for the empirical application of our estimator in

which we focus on the impact of Medicaid eligibility on Medicaid take-up. We re-examine

the analysis of Cutler and Gruber (1996) using programs and data kindly provided by Lara

Shore-Sheppard. We use a sample which contains 266,421 children from the 1988-1993 CPS.

Details of the construction of the dataset and variables can be found in Shore-Sheppard

(2008). Key features of the legislative rules and changes include: income thresholds for

receipt of Aid to Families with Dependent Children (AFDC) benefits which vary by state

over time, the Omnibus Budget Reconciliation Act (OBRA) of 1989 which covered children

ages six and under in families with incomes up to 133 percent of the FPL, OBRA 1990 which

covered children born after September 30, 1983 with family incomes below 100 percent of

the FPL, and the implementation and expansion of state optional programs.

A.1.2 Further Evidence on Misclassification

We find evidence of varying misclassification, comparable to what appears in Figures 1 and 2,

when we construct hypothetical program eligibility measures using wage data from matched

employer-employer reports in the January 1977 CPS. The top panel of Figure A1 shows that

the misclassification rates are varying as the threshold moves through the wage distribution.

Interestingly, the bottom panel of Figure A1 shows that changes in P [T = 1] are nearly

identical to changes in P [T ∗ = 1], suggesting that IV using T rather than T ∗ will yield

roughly consistent estimates throughout much of the wage distribution.
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Figure A2 shows height results separately for men and women in the NHANES.35 The

misclassification rates for men, shown in the top left panel, vary with P [T ∗ = 1] in ways that

closely mirror those found in the previous two examples. Moreover, the relative movements

in P [T = 1] and P [T ∗ = 1] are comparable to the first example in that slope of the line is

less than one near the middle of the distribution but exceeds one towards the ends of the

distribution. For women, as shown in the top right panel of Figure A2, α0 exceeds α1 much

further to the left in the distribution. As shown in the bottom right panel, underreporting

of women’s height occurs, on average, throughout the distribution as we find that P [T = 1]

always exceeds P [T ∗ = 1]. The relationship between P [T = 1] and P [T ∗ = 1] moves

much further from the 45 degree line than in the other examples, which implies much larger

deviations between the change in P [T = 1] and the change in P [T ∗ = 1]. At various points

in the distribution, IV will generate larger underestimates and overestimates as compared

to the previous examples.

The patterns found for weight in the NHANES, as shown in Figure A3, are broadly

comparable to those for height with regards to the relationships between P [T ∗ = 1] and the

misclassifications and in that the relationship between P [T = 1] and P [T ∗ = 1] deviates

further from the 45 degree line for women than for men.

35We limit the sample to men and women between the ages of 25 and 54, inclusive. For each outcome,
we restrict the sample to individuals who have both self-reported and measured data. Our height samples
have 11,004 men and 12,100 women while our weight sample has 10,694 men and 11,756 women. We did not
include weight observations for the small fraction of individuals who were flagged for being weighed while
wearing their clothing.
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A.2 Derivation of Equations (5) and (6)

For a given value of Z, the expected value of the outcome when T = 1 is

E [Y |T = 1, Z = j] = E [Y |T ∗ = 0, T = 1, Z = j] · P [T ∗ = 0|T = 1, Z = j]

+ E [Y |T ∗ = 1, T = 1, Z = j] · P [T ∗ = 1|T = 1, Z = j]

= E [Y |T ∗ = 0, Z = j] · P [T ∗ = 0|T = 1, Z = j]

+ E [Y |T ∗ = 1, Z = j] · P [T ∗ = 1|T = 1, Z = j]

= E [Y |T ∗ = 0, Z = j] · P [T = 1|T ∗ = 0, Z = j] · P [T ∗ = 0|Z = j]

P [T = 1|Z = j]

+ E [Y |T ∗ = 1, Z = j] · P [T = 1|T ∗ = 1, Z = j] · P [T ∗ = 1|Z = j]

P [T = 1|Z = j]

= E [Y |T ∗ = 0, Z = j] ·
α0j

(
1− p∗j

)
pj

+ E [Y |T ∗ = 1, Z = j] ·
(1− α1j) p

∗
j

pj

(19)

The second equality follows from the non-differential measurement error assumption and the

third equality follows from Bayes Theorem. Similarly,

E [Y |T = 0, Z = j] = E [Y |T ∗ = 0, Z = j] ·
(1− α0j)

(
1− p∗j

)
1− pj

+E [Y |T ∗ = 1, Z = j] ·
α1j · p∗j
1− pj

(20)

Sovling for E [Y |T ∗ = 1, Z = j] andE [Y |T ∗ = 0, Z = j] in terms of observed (E [Y |T = 0, Z = j],

E [Y |T = 1, Z = j], and pj) and unobserved quantities (α0j, α1j, and p∗j) yields

E [Y |T ∗ = 1, Z = j] =
pjE [Y |T = 1, Z = j]− α0jE [Y |Z = j]

p∗j (1− α0j − α1j)

E [Y |T ∗ = 0, Z = j] =
(1− pj)E [Y |T = 0, Z = j]− α1jE [Y |Z = j](

1− p∗j
)

(1− α0j − α1j)
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which use the substitution E [Y |Z = j] = E [Y |T = 1, Z = j] pj+E [Y |T = 0, Z = j] (1− pj).

Noting that pj − α0j = (1− α0j − α1j) p
∗
j , which follows immediately from the equation

for pj, we can simplify the expression for E [Y |T ∗ = 1, Z = j] to yield

E [Y |T ∗ = 1, Z = j] =
pjE [Y |T = 1, Z = j]− α0jE [Y |Z = j]

p∗j (1− α0j − α1j)

=
pjE [Y |T = 1, Z = j]− α0jE [Y |Z = j]

pj − α0j

=
pjE [Y |T = 1, Z = j]− α0jE [Y |Z = j] + (pjE [Y |Z = j]− pjE [Y |Z = j])

pj − α0j

=
pjE [Y |T = 1, Z = j]− pjE [Y |Z = j] + (pj − α0j)E [Y |Z = j]

pj − α0j

=
E [Y T |Z = j]− pjE [Y |Z = j]

pj − α0j

+ E [Y |Z = j]

=
COV (Y, T |Z = j)

pj − α0j

+ E [Y |Z = j] (21)

where we make use of the fact that

E [Y T |Z = j] = pjE [Y · 1|T = 1, Z = j]+(1− pj)E [Y · 0|T = 0, Z = j] = pjE [Y |T = 1, Z = j]

The following expression follows similarly

E [Y |T ∗ = 0, Z = j] = E [Y |Z = j]− COV (Y, T |Z = j)

1− pj − α1j

(22)
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A.3 Derivation of Equation (7)

Subtracting equation (4) from equation (3) and then inserting equations (5) and (6) into the

resulting expression yields

E [Y |T ∗ = 1, Z = j]− E [Y |T ∗ = 0, Z = j] = E [Y |T ∗ = 1, Z = k]− E [Y |T ∗ = 0, Z = k]

COV (Y, T |Z = j)

pj − α0j

+
COV (Y, T |Z = j)

1− pj − α1j

=
COV (Y, T |Z = k)

pk − α0k

+
COV (Y, T |Z = k)

1− pk − α1k

COV (Y, T |Z = j)

(1− α0j − α1j) p∗j
+

COV (Y, T |Z = j)

(1− α0j − α1j)
(
1− p∗j

) =
COV (Y, T |Z = k)

(1− α0k − α1k) p∗k
+

COV (Y, T |Z = k)

(1− α0k − α1k) (1− p∗k)

1

(1− α0j − α1j)
· COV (Y, T |Z = j)

p∗j
(
1− p∗j

) =
1

(1− α0k − α1k)
· COV (Y, T |Z = k)

p∗k (1− p∗k)

where we also make use of the definition of pj for the following substitutions pj − α0j =

(1− α0j − α1j) p
∗
j and 1− pj − α1j = (1− α0j − α1j)

(
1− p∗j

)
.

A.4 Proof of Theorem 1

Let the instrument Z take on three values, j = 0, 1, 2. Re-writing (2) in terms of β and then

equating this result for the cases (j = 1, k = 0) and (j = 2, k = 1) yields

E [Y |Z = 1]− E [Y |Z = 0]

p∗1 − p∗0
=
E [Y |Z = 2]− E [Y |Z = 1]

p∗2 − p∗1

Letting ∆jk = E [Y |Z = j]− E [Y |Z = k], we can solve this expression for p∗1

p∗1 =
p∗2∆10 + p∗0∆21

∆21 + ∆10

(23)
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which we can use to derive an expression for p∗1 (1− p∗1)

p∗1 (1− p∗1) =

(
p∗2∆10 + p∗0∆21

∆21 + ∆10

)(
∆21 + ∆10

∆21 + ∆10

−
(
p∗2∆10 + p∗0∆21

∆21 + ∆10

))
=

(
p∗2∆10 + p∗0∆21

∆21 + ∆10

)(
(1− p∗2) ∆10 + (1− p∗0) ∆21

∆21 + ∆10

)
=

(
1

∆20

)2 (
p∗2 (1− p∗2) ∆2

10 + p∗0 (1− p∗0) ∆2
21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2))

)
(24)

where the last step uses ∆20 = ∆21 + ∆10. Next, we can re-write equation (8) for the case

j = 1, k = 0 to yield

p∗1 (1− p∗1) = p∗0 (1− p∗0) ·
C1

C0

(25)

where Cj = COV (Y, T |Z = j). Inserting (24) into (25) and simplifying yields

(
1

∆20

)2 (
p∗2 (1− p∗2) ∆2

10 + p∗0 (1− p∗0) ∆2
21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2))

)
= p∗0 (1− p∗0) ·

C1

C0

p∗2 (1− p∗2) ∆2
10 + p∗0 (1− p∗0)

(
∆2

21 −∆2
20

C1

C0

)
+ ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2)) = 0 (26)

Similarly, we can re-write equation (8) for the case (j = 2, k = 1)

p∗1 (1− p∗1) = p∗2 (1− p∗2) ·
C1

C2

(27)

which we can combine with (24) to yield

(
1

∆20

)2 (
p∗2 (1− p∗2) ∆2

10 + p∗0 (1− p∗0) ∆2
21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2))

)
= p∗2 (1− p∗2) ·

C1

C2

p∗2 (1− p∗2)
(

∆2
10 −∆2

20

C1

C2

)
+ p∗0 (1− p∗0) ∆2

21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2)) = 0 (28)
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To find the solutions to the remaining two unknowns, p∗0 and p∗2 given the two equations

(26) and (28), we proceed in the following steps. First, we re-write these two equations

as quadratics in p∗0. We can then compute the resultant using the coefficients on p∗0 in the

re-written equations. As these coefficients are only a function of p∗2, the resultant also is only

a function of p∗2. Since the system of equations has a non-zero solutions if and only if the

resultant equals zero, we set the resultant equal to zero and solve for roots of p∗2. We then

repeat the process by re-writing equations (26) and (28) as quadratics in p∗2 and solve that

resultant for roots of p∗0. Finally, we substitute all combinations of the roots of p∗0 and p∗2

into (26) and (28) to find the pair(s) of roots that satisfy these equations.

Re-writing both (26) and (28) as quadratics in p∗0 yields

(
∆2

20

C1

C0

−∆2
21

)
p∗0

2 +

(
∆2

21 −∆2
20

C1

C0

+ ∆10∆21 − 2∆10∆21p
∗
2

)
p∗0

+
((

∆2
10 + ∆10∆21

)
p∗2 −∆2

10p
∗
2
2
)

= 0 (29)

−∆2
21p
∗
0
2 +

(
∆2

21 + ∆10∆21 − 2∆10∆21p
∗
2

)
p∗0

+

((
∆2

10 −∆2
20

C1

C2

+ ∆10∆21

)
p∗2 +

(
∆2

20

C1

C2

−∆2
10

)
p∗2

2

)
= 0 (30)

Denoting the coefficients of the system of quadratic equations formed by (29) and (30)
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by

A00 = ∆2
20

C1

C0

−∆2
21

A01 = ∆2
21 −∆2

20

C1

C0

+ ∆10∆21 − 2∆10∆21p
∗
2

A02 =
(
∆2

10 + ∆10∆21

)
p∗2 −∆2

10p
∗
2
2

B00 = −∆2
21

B01 = ∆2
21 + ∆10∆21 − 2∆10∆21p

∗
2

B02 =

(
∆2

10 −∆2
20

C1

C2

+ ∆10∆21

)
p∗2 +

(
∆2

20

C1

C2

−∆2
10

)
p∗2

2

we can form the Sylvester matrix, Sp∗0 , of this system of equations in p∗0



A00 A01 A02 0

0 A00 A01 A02

B00 B01 B02 0

0 B00 B01 B02


Since the resultant can be formed as the determinant of the Sylvester matrix, taking the
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determinant of Sp∗0 and setting it equal to zero yields

C2
1∆4

20 (C2
1∆4

20 + (C2∆
2
10 − C0∆

2
21)

2 − 2C1∆
2
20(C2∆

2
10 + C0∆

2
21))

C2
0C

2
2

· p∗2
4

− 2C2
1∆4

20 (C2
1∆4

20 + (C2∆
2
10 − C0∆

2
21)

2 − 2C1∆
2
20(C2∆

2
10 + C0∆

2
21))

C2
0C

2
2

· p∗2
3

+
1

C2
0C

2
2

[
C2

1∆4
20

(
C2

0∆4
21 + C2

1∆4
20 − C0C2∆10∆

2
21(3∆20) + C2

2∆2
10(∆

2
10 −∆10∆21 −∆2

21)

− C1∆
2
20(C2∆10(2∆10 −∆21) + 2C0∆

2
21)
) ]
· p∗2

2

+
C2

1∆10∆21∆
5
20(C2∆10 + C0∆21 − C1∆20)

C2
0C2

· p∗2 = 0 (31)

Following an analogous process, we re-write (26) and (28) as quadratics in p∗2, form the

Sylvester matrix Sp∗2 , take its determinant and set it equal to zero to yield

C2
1∆4

20(C
2
1∆4

20 + (C2∆
2
10 − C0∆

2
21)

2 − 2C1∆
2
20(C2∆

2
10 + C0∆

2
21))

C2
0C

2
2

· p∗0
4

− 2C2
1∆4

20 (C2
1∆4

20 + (C2∆
2
10 − C0∆

2
21)

2 − 2C1∆
2
20(C2∆

2
10 + C0∆

2
21))

C2
0C

2
2

· p∗0
3

+
1

C2
0C

2
2

[
C2

1∆4
20

(
C2

2∆4
10 + C2

1∆4
20 − C0C2∆

2
10∆21(∆10 + 3∆21) + C2

0∆2
21(−∆2

10 −∆10∆21 + ∆2
21)

− C1∆
2
20(2C2∆

2
10 + C0∆21(−∆10 + 2∆21))

) ]
· p∗0

2

+
C2

1∆10∆21∆
5
20(C2∆10 + C0∆21 − C1∆20)

C0C2
2

· p∗0 = 0 (32)

We find that (31) yields four roots of p∗2 and (32) yields four roots of p∗0. We then use all

combinations of these roots to determine which (p∗0, p
∗
2) root pairs satisfy (26) and (28).

Two of the four roots for both p∗0 and p∗2 are 0 and 1. When either p∗0 or p∗2 equals 0, the

solution to the system of equations is p∗0 = 0 and p∗2 = 0. Similarly, when either p∗0 or p∗2

equals 1, the solution to the system of equations is p∗0 = 1 and p∗2 = 1. However, these two
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pairs of solutions violate Assumption 1.iii that 0 < p∗j < 1, ∀j and p∗j 6= p∗k, j 6= k. Thus,

neither 0 nor 1 is a possible solution for either p∗0 or p∗2.

The two pairs of roots which satisfy (26) and (28) for which p∗j 6= p∗k, j 6= k, along with

corresponding solution for p∗1 computed by inserting each (p∗0, p
∗
2) pair into (23), are

p∗0 =
D3 +

√
D3

(
(C1 − C0) ∆2

20 + (C0 − C2) ∆2
10

)
2D3

p∗1 =
D3 +

√
D3

(
(C2 − C1) ∆2

10 + (C1 − C0) ∆2
21

)
2D3

(33)

p∗2 =
D3 +

√
D3

(
(C2 − C1) ∆2

20 + (C0 − C2) ∆2
21

)
2D3

and

p∗0 =
D3 −

√
D3

(
(C1 − C0) ∆2

20 + (C0 − C2) ∆2
10

)
2D3

p∗1 =
D3 −

√
D3

(
(C2 − C1) ∆2

10 + (C1 − C0) ∆2
21

)
2D3

(34)

p∗2 =
D3 −

√
D3

(
(C2 − C1) ∆2

20 + (C0 − C2) ∆2
21

)
2D3

where D0 = C0∆
2
21, D1 = C1∆

2
20, D2 = C2∆

2
10, and D3 = D2

0 +D2
1 +D2

2−2D0D1−2D0D2−

2D1D2.

Both sets of solutions yield real numbers if D3 > 0. We prove that is the case below in

section A.4.1.

We can next solve for β by selecting any pair of p∗j and substituting the appropriate values

into equation (2). Without loss of generality, using the first solution found in equations (33)

along with the fact that ∆2
20 = (∆21 + ∆10)

2 = ∆2
21 + ∆2

10 + 2∆21∆10, we can first compute
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p∗1 − p∗0

p∗1 − p∗0 =

√
D3

(
(C2 − C1) ∆2

10 + (C1 − C0) ∆2
21

)
2D3

−

√
D3

(
(C1 − C0) ∆2

20 + (C0 − C2) ∆2
10

)
2D3

=

√
D3

(
(2C2 − C1 − C0) ∆2

10 + (C1 − C0) (∆2
21 −∆2

20)
)

2D3

(35)

=

√
D3

(
2 (C2 − C1) ∆2

10 + 2 (C0 − C1) (∆21∆10)
)

2D3

=

(
(C2 − C1) ∆2

10 + (C0 − C1) (∆21∆10)
)

√
D3

Thus, for the first solution found in equations (33), re-writing equation (2) to solve for β

and then inserting the above result for p∗1 − p∗0 yieids

β =
∆10

p∗1 − p∗0

=

√
D3∆10(

(C2 − C1) ∆2
10 + (C0 − C1) (∆21∆10)

)
=

√
D3(

(C2 − C1) ∆10 + (C0 − C1) ∆21

) (36)

Similarly, we can show that β corresponding to the second solution found in equations

(34), is equal and oppose in sign from the result in equation (36), i.e.,

β = −
√
D3(

(C2 − C1) ∆10 + (C0 − C1) ∆21

) (37)

To solve for α, notice that under the Assumption 2, an OLS regression of Y on T ∗ will

yield a consistent estimate of β. Moreover, a regression of Y on T ∗ conditional on any value
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taken on by the instrument will also consistently estimate β. Therefore,

β =
COV (Y, T ∗|Z = j)

V AR (T ∗|Z = j)
=
COV (Y, T ∗|Z = j)

p∗j
(
1− p∗j

) =
COV (Y, T |Z = j)

(1− α0j − α1j) p∗j
(
1− p∗j

) (38)

where the last equality results from the fact that COV (Y, T |Z = j) = (1− α0j − α1j)COV (Y, T ∗|Z = j)

which we prove below in section A.4.2.

Re-writing (38) to solve for α = α0j + α1j yields

1− α =
COV (Y, T |Z = j)

βp∗j
(
1− p∗j

) (39)

Inspection of equations (33) and (34) reveals that the results for each p∗j sum to one

across the two solutions, i.e., p∗j in (33) equals 1− p∗j in (34). Thus, p∗j
(
1− p∗j

)
is the same

across both solutions as is the observed quantity COV (Y, T |Z = j). Since the corresponding

results for β are equal but opposite in sign across the two solutions, the right-hand side of

(39) is positive for one solution and negative for another solution. Thus α < 1 for one

solution and α > 1 for the other solution. Since Assumption 1.v requires α < 1, we can

determine which of the two solutions matches this assumption and therefore determine the

sign of β.

A.4.1 Proof that D3 > 0

The solutions in equations (33) and (34) require D3 > 0 in order to yield real numbers.

Re-writing the expression for p∗1 (1− p∗1), found in (24), making substitutions using equation
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(8), and simplifying yields

p∗1 (1− p∗1) ∆2
20 = p∗2 (1− p∗2) ∆2

10 + p∗0 (1− p∗0) ∆2
21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2))[

p∗0 (1− p∗0) ·
C1

C0

]
∆2

20 =

[
p∗0 (1− p∗0) ·

C2

C0

]
∆2

10 + p∗0 (1− p∗0) ∆2
21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2))

C1∆
2
20 = C2∆

2
10 + C0∆

2
21 + C0∆10∆21

(p∗2 (1− p∗0) + p∗0 (1− p∗2))
p∗0 (1− p∗0)

D1 −D2 −D0 = C0∆10∆21
(p∗2 (1− p∗0) + p∗0 (1− p∗2))

p∗0 (1− p∗0)
(40)

Squaring both sides of equation (40) and simplifying yields

(D1 −D2 −D0)
2 = C2

0∆2
10∆

2
21

(p∗2 (1− p∗0) + p∗0 (1− p∗2))
2

(p∗0 (1− p∗0))
2

D2
0 +D2

1 +D2
2 − 2D0D1 − 2D1D2 + 2D0D2 =

[
C0

p∗0 (1− p∗0)
∆2

10

]
C0∆

2
21

(p∗2 (1− p∗0) + p∗0 (1− p∗2))
2

p∗0 (1− p∗0)

D3 + 4D0D2 =

[
C2

p∗2 (1− p∗2)
∆2

10

]
C0∆

2
21

(p∗2 (1− p∗0) + p∗0 (1− p∗2))
2

p∗0 (1− p∗0)

D3 + 4D0D2 = D2D0
(p∗2 (1− p∗0) + p∗0 (1− p∗2))

2

p∗0 (1− p∗0) p∗2 (1− p∗2)

D3 = D0D2

[
(p∗2 (1− p∗0) + p∗0 (1− p∗2))

2

p∗0 (1− p∗0) p∗2 (1− p∗2)
− 4

]
(41)

Notice that C0 and C2 must always have the same sign in order to satisfy equation (8).

Thus, C0C2 > 0 and, in turn, D0D2 = C0∆
2
21C2∆

2
10 > 0.36 Therefore, D3 > 0 as long as the

term in brackets on the right hand side of (41) is positive. To confirm this condition holds

36Rule out Cj = 0 ∀ j.
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notice that

(p∗2 (1− p∗0) + p∗0 (1− p∗2))
2

p∗0 (1− p∗0) p∗2 (1− p∗2)
− 4 > 0

(p∗2 (1− p∗0))
2 + (p∗0 (1− p∗2))

2 + 2p∗2 (1− p∗0) p∗0 (1− p∗2)
p∗0 (1− p∗0) p∗2 (1− p∗2)

> 4

(p∗2 (1− p∗0))
2 + (p∗0 (1− p∗2))

2

p∗0 (1− p∗0) p∗2 (1− p∗2)
+ 2 > 4

(p∗2 (1− p∗0))
2 + (p∗0 (1− p∗2))

2 > 2p∗0 (1− p∗0) p∗2 (1− p∗2)

(p∗2 (1− p∗0))
2 − 2p∗0 (1− p∗0) p∗2 (1− p∗2) + (p∗0 (1− p∗2))

2 > 0

[(p∗2 (1− p∗0))− (p∗0 (1− p∗2))]
2 > 0

[p∗2 − p∗0]
2 > 0

∆2
20

β2
> 0 (42)

As long as β 6= 0, this condition is satisfied and, thus, D3 > 0.

A.4.2 Proof that COV (W,T |Z = j) = (1− α0j − α1j)COV (W,T ∗|Z = j)

For a given variable, W , the covariance between W and T ∗ among those observations where

Z = j simplifies to

COV (W,T ∗|Z = j) = E [WT ∗|Z = j]− E [W |Z = j]E [T ∗|Z = j]

= p∗jE [W |T ∗ = 1, Z = j]− E [W |Z = j] p∗j

=
(
E [W |T ∗ = 1, Z = j]− E [W |Z = j]

)
p∗j (43)
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where we make use of the fact that

E [WT ∗|Z = j] = p∗jE [W · 1|T ∗ = 1, Z = j]+
(
1− p∗j

)
E [W · 0|T ∗ = 0, Z = j] = p∗jE [W |T ∗ = 1, Z = j]

Similarly, for a given variable, W , the covariance between W and T among those obser-

vations where Z = j simplifies to

COV (W,T |Z = j) =
(
E [W |T = 1, Z = j]− E [W |Z = j]

)
pj (44)

Notice that replacing Y with W in equation (19) and extending the assumption of non-

differential measurement error to W yields an expression for E [W |T = 1, Z = j]. Inserting

this term into equation (44) yields

COV (W,T |Z = j) =

(
E [W |T ∗ = 0, Z = j] ·

α0j

(
1− p∗j

)
pj

+ E [W |T ∗ = 1, Z = j] ·
(1− α1j) p

∗
j

pj

− E [W |Z = j]

)
pj

= E [W |T ∗ = 0, Z = j] · α0j

(
1− p∗j

)
+ E [W |T ∗ = 1, Z = j] · (1− α1j) p

∗
j

− E [W |Z = j] pj (45)
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Finally, adding zero in the form of α0jE [W |Z = j]− α0jE [W |Z = j] yields

COV (W,T |Z = j) = E [W |T ∗ = 0, Z = j] · α0j

(
1− p∗j

)
+ E [W |T ∗ = 1, Z = j] · (1− α1j) p

∗
j

− α0jE [W |Z = j]

−
(
E [W |Z = j] pj − α0jE [W |Z = j]

)
= E [W |T ∗ = 0, Z = j] · α0j

(
1− p∗j

)
+ E [W |T ∗ = 1, Z = j] · (1− α1j) p

∗
j

− α0j

(
E [W |T ∗ = 0, Z = j]

(
1− p∗j

)
+ E [W |T ∗ = 1, Z = j] p∗j

)
− E [W |Z = j] (pj − α0j)

= E [W |T ∗ = 1, Z = j] · (1− α0j − α1j) p
∗
j

− E [W |Z = j] · (1− α0j − α1j) p
∗
j

=
(
E [W |T ∗ = 1, Z = j]− E [W |Z = j]

)
· (1− α0j − α1j) p

∗
j

= (1− α0j − α1j)COV (W,T ∗|Z = j) (46)

A.5 Identification of α Under Assumption 4 Using Homoskedas-

ticity

One possibility for identifying α when using Assumption 4 is to impose restrictions on the

higher order moments. In particular, we can require that the error term, ε, in equation (1)

is homoskedastic, i.e., E [ε2|Z = j] = E [ε2].
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Following equation (1), the expected value of the square of Y when Z = j is

E
[
Y 2|Z = j

]
= E

[
(γ + βT ∗ + ε)2 |Z = j

]
= E

[
γ2 + β2 (T ∗)2 + ε2 + 2βT ∗γ + 2γε+ 2βT ∗ε|Z = j

]
= β2E

[
(T ∗)2 |Z = j

]
+ 2βE [(γ + ε)T ∗|Z = j] + E

[
γ2 + 2γε+ ε2|Z = j

]
(47)

The first term in (47) simplifies using β2E
[
(T ∗)2 |Z = j

]
= β2p∗j . The third term in

(47) can be simplified using E [γ2 + 2γε+ ε2|Z = j] = γ2 + 2γE [ε|Z = j] + E [ε2|Z = j] =

γ2 +E [ε2] where the second equality follows both from the fact that E [ε|Z = j] and by the

homoskedasticity assumption.

To find an expression for the second term in (47), we begin with right-hand side of (6)

multiplied by −
(
1− p∗j

)
. Simplifying this expression yields

(
1− p∗j

) [COV (Y, T |Z = j)

1− pj − α1j

− E [Y |Z = j]

]
=
COV (Y, T |Z = j)

1− α0j − α1j

−
(
1− p∗j

)
E [Y |Z = j]

= COV (Y, T ∗|Z = j)−
(
1− p∗j

)
E [Y |Z = j]

=
(
E [Y T ∗|Z = j]− E [Y |Z = j] p∗j

)
−
(
1− p∗j

)
E [Y |Z = j]

= E [(γ + βT ∗ + ε)T ∗|Z = j]− E [Y |Z = j]

= E [(γ + ε)T ∗|Z = j] + E
[
β (T ∗)2 |Z = j

]
− E [Y |Z = j]

= E [(γ + ε)T ∗|Z = j] + βp∗j −
(
γ + βp∗j

)
= E [(γ + ε)T ∗|Z = j]− γ (48)

where the first equality uses the fact that 1 − pj − α1j = (1− α0j − α1j)
(
1− p∗j

)
and the
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second equality uses the result COV (Y, T |Z = j) = (1− α0j − α1j)COV (Y, T ∗|Z = j).

Substituting these results back into (47) yields

E
[
Y 2|Z = j

]
= β2p∗j + 2β

[
COV (Y, T |Z = j)

1− α0j − α1j

−
(
1− p∗j

)
E [Y |Z = j] + γ

]
+ γ2 + E

[
ε2
]

(49)

Differencing (49) for any two values of the instrument, j and k, yields

E
[
Y 2|Z = j

]
− E

[
Y 2|Z = k

]
= β2

(
p∗j − p∗k

)
+ 2β

[
COV (Y, T |Z = j)

1− α0j − α1j

− COV (Y, T |Z = k)

1− α0k − α1k

]
− 2β

[(
1− p∗j

)
E [Y |Z = j]− (1− p∗k)E [Y |Z = k]

]
= β (E [Y |Z = j]− E [Y |Z = k])

+ 2β

[
COV (Y, T |Z = j)

1− α0j − α1j

− COV (Y, T |Z = k)

1− α0k − α1k

]
− 2β

[(
1− p∗j

)
E [Y |Z = j]− (1− p∗k)E [Y |Z = k]

]
(50)

where the second equality arises by using equation (2) to adjust the first term of (50). Again

invoking Assumption 3 (i.e., α = α0j + α1j) and solving for 1− α yields

1− α =
2β (COV (Y, T |Z = j)− COV (Y, T |Z = k))

(E [Y 2|Z = j]− E [Y 2|Z = k]) + β
{

∆jk + 2
(
E [Y |Z = j] p∗j − E [Y |Z = k] p∗k

)}
(51)

where ∆jk = E [Y |Z = j]− E [Y |Z = k].

To see that (51) implies that α < 1 for one solution and α > 1 for the other solution,

let {β, p∗j , p∗k} be the estimators for the first solution while {β̃, p̃∗j , p̃∗k} are the corresponding

estimators for the second solution. Recall from (36) and (37) that β̃ = −β and, since the

estimators for a p∗j sum to one across the two solutions, p̃∗j = 1− p∗j for each j.
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Inserting these results into the second term in the denominator of (51) yields

β̃
{

∆jk + 2
(
E [Y |Z = j] p̃∗j − E [Y |Z = k] p̃∗k

)}
= −β {E [Y |Z = j]− E [Y |Z = k]

+ 2
(
E [Y |Z = j]

(
1− p∗j

)
− E [Y |Z = k] (1− p∗k)

)}
= −β

{
−∆jk − 2

(
E [Y |Z = j] p∗j − E [Y |Z = k] p∗k

)}
= β

{
∆jk + 2

(
E [Y |Z = j] p∗j − E [Y |Z = k] p∗k

)}
(52)

Thus, the second term in the denominator of (51) is the same for both solutions and, since

E [Y 2|Z = j] − E [Y 2|Z = k] does not vary across solutions, we see the entire denominator

does not vary across the two solutions. The sign of the numerator, however, will vary across

the two solutions since β is of equal magnitude but opposite in sign across the two solutions.

Thus, α < 1 for one solution and α > 1 for the other solution.

A.6 Estimation and Inference Details

A.6.1 The Potential for Weak Identification

Inspection of the equation for β found in (37) shows that it yields a real solution as long as

the term D3 is non-negative. As is further shown in the proof of Theorem 1 in Appendix

Section A.4, D3 must be strictly positive as the solution to the system of equations for the

p∗j terms have D3 in the denominator. Although D3 is positive in the population, except

when β = 0 (see Section A.4.1), it may be negative when replaced with its sample analog.

Such situations are more likely to occur when at least one of the following holds: i) β is

close to zero, ii) there are small differences between p∗j values, and iii) the sample size is
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relatively small. Under these conditions, the GMM estimator is weakly identified and may

not converge in finite samples. DiTraglia and Garcia-Jimeno (2019) note a similar issue with

their estimator.

A.6.2 Including Covariates

For our first approach for including covariates, we specify the equation for Y as Y = γ +

βT ∗ +Xψ + ε as shown in equation (12), where X is a row vector of K regressors and ψ

is a column vector of K parameters. Correspondingly modifying the Assumptions 1, 2, and

4 to account for the additional regressor(s) yields

Assumption 1′.ii: E[Y |Z = j,X] = γ + βp∗j + E[Xψ|Z = j,X], ∀j

Assumption 1′.iv: E [Y |T, T ∗, Z,X] = E [Y |T ∗, Z,X]

Assumption 2′: E [Y |T ∗ = t, Z = j,X] = E [Y |T ∗ = t,X] , ∀j

Assumption 4′: E [Y |T ∗ = 1, Z = j,X]−E [Y |T ∗ = 0, Z = j,X] = E [Y |T ∗ = 1, Z = k,X]−

E [Y |T ∗ = 0, Z = k,X] ∀ j, k

Assumption 1′.ii is analogous to assuming that each element in X is uncorrelated with

the error ε. In addition, notice that p∗j = E[T ∗|Z = j,X]. Re-writing the equation for

Assumption 1′.ii, the analogous moment conditions to (2) are

E[Y |Z = j,X]− E[Xψ|Z = j,X] = E[Ỹ |Z = j,X] = γ + βp∗j , ∀j (53)

where Ỹ = Y −Xψ.
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We next derive the equations found in Appendix Section A.2, extending the results to

explicitly condition on X. Adjusting equation (19) to account for X yields

E [Y |T = 1, Z = j,X] = E [Y |T ∗ = 0, Z = j,X] ·
α0j

(
1− p∗j

)
pj

+ E [Y |T ∗ = 1, Z = j,X] ·
(1− α1j) p

∗
j

pj
(54)

To includeX, we have assumed that α0j = P [T = 1|T ∗ = 0, Z = j,X], α1j = P [T = 0|T ∗ = 1, Z = j,X],

and pj = P [T = 1|Z = j,X] do not depend on the covariates (our second approach to in-

cluding covariates relaxes these assumptions).

Similarly, adjusting equation (20) to account for X yields

E [Y |T = 0, Z = j,X] = E [Y |T ∗ = 0, Z = j,X] ·
(1− α0j)

(
1− p∗j

)
1− pj

+ E [Y |T ∗ = 1, Z = j,X] ·
α1j · p∗j
1− pj

(55)

Using these last two expressions we can solve for the following unobserved quantities

E [Y |T ∗ = 1, Z = j,X] =
COV (Y, T |Z = j,X)

pj − α0j

+ E [Y |Z = j,X] (56)

E [Y |T ∗ = 0, Z = j,X] = E [Y |Z = j,X]− COV (Y, T |Z = j,X)

1− pj − α1j

(57)

Recalling that Ỹ = Y −Xψ, we can next write

COV
(
Ỹ , T |Z = j,X

)
= COV (Y, T |Z = j,X)− COV (Xψ, T |Z = j,X) (58)

= COV (Y, T |Z = j,X) (59)
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where the second term on the right hand side equals zero since we are conditioning on X.

Using this result to substitute for COV (Y, T |Z = j,X) in equations (56) and (57), we can

then use either Assumption 2′ or Assumption 4′ to derive equations analogous to (8)

COV
(
Ỹ , T |Z = j,X

)
p∗j
(
1− p∗j

) =
COV

(
Ỹ , T |Z = k,X

)
p∗k (1− p∗k)

(60)

As in the text, we eliminate the misclassification rates from the system of moment conditions

by assuming that the sum of the misclassification rates is constant across instrument values.

Thus, when using this first approach to including covariates, we end up with moments

that are identical to those in the text, but substituting Ỹ for Y . We can pre-estimate ψ

by regressing Y on T and X while using Z as an instrument for T . The proof that ψ can

be consistently estimated with 2SLS is provided in Proposition 3 in Fraziz and Loewenstein

(2003). With this consistent estimate of ψ, we can then use GMM to estimate the set of

moment conditions found in (11), except replacing Y with Ỹ .

Our second approach to including covariates, which is discussed in the text, involves

estimating the moments in equation (8) separately for different cells defined by the covariates

in X. This approach can allow all the parameters to vary across cells or restrict some

parameters (e.g., β) to be the same across all cells.

A.7 Additional Simulation Results

Table A1 illustrates that the GMM estimator is affected by weak identification when β is

(relatively) close to zero and/or the sample size is small (see Section 4.4).37 The table

37Another situation that can lead to weak identification is when there are small differences between the
p∗j values. We do not explore this aspect of weak identification in the simulations reported here.
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presents GMM estimates for multiple combinations of β and the sample size N , using 1,000

iterations for each combination. Panel A of Table A1 shows the fraction of iterations where

GMM successfully converges.38 Consistent with the conditions for weak identification, the

GMM estimator is less likely to converge as β approaches zero and/or as the sample size

decreases. When N = 1, 000, GMM fails to converge for at least some fraction of iterations

for every value of β. However, when N = 100, 000 GMM always converges except where

β = 0, the parameter value for which our estimator is not identified.

Even when GMM converges, the remaining Panels of Table A1 show that weak iden-

tification yields imprecise estimates and raises inference concerns. As shown in Panel B,

when GMM converges, the average point estimate is too large when N = 1, 000 while it is

well-centered when N = 100, 000. Moreover, as shown in Panel C, GMM yields relatively

larger standard errors when identification is weak, but as the sample size increases, the GMM

estimates are quite precise. Finally, in Panel D, the coverage rates for the 95% confidence in-

tervals are as expected when N = 100, 000, whereas coverage is incomplete when N = 1, 000

in spite of the substantially wider confidence intervals. See Section A.7.2 for evidence that

the patterns in Table A1 remain when we vary α.

In the text and the next two appendix subsections, we present “large sample” simulation

results with N = 100, 000 and β = 1 to demonstrate the performance of our estimator in

the absence of the weak identification concerns. We focus on how our estimator and the

Two Stage Least Squares (2SLS) estimator perform under different assumptions regarding

misclassification error.39 We also examine the robustness of our estimator when we relax

38All GMM simulations are completed in MatLab. We obtain starting values using fminunc and its default
settings. We obtain final parameter values using fminsearch, setting the search tolerance at 10−7 and the
maximum iterations at 20,000.

39We use 2SLS as we use indicators for all but one of the discrete values of Z as excluded instruments.
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Assumption 3 (i.e., that α0j + α1j is constant) in a manner that mimics the examples from

Section 2 and when allowing T ∗ to be endogenous (as consistent with Assumption 4). In the

working paper version of this paper (Haider and Stephens 2020), we present “small sample”

results with N = 1, 000 in which we examine inference when identification is weak.

A.7.1 “Large Sample” Simulation Results Discussed in Paper

In Table A2, we replicate the simulations of Table 1, but do so with a binary outcome. To

accommodate a binary outcome, we specify that Y = 1(γ + βT ∗ > ε), where 1(.) is the

indicator function, γ = 0.25, β = 0.5, and ε ∼ uniform[0, 1]. All of the conclusions remain

the same.

We allow T ∗ to be endogenous in Table A3. These simulations are making use of such

a form specified in Olsen (1980). See Brinch, Mogstad, and Wiswall (2017) for a recent

application that leverages endogeneity of this type. Specifically, the error term ε is specified

to have two components. The endogenous component is v = Φ(E∗), where Φ is the standard

normal cumulative distribution function so that v ∼ uniform[0, 1]. The exogenous component

is e ∼ N(0, σ2
ε (1− ρ2)), where ρ is the correlation between ε and v. With this structure,

ε = e− ρ(v − .5)σε/
√

1/12 (61)

We hold σ2
ε as specified in Table 1 while ρ is 0.250 for columns (1) and (3) and 0.500 for

columns (2) and (4).

For the first two columns of the table, we start with the basic specification used in column

(2) of Table 1 where, in the absence of a correlation between ε and T ∗, the OLS estimate is
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less than β while the 2SLS estimate exceeds β. Notice that as this correlation, ρ, increases

from 0.25 to 0.5 as we move between columns (1) and (2), the OLS estimate changes from

being downward inconsistent to upward inconsistent. In both columns, the 2SLS estimate

is identical to that found in column (2) of Table 1, and thus remains upward inconsistent

because of the nature of the varying misclassification. We repeat this same exercise in

columns (3) and (4), but instead base it on the specification of column (3) of Table 1. The

basic results are similar: OLS can be downward or upward inconsistent depending on the

amount of endogeneity, but in this case, 2SLS is downward inconsistent due to the nature

of the varying misclassification. Thus, with both misclassification and endogeneity present,

neither OLS nor 2SLS systematically bound the true parameter value. However, in all cases,

our estimator remains consistent.

As we have discussed throughout, other papers have proposed methods to estimate the

impact of a mismeasured binary regressor. In Table A4, we show three estimators that

rely on fixed misclassification and a single instrumental variable (Frazis and Lowenstein

2003; Mahajan 2006; Lewbel 2007) are not well-centered in simulations that have varying

misclassification. However, three estimators that instead rely on higher-order moments of

the error term (Chen, Hu, and Lewbel 2008a, b; DiTraglia and Garcia-Jimeno 2019) are

well-centered (see column (2) of Table A4) as the errors used in our simulations (which

are normally distributed) satisfy the error term restrictions required by these estimators.

However, in the final three columns where we specify error distributions that deviate from

homoskedasticity and/or symmetry (as would be the case with binary outcomes), we find

that these alternative methods yield estimates of β that systematically deviate from its true

value. In contrast, our estimator remains well-centered in all cases.
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In Table A4, we examine how other proposed estimators perform in the face of mis-

classification rates that vary. Columns (1) and (2) of Table A4 use exactly the same data

generating process as columns (1) and (2) of Table 1, respectively. All of the estimators

are well-centered in column (1) when the underlying misclassification rates are fixed. When

we allow the underlying misclassifications rates to vary (but continue to assume that the

sum is fixed) in column (2), the three estimators that rely on fixed misclassification and an

instrumental variable (Frazis and Lowenstein 2003, Mahajan 2006, and Lewbel 2007) are

not well-centered. The three estimators that rely on higher-order moments of the error term

(Chen, Hu, and Lewbel 2008a; Chen, Hu, and Lewbel 2008b; DiTraglia and Garcia-Jimeno

2019) continue to be well-centered because the error term specification (normal errors) for

the simulations in Table 1 are consistent with the higher order error term requirements of

these estimators.

To examine the sensitivity of the estimators to these distributional assumptions, columns

(3) through (5) of Table A4 are created to be identical to column (2), but differ in their

specification for the error term. Specifically, consider the expanded DGP

Y = γ + βT ∗ + ε0(1− T ∗) + ε1T
∗ (62)

As in the main text, the standard deviation of ε is 0.25, and the expanded error term is

• Column (1): ε0 = ε1 = ε

• Column (2): ε0 = ε1 = ε

• Column (3): ε0 = εn; ε1 = 2.5ε
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• Column (4): ε0 = ε1 = |2.5ε| − |2.5ε|

• Column (5): ε0 = |ε| − |ε|; ε1 = |2.5ε| − |2.5ε|

Chen, Hu, and Lewbel (2008a) and DiTraglia and Garcia-Jimeno (2019) assume homoskedas-

tic errors, so these estimators are not well-centered in column (3) that specifies a het-

eroskedastic error term.40 Chen, Hu, and Lewbel (2008b) assumes that the error distribution

has a third moment that is equal to zero, so this estimator starts is less well-centered in col-

umn (4) that specifies the error term to be a half-normal distribution. All three estimators

are poorly centered in the final column that specifies a heteroskedastic and non-symmetric

error term. For all columns in Table A4, our estimator is well-centered.

A.7.2 Further “Large Sample” Simulations Results

Tables A6-A8 shows large sample results when varying α and β. All of the general patterns

remain.

A.8 Additional Empirical Results Using Moment Inequalities

In this subsection, we present additional empirical results that are relevant to the moment

inequality results in the text.

Row (A) of Table A9 shows the implied confidence intervals based on the primary results

in the text that make use of equality moments, presented in Row (E) of Table 2. These

results are based on bootstrapped standard errors to account for the preliminary estimation

40Chen, Hu, and Lewbel (2008a) require that the errors are homoskedastic with respect to T ∗ while
DiTraglia and Garcia-Jimeno (2019) require homoskedasticity with respect to Z. In addition, both estimators
make a constant skewness assumption, with Chen, Hu, and Lewbel (2008a) requiring it with respect to T ∗

and with DiTraglia and Garcia-Jimeno (2019) requiring it with respect to Z.

64



of the coefficients on the other covariates in the model.

All of our results based on inequality moments ignore the preliminary estimation of

the coefficients on the other covariates in the model. Row (B) of Table A9 shows confidence

intervals based on equality moments and analytic standard errors that ignore the preliminary

estimation. As expected, the standard errors are smaller than those in Row (A).

Rows (C) - (F) use inequality moments and the methods described in Bugni, Canay,

and Shi (2017) to obtain the confidence sets on β based on different values of Rjk. Row

(C) sets Rjk = Rkj = 1 ∀j, k, which effectively turns the inequality moments into equality

moments. The confidence sets are reasonably close to Row (B), except for the private

insurance outcome. This finding for the private insurance outcome is discussed more below.

Rows (D) - (F) present the inequality moments using the values in the text (see Row

(E) of Table 2) and adds in one additional specification: Rjk = 1, Rkj = .89 ∀j > k. The

patterns are as expected: loosening the inequality bounds tends to widen the confidence sets.

The simple confidence set presentation of these findings overlooks the fact that, with our

reliance on a simulation-based test statistic, the probability of rejection can exhibit noise.41

Moreover, not only does the confidence region need not be symmetric around the point

estimate (as is clear from the table of results), it not need be symmetric around any point.

To show transparently what the broader acceptance/rejection regions look like in our

empirical example, Figure A5 presents the percentile of the test statistic as compared to

its empirical distribution based on the null that is being evaluated. In other words, we are

simply graphing 1 minus the p-value of the null listed on the x-axis. Each panel shows

two sets of results based on inequality moments, the first that mimics our equality moment

41For the confidence regions, we defined “rejection” to occur once the p-value dipped below 0.05 for two
successive ordinates on a 0.01 grid.
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results (i.e., Rjk = Rkj = 1 ∀j, k) and the second that loosens the inequality moments (i.e.,

Rjk = Rkj = 0.95 ∀j, k). Panels A and B are based on a 0.01 grid, except for being on a

0.001 grid around 0.01 of the parameter estimate based on the equality moments. Panel C

is based on a 0.001 grid, except for being on a 0.0001 grid around 0.001 of the parameter

estimate based on the equality moments.

All three panels mostly deliver the expected results. First, the graphs reach zero around

the point estimates based on the equality moments. Second, the graphs based on weaker

inequality moments (i.e., Rjk = Rkj = 0.95 ∀j, k) are outside of those based on the stricter

inequality moments (i.e., Rjk = Rkj = 1 ∀j, k). Third, the graphs for Medicaid (Panel

A) and No Insurance (Panel B) produce confidence sets that plausibly line up with the

equality moment results: The confidence intervals based on the tight inequality moments

(i.e., Rjk = Rkj = 1 ∀j, k) line up with what is delivered from the equality moments and the

confidence sets based on the looser inequality moments (i.e., Rjk = Rkj = 0.95 ∀j, k) widen

a little bit.

The one set of results in Table A9 and Figure A5 that deviate from this general pattern

are those for the lower bound for the Private Insurance outcome in that the confidence set

becomes much wider. The graph shows why this is happening. Like all of the outcomes,

the curves tend to flatten out and becomes noisier as one moves away from zero. For the

Private Insurance outcome, it flattens out before 0.95. It simply appears that this outcome

is less-well identified as compared to our other two outcomes.
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Figure A1: Misclassification Example - 1977 January CPS Matched Employer-Employee
Wages
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Notes: Both panels use data from the January 1977 CPS matched employer-employee wage data. Details
about the data are discussed in the text and in Appendix section A.1.1. Panel A1a reports misclassification
rates, with the details for constructing these rates found in Section 2. Panel A1b plots the relationship
between P [T = 1] and P [T ∗ = 1].
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Figure A4: Simulated Misclassification Rates Using a Mis-Measured Index
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Notes: To construct this figure, we generate the mis-measured index E by adding a mean zero measurement
error ν to the random variable E∗. For any given threshold c, we construct the binary indicators T ∗ =
1(E∗ ≤ c) and T = 1(E ≤ c) and the corresponding misclassification rates as discussed in the text. This
figure shows these values average over 500,000 iterations.
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Table A1: Monte Carlo Simulations - GMM Estimation

N 0.0 0.25 0.5 1.0 1.5 2.0

Panel A: Proportion GMM Converges
1,000 0.970 0.844 0.885 0.940 0.969 0.978
10,000 0.969 0.979 0.999 1.000 1.000 1.000
100,000 0.951 1.000 1.000 1.000 1.000 1.000

Panel B: Mean of β if Converges
1,000 -0.009 0.755 0.984 1.427 2.021 2.567
10,000 0.048 0.385 0.539 1.017 1.517 2.018
100,000 0.006 0.256 0.504 1.003 1.502 2.001

Panel C: Mean of SE of β if Converges
1,000 1350 636.8 1346 15.04 15.06 11.71
10,000 1170 33.50 0.300 0.113 0.137 0.168
100,000 495.7 0.026 0.026 0.032 0.040 0.049

Panel D: Coverage of True β if Converges
1,000 0.992 0.906 0.884 0.911 0.918 0.921
10,000 0.995 0.892 0.925 0.925 0.943 0.946
100,000 1.000 0.948 0.954 0.954 0.951 0.952

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions
found in (11). Each simulation uses 1,000 iterations. The numbers within each of the four panels correspond
to a different simulation, where the sample size N and the parameter of interest β vary across simulations.
The values for the remaining parameters are discussed in Section 5. Panel A reports the proportion of times
that the GMM estimator converges across iterations. Panel B reports the average of β across the iterations
where the estimator converges. Panel C reports the average standard error of β across the iterations where
the estimator converges. Panel D reports the coverage for β across the iterations where the estimator
converges.
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Table A2: Monte Carlo Simulations - Varying Misclassification with a Binary Outcome

(1) (2) (3) (4)

Panel A: Data generating process
α00 0.070 0.055 0.035 0.110
α01 0.070 0.070 0.070 0.140
α02 0.070 0.085 0.105 0.170
α00 + α10 0.130 0.130 0.130 0.260
α01 + α11 0.130 0.130 0.130 0.260
α02 + α12 0.130 0.130 0.130 0.260

Panel B: Estimates of β
OLS 0.435 0.438 0.443 0.377

(.003) (.003) (.003) (.003)
2SLS 0.574 0.515 0.453 0.532

(.013) (.011) (.010) (.012)
Our estimator 0.506 0.506 0.505 0.509

(.044) (.043) (.043) (.055)

Notes: This table reports Monte Carlo simulations that are structured identically to those in Table 1, but
modifies the DGP so that the outcome variable is binary. We specify that Y = 1(γ + βT ∗ > ε), where 1(.)
is the indicator function, γ = 0.25, β = 0.5, and ε ∼ uniform(0, 1). All other parts of the DGP and the
simulation are identical to that in Table 1.

74



Table A3: Monte Carlo Simulations - Varying Misclassification with Endogenous T ∗

(1) (2) (3) (4)

Panel A: Data generating process
α00 0.055 0.055 0.035 0.035
α01 0.070 0.070 0.070 0.070
α02 0.085 0.085 0.105 0.105
α0j + α1j ∀j 0.130 0.130 0.130 0.130
Error correlation (ρ) 0.250 0.500 0.250 0.500

Panel B: Estimates of β
OLS 0.965 1.052 0.974 1.062

(.002) (.002) (.002) (.002)
2SLS 1.032 1.032 0.907 0.907

(.010) (.010) (.008) (.008)
Our estimator 1.002 1.002 1.002 1.002

(.031) (.029) (.031) (.029)

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions
found in (11). Each simulation is based on 1,000 iterations, with a sample size of 100,000 observations. The
mis-measured variables T in columns (1) and (2) match column (2) of Table 1 and in columns (3) and (4)
match column (3) of Table 1. The values for the remaining parameters are discussed in Section 5. All four
columns specify that T ∗ is endogenous following Olsen (1980), with error correlation ρ; see footnote 35 for
a complete description. Panel B contains average estimates of β across iterations for the listed estimation
methods. The standard deviations of the estimates across iterations are shown in parentheses.
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Table A4: Monte Carlo Simulations - Comparing to Other Estimators

(1) (2) (3) (4) (5)

Panel A: Data generating process
α00 0.070 0.055 0.055 0.055 0.055
α01 0.070 0.070 0.070 0.070 0.070
α02 0.070 0.085 0.085 0.085 0.085
α00 + α10 0.130 0.130 0.130 0.130 0.130
α01 + α11 0.130 0.130 0.130 0.130 0.130
α02 + α12 0.130 0.130 0.130 0.130 0.130
Homoskedastic errors? Yes Yes No Yes No
Symmetric errors? Yes Yes Yes No No

Panel B: Estimates of β
Our estimator 1.003 1.003 1.003 1.002 1.000

(.033) (.033) (.051) (.042) (.034)
Frazis and Lowenstein (2003) 1.000 0.951 0.951 0.951 0.951

(.005) (.005) (.007) (.006) (.004)
Mahajan (2006) 1.000 0.951 0.951 0.951 0.951

(.005) (.005) (.007) (.006) (.005)
Lewbel (2007) 0.999 0.896 0.897 0.896 0.899

(.038) (.034) (.049) (.041) (.035)
Chen, Hu, and Lewbel (2008a) 1.000 1.000 1.150 1.000 0.964

(.002) (.002) (.004) (.003) (.002)
Chen, Hu, and Lewbel (2008b) 1.000 1.000 1.027 0.981 0.854

(.002) (.002) (.014) (.003) (.009)
DiTraglia and Garcia-Jimeno (2019) 1.001 1.001 1.150 1.000 0.965

(.009) (.008) (.016) (.013) (.011)

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found
in (11). Each simulation is based on 1,000 iterations, with a sample size of 100,000 observations. The mis-
measured variables T are constructed so that misclassification rate α0j and the sum of the misclassification
rates α0j +α1j for instrument value j match the values shown in the top panel. The values for the remaining
parameters are discussed in Section 5. See Appendix section A.7.2 for a complete description of the data
generating processes specified for each column. Panel B contains average estimates of β across iterations
for the listed estimation method. The standard deviation of the estimates across iterations are shown in
parentheses.
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Table A5: Monte Carlo Simulations - Varying Misclassification

(1) (2) (3) (4) (5) (6)

Panel A: Data generating process
α00 0.070 0.055 0.035 0.110 0.059 0.014
α01 0.070 0.070 0.070 0.140 0.078 0.039
α02 0.070 0.085 0.105 0.170 0.097 0.059
α00 + α10 0.130 0.130 0.130 0.260 0.156 0.173
α01 + α11 0.130 0.130 0.130 0.260 0.155 0.159
α02 + α12 0.130 0.130 0.130 0.260 0.156 0.156

Panel B: Estimates of β
OLS 0.870 0.877 0.886 0.750 0.853 0.842

(.002) (.002) (.002) (.003) (.002) (.003)
2SLS 1.150 1.032 0.907 1.065 1.030 1.004

(.011) (.009) (.008) (.012) (.009) (.008)
Our estimator 1.003 1.003 1.002 1.004 0.998 1.012

(.033) (.033) (.033) (.047) (.033) (.052)

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found
in (11). Each simulation is based on 1,000 iterations, with a sample size of 100,000 observations. The mis-
measured variables T are constructed so that misclassification rate α0j and the sum of the misclassification
rates α0j +α1j for instrument value j match the values shown in the top panel. The values for the remaining
parameters are discussed in Section 5. Panel B contains average estimates of β across iterations for the listed
estimation methods. The standard deviations of the estimates across iterations are shown in parentheses.
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Table A6: Monte Carlo Simulations - Varying α and β, N = 1, 000

α0j + α0j β=0.0 β=0.25 β=0.5 β=1.0 β=1.5 β=2.0

Panel A: Proportion GMM Converges
0.00 0.964 0.847 0.907 0.988 0.997 1.000
0.13a 0.970 0.844 0.885 0.940 0.969 0.978
0.13b 0.964 0.838 0.897 0.944 0.971 0.967
0.26a 0.963 0.825 0.863 0.916 0.925 0.930
0.26b 0.968 0.848 0.869 0.914 0.926 0.937
0.39a 0.960 0.827 0.833 0.865 0.899 0.914
0.39b 0.974 0.828 0.843 0.891 0.895 0.905

Panel B: Mean of β if Converges
0.00 0.003 0.679 0.883 1.187 1.586 2.064
0.13a -0.010 0.755 0.984 1.427 2.021 2.567
0.13b -0.001 0.896 1.000 1.496 2.098 2.559
0.26a 0.013 0.825 1.131 1.812 2.385 2.990
0.26b -0.020 0.917 1.135 1.732 2.412 2.941
0.39a -0.060 0.779 1.288 1.911 2.689 3.337
0.39b -0.020 0.886 1.128 1.915 2.666 3.385

Panel C: Mean of SE of β if Converges
0.00 6347 252.8 212.1 3.158 0.480 0.425
0.13a 1350 636.8 1346 15.04 15.06 11.71
0.13b 3011 3305 97.77 21.78 20.66 15.54
0.26a 3914 1017 412.7 232.7 66.74 46.41
0.26b 590.2 2499 1557 77.15 51.98 47.38
0.39a 2892 343.3 1362 183.3 207.7 87.83
0.39b 3655 5147 281.4 92.79 129.7 103.2

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found
in (11). Each simulation uses 1,000 iterations. The numbers within each of the three panels correspond to a
different simulation, varying the parameters β and α0j +α1j and keeping the sample size fixed at N = 1, 000.
Each α0j + α1j value has two specifications for α0j , with α1j then being set to equal the designated sum.
The α0j values for 0.13a are (0.055, 0.070, 0.085) and for 0.13b are (0.035, 0.070, 0.105), following columns
(2) and (3) of Table 2; the values for 0.26a and 0.26b multiply these values by 2, respectively, and the values
for 0.39a and 0.39b multiply these values by 3, respectively. The values for the remaining parameters are
discussed in Section 5. Panel A reports the proportion of times that the GMM estimator converges across
iterations. Panel B reports the average of β across the iterations where the estimator converges. Panel C
reports the average standard error of β across the iterations where the estimator converges.
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Table A7: Monte Carlo Simulations - Varying α and β, N = 10, 000

α0j + α0j β=0.0 β=0.25 β=0.5 β=1.0 β=1.5 β=2.0

Panel A: Proportion GMM Converges
0.00 0.963 0.985 1.000 1.000 1.000 1.000
0.13a 0.960 0.979 0.999 1.000 1.000 1.000
0.13b 0.965 0.973 1.000 1.000 1.000 1.000
0.26a 0.969 0.952 0.997 0.999 1.000 1.000
0.26b 0.971 0.956 0.992 0.999 0.999 1.000
0.39a 0.968 0.928 0.986 0.995 0.995 0.998
0.39b 0.975 0.937 0.982 0.994 0.996 0.995

Panel B: Mean of β if Converges
0.00 0.005 0.330 0.515 1.006 1.504 2.003
0.13a 0.048 0.385 0.539 1.017 1.517 2.018
0.13b -0.010 0.357 0.537 1.017 1.516 2.017
0.26a -0.001 0.414 0.566 1.042 1.571 2.059
0.26b -0.001 0.412 0.551 1.039 1.553 2.062
0.39a -0.001 0.432 0.653 1.130 1.647 2.217
0.39b -0.001 0.437 0.624 1.109 1.672 2.208

Panel C: Mean of SE of β if Converges
0.00 2962 20.06 0.082 0.066 0.065 0.065
0.13a 1170 33.50 0.300 0.113 0.137 0.168
0.13b 1045 14.46 0.24 0.113 0.138 0.168
0.26a 518.7 58.63 0.687 0.205 1.168 0.302
0.26b 649.6 48.01 0.244 0.186 0.264 0.315
0.39a 842.6 14.38 9.299 1.414 0.786 1.618
0.39b 329.6 13.57 3.114 0.763 1.730 0.985

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found
in (11). Each simulation uses 1,000 iterations. The numbers within each of the three panels correspond to a
different simulation, varying the parameters β and α0j+α1j and keeping the sample size fixed at N = 10, 000.
Each α0j + α1j value has two specifications for α0j , with α1j then being set to equal the designated sum.
The α0j values for 0.13a are (0.055, 0.070, 0.085) and for 0.13b are (0.035, 0.070, 0.105), following columns
(2) and (3) of Table 2; the values for 0.26a and 0.26b multiply these values by 2, respectively, and the values
for 0.39a and 0.39b multiply these values by 3, respectively. The values for the remaining parameters are
discussed in Section 5. Panel A reports the proportion of times that the GMM estimator converges across
iterations. Panel B reports the average of β across the iterations where the estimator converges. Panel C
reports the average standard error of β across the iterations where the estimator converges.
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Table A8: Monte Carlo Simulations - Varying α and β, N = 100, 000

α0j + α0j β=0.0 β=0.25 β=0.5 β=1.0 β=1.5 β=2.0

Panel A: Proportion GMM Converges
0.00 0.963 1.000 1.000 1.000 1.000 1.000
0.13a 0.951 1.000 1.000 1.000 1.000 1.000
0.13b 0.976 1.000 1.000 1.000 1.000 1.000
0.26a 0.959 1.000 1.000 1.000 1.000 1.000
0.26b 0.974 1.000 1.000 1.000 1.000 1.000
0.39a 0.953 1.000 1.000 0.999 1.000 1.000
0.39b 0.965 1.000 1.000 1.000 1.000 1.000

Panel B: Mean of β if Converges
0.00 0.007 0.254 0.503 1.002 1.502 2.002
0.13a 0.006 0.256 0.504 1.003 1.502 2.001
0.13b 0.003 0.256 0.504 1.002 1.502 2.001
0.26a 0.001 0.258 0.505 1.004 1.504 2.003
0.26b 0.020 0.258 0.505 1.005 1.504 2.004
0.39a 0.003 0.268 0.509 1.009 1.510 2.027
0.39b -0.001 0.265 0.509 1.008 1.511 2.016

Panel C: Mean of SE of β if Converges
0.00 255 0.022 0.020 0.020 0.020 0.020
0.13a 496 0.026 0.026 0.032 0.040 0.049
0.13b 337 0.026 0.026 0.032 0.040 0.050
0.26a 552 0.033 0.033 0.045 0.059 0.075
0.26b 479 0.033 0.033 0.045 0.060 0.076
0.39a 492 0.178 0.044 0.062 0.084 0.121
0.39b 209 0.050 0.044 0.061 0.085 0.110

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found
in (11). Each simulation uses 1,000 iterations. The numbers within each of the three panels correspond to a
different simulation, varying the parameters β and α0j+α1j and keeping the sample size fixed atN = 100, 000.
Each α0j + α1j value has two specifications for α0j , with α1j then being set to equal the designated sum.
The α0j values for 0.13a are (0.055, 0.070, 0.085) and for 0.13b are (0.035, 0.070, 0.105), following columns
(2) and (3) of Table 2; the values for 0.26a and 0.26b multiply these values by 2, respectively, and the values
for 0.39a and 0.39b multiply these values by 3, respectively. The values for the remaining parameters are
discussed in Section 5. Panel A reports the proportion of times that the GMM estimator converges across
iterations. Panel B reports the average of β across the iterations where the estimator converges. Panel C
reports the average standard error of β across the iterations where the estimator converges.
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Table A9: Further Empirical Results Based on Moment Inequalities

Outcome: Medicaid Private Uninsured
(1) (2) (3)

(A) Equality moments, bootstrapped [0.11, 0.20] [-0.08, 0.02] [-0.07, -0.01]
(B) Equality moments, analytic [0.12, 0.18] [-0.05, -0.01] [-0.04, -0.02]
(C) Rjk = 1, Rkj = 1 ∀j > k [0.13, 0.20] [-0.29, -0.02] [-0.07, -0.03]
(D) Rjk = .95, Rkj = .95 ∀j > k [0.11, 0.32] [-0.56, -0.02] [-0.08, -0.03]
(E) Rjk = 1, Rkj = .95 ∀j > k [0.12, 0.23] [-0.65, -0.02] [-0.07, -0.03]
(F) Rjk = 1, Rkj = .89 ∀j > k [0.11, 0.33] [-0.79, -0.02] [-0.07, -0.03]

Notes: This table reports estimates of β from equation (18). The controls include the number of people
and workers in the household and indicators for state of residence, calendar year, child age, and householder
characteristics (male, white, and type).
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