
Gr 107

Pr 0.025 
Ha 0 – 796

L(x,y,z) 1, 7.5, 1
Cw 0, 0.01, 0.1, 1, 50

𝑵𝒙 64 / 128 / 96
𝑵𝒚 480 / 480 / 720 
𝑵𝒛 64 / 64 / 96 Iso-surfaces of temperature field T
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ü Development and verification a new code combining TPT with a highly conservative scheme

ü Direct solution of electrical potential in domains with thin walls of finite electric conductivity

ü In agreement with experiments [4], an imposed magnetic field enhances heat transfer (peak of Nu at Ha about 200)

üMultiple flow states with hysteresis at Ha=400

Future work: Exploration of the effect of wall conductivity on the flow structure and convective heat transfer

Ø Second-order nearly fully finite difference scheme on an arbitrary non-uniform structured grid with collocated
grid arrangement [1,2]

Ø Time discretization is semi-implicit and based on the Adams-Bashforth/Backward-Differentiation method of the
second order

1. Tensor – Product – Thomas Solver (TPT) [3]
Ø Modification of the classical tensor-product technique
Ø Thomas algorithm in one direction
Ø Matrix multiplication in other two directions
Ø Using Intel MKL deeply optimized DGEMM in order to do matrix multiplication (15% faster)

2. 2D Cyclic reduction
Ø Fast Fourier Transform in one direction (requires uniform grid and conventional boundary condition

Efficiency of TPT
Ø Arbitrary non-uniform grids with efficient near-wall clustering
Ø Electric potential boundary condition on conducting walls is implemented directly instead of using outer

iterations
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