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» Second-order nearly fully finite difference scheme on an arbitrary non-uniform structured grid with collocated
grid arrangement [1,2]

» Time discretization is semi-implicit and based on the Adams-Bashforth/Backward-Differentiation method of the
second order

Tensor — Product — Thomas Solver (TPT) [3]
» Modification of the classical tensor-product technique
» Thomas algorithm in one direction
» Matrix multiplication in other two directions
» Using Intel MKL deeply optimized DGEMM in order to do matrix multiplication (15% faster)
2. 2D Cyclic reduction
» Fast Fourier Transform in one direction (requires uniform grid and conventional boundary condition
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Efficiency of TPT

» Arbitrary non-uniform grids with efficient near-wall clustering

» Electric potential boundary condition on conducting walls is implemented directly instead of using outer
iterations
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CONCLUSIONS & FUTURE WORK

v Development and verification a new code combining TPT with a highly conservative scheme

v" Direct solution of electrical potential in domains with thin walls of finite electric conductivity

v In agreement with experiments [4], an imposed magnetic field enhances heat transfer (peak of Nu at Ha about 200)
v Multiple flow states with hysteresis at Ha=400

Future work: Exploration of the effect of wall conductivity on the flow structure and convective heat transfer

GOVERNING EQUATIONS AND NONDIMENSIONAL PARAMETERS
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Control parameters Geometry and mesh

Gr 107 N, 64 /128 /96
Pr 0.025 N, 480 /480 /720
Ha 0-796 N, 64 /64 /96 Iso-surfaces of temperature field T

L(Xx,y,z) 1,7.5,1

0,0.01, 0.1, 1, 50
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