Numerical Methods for Highly **Oscillatory Problems in QC Quantum State Evolution** Simulated using Implicit Filon Quadrature

Spencer Lee Michigan State University

BACKGROUND: Quantum algorithms are realized by applying control functions. Quantum algorithms must be fast or else the system collapses into a classical state. Therefore our goal is to perform fast (classical) simulations of the quantum state of a system, governed by Schrödinger's equation:

$$\dot{\psi}(t) = -iH(t)\psi(t), \quad 0 \le t \le T, \psi(0) = \psi_0.$$

Approach

Filon quadrature makes the approximation

$$\int_{-1}^{1} f(t)e^{i\omega t}dt \approx \int_{-1}^{1} p(t)e^{i\omega t}dt,$$

where *p*(*t*) is the unique degree 2*m*+1 Hermite interpolation polynomial such that

$$p^{(l)}(\pm 1) = f^{(l)}(\pm 1), \quad l = 0, ..., m.$$

Highly effective for *f* non-oscillatory and $\omega >> 1$.
We assume ψ is highly oscillatory with frequency ω ,
so that

$$\int_{-1}^{1} \left(H(t)e^{-i\omega t}\psi(t) \right) e^{i\omega t} dt$$

is suitable for integration using Filon quadrature. This assumption is accurate if the control is small in magnitude relative to the entire Hamiltonian.

RESULTS

For the simple case of $\dot{\psi}(t) = i (\cos(t) + \omega) \psi(t)$ with ω =10, 4th-order Filon is much more accurate than RK4 using only 1/3 as many timesteps: Real Part

How We Use Filon Quadrature to Solve High Frequency ODEs, Design Controls and Gates for Quantum Computers

Simulation of Rabi oscillator, used to swap states, for a single qubit (d=2). 4th-order implicit Filon is significantly more accurate than 4th-order Runge-Kutta while using the same number of timesteps (every 10th timestep shown above).

Take a picture to download the full paper

Photograph Courtesy of Johannes Pollanen, Michigan State University

Pts/Wavelength