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1. Introduction 

As a child, you engaged your parents and friends talking about things of 

shared interest using words and phrases that came to mind, and all the 

while you learned language. We were privy to none of this. Yet somehow 

we have converged upon a similar-enough ‘English’ to be able to com-

municate here. Our experience allows us similar interpretations of novel 

utterances like “the ball mandoolz across the ground” or “the teacher 

spugged the boy the book”. You know that mandool is a verb of motion and 

have some idea of how mandooling works – its action semantics. You 

know that spugging involves transfer, that the teacher is the donor, the boy 

the recipient, and that the book is the transferred object. How is this possi-

ble, given that you have never heard these verbs before? Each word of the 

construction contributes individual meaning, and the verb meanings in 

these Verb-Argument Constructions (VACs) is usually at the core. But the 

larger configuration of words carries meaning as a whole too. The VAC as 

a category has inherited its schematic meaning from all of the examples 

you have heard. Mandool inherits its interpretation from the echoes of the 

verbs that occupy this VAC – words like come, walk, move, ..., scud, skitter 

and flit. Knowledge of language is based on these types of inference, and 

verbs are the cornerstone of the syntax-semantics interface.  

This chapter reviews psychological theory that relates to the learning of 

constructions as categories. It then analyses the frequency, form and func-

tion of a sample of 23 VACs in 100 million words of usage to show how 

language form, language meaning, and language usage come together to 

promote robust induction by means of statistical learning over limited sam-

ples. 
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2. Construction Grammar and usage 

Constructions are form-meaning mappings, conventionalized in the speech 

community, and entrenched as language knowledge in the learner’s mind. 

They are the symbolic units of language relating the defining properties of 

their morphological, lexical, and syntactic form with particular semantic, 

pragmatic, and discourse functions (Goldberg 1995, 2006). Verbs are cen-

tral in this: their semantic behavior is strongly intertwined with the syntag-

matic constraints governing their distributions. Construction Grammar ar-

gues that all grammatical phenomena can be understood as learned pairings 

of form (from morphemes, words, idioms, to partially lexically filled and 

fully general phrasal patterns) and their associated semantic or discourse 

functions: “the network of constructions captures our grammatical 

knowledge in toto, i.e. it’s constructions all the way down” (Goldberg 

2006: 18). Such beliefs, increasingly influential in the study of child lan-

guage acquisition, emphasize data-driven, emergent accounts of linguistic 

systematicities (e.g. Tomasello 2003, Clark and Kelly 2006). 

Frequency, learning, and language come together in usage-based ap-

proaches, which hold that we learn linguistic constructions while engaging 

in communication (Bybee 2010). The last 50 years of psycholinguistic re-

search provides the evidence of usage-based acquisition in their demonstra-

tions that language processing is exquisitely sensitive to usage frequency at 

all levels of language representation from phonology, through lexis and 

syntax, to sentence processing (Ellis 2002). That language users are sensi-

tive to the input frequencies of these patterns entails that they must have 

registered their occurrence in processing. These frequency effects are thus 

compelling evidence for usage-based models of language acquisition which 

emphasize the role of input. Language knowledge involves statistical 

knowledge, so humans learn more easily and process more fluently high 

frequency forms and ‘regular’ patterns which are exemplified by many 

types and which have few competitors (e.g. MacWhinney 2001). Psycho-

linguistic perspectives thus hold that language learning is the associative 

learning of representations that reflect the probabilities of occurrence of 

form-function mappings.  

If constructions as form-meaning/function mappings are the units of 

language, then language acquisition involves inducing these associations 

from experience of language usage. Constructionist accounts of language 

acquisition thus involve the distributional analysis of the language stream 

and the parallel analysis of contingent perceptuo-motor activity, with ab-
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stract constructions being learned as categories from the conspiracy of con-

crete exemplars of usage following statistical learning mechanisms
1
 relat-

ing input and learner cognition.  

3. Determinants of construction learning 

Psychological analyses of the learning of constructions as form-meaning 

pairs are informed by the literature on the associative learning of cue-

outcome contingencies where the usual determinants include: (1) input fre-

quency (type-token frequency, Zipfian distribution), (2) form (salience and 

perception), (3) meaning and function (prototypicality of meaning), and (4) 

interactions between these (contingency of form-function mapping) (Ellis 

and Cadierno 2009). We will briefly consider each in turn, along with stud-

ies demonstrating their applicability: 

3.1 Input frequency  

Construction frequency 

Frequency of exposure promotes learning and entrenchment (e.g. Anderson 

2000, Ebbinghaus 1885, Bartlett [1932] 1967). Learning, memory and per-

ception are all affected by frequency of usage: the more times we experi-

ence something, the stronger our memory for it, and the more fluently it is 

accessed. The more recently we have experienced something, the stronger 

our memory for it, and the more fluently it is accessed [hence your reading 

this sentence more fluently than the preceding one]. The more times we 

experience conjunctions of features, the more they become associated in 

our minds and the more these subsequently affect perception and categori-

zation; so a stimulus becomes associated to a context and we become more 

likely to perceive it in that context.  

Frequency of exposure also underpins statistical learning of categories 

(Mintz 2002, Hunt and Aslin 2010, Lakoff 1987, Taylor 1998, Harnad 

1987). Human categorization ability provides the most persuasive testament 

to our incessant unconscious figuring or ‘tallying’. We know that natural 

                                                 
1.  Cf. Christiansen and Chater (2001), Jurafsky and Martin (2000), Bybee and 

Hopper (2001), Bod, Hay, and Jannedy (2003), Ellis (2002), Perruchet and 

Pacton (2006). 
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categories are fuzzy rather than monothetic. Wittgenstein’s (1953) consid-

eration of the concept GAME showed that no set of features that we can list 

covers all the things that we call games, ranging as the exemplars variously 

do from soccer, through chess, bridge, and poker, to solitaire. Instead, what 

organizes these exemplars into the GAME category is a set of family resem-

blances among these members – son may be like mother, and mother like 

sister, but in a very different way. And we learn about these families, like 

our own, from experience. Exemplars are similar if they have many fea-

tures in common and few distinctive attributes (features belonging to one 

but not the other); the more similar are two objects on these quantitative 

grounds, the faster are people at judging them to be similar (Tversky 1977). 

The greater the token frequency of an exemplar, the more it contributes to 

defining the category, and the greater the likelihood it will be considered 

the prototype. The operationalization of this criterion predicts the speed of 

human categorization performance – people more quickly classify as dogs 

Labradors (or other typically sized, typically colored, typically tailed, typi-

cally featured specimens) than they do dogs with less common features or 

feature combinations like Shar Peis or Neapolitan Mastiffs. Prototypes are 

judged faster and more accurately, even if they themselves have never been 

seen before – someone who has never seen a Labrador, yet who has experi-

enced the rest of the run of the canine mill, will still be fast and accurate in 

judging it to be a dog (Posner and Keele 1970). Such effects make it very 

clear that although people do not go around consciously counting features, 

they nevertheless have very accurate knowledge of the underlying frequen-

cy distributions and their central tendencies.  

Type and token frequency 

Token frequency counts how often a particular form appears in the input. 

Type frequency, on the other hand, refers to the number of distinct lexical 

items that can be substituted in a given slot in a construction, whether it is a 

word-level construction for inflection or a syntactic construction specifying 

the relation among words. For example, the “regular” English past tense -ed 

has a very high type frequency because it applies to thousands of different 

types of verbs, whereas the vowel change exemplified in swam and rang 

has much lower type frequency. The productivity of phonological, morpho-

logical, and syntactic patterns is a function of type rather than token fre-

quency (Bybee and Hopper 2001). This is because: (a) the more lexical 

items that are heard in a certain position in a construction, the less likely it 
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is that the construction is associated with a particular lexical item and the 

more likely it is that a general category is formed over the items that occur 

in that position; (b) the more items the category must cover, the more gen-

eral are its criterial features and the more likely it is to extend to new items; 

and (c) high type frequency ensures that a construction is used frequently, 

thus strengthening its representational schema and making it more accessi-

ble for further use with new items (Bybee and Thompson 2000). In con-

trast, high token frequency promotes the entrenchment or conservation of 

irregular forms and idioms; the irregular forms only survive because they 

are high frequency. There is related evidence for type-token matters in sta-

tistical learning research (Gómez 2002, Onnis et al. 2004). These findings 

support language’s place at the center of cognitive research into human cat-

egorization, which also emphasizes the importance of type frequency in 

classification. 

Zipfian distribution 

In natural language, Zipf’s law (Zipf 1935) describes how the highest fre-

quency words account for the most linguistic tokens. Zipf’s law states that 

the frequency of words decreases as a power function of their rank in the 

frequency table. If pf is the proportion of words whose frequency in a given 

language sample is f, then pf ~ f 
-

, with  ≈ 1. Zipf showed this scaling law 

holds across a wide variety of language samples. Subsequent research pro-

vides support for this law as a linguistic universal. Many language events 

across scales of analysis follow his power law: phoneme and letter strings 

(Kello and Beltz 2009), words (Evert 2005), grammatical constructs (Ninio 

2006, O’Donnell and Ellis 2010), formulaic phrases (O’Donnell and Ellis 

2009) etc. Scale-free laws also pervade language structures, such as scale-

free networks in collocation (Solé et al. 2005, Bannard and Lieven 2009), 

in morphosyntactic productivity (Baayen 2008), in grammatical dependen-

cies (Ferrer i Cancho and Solé 2001, 2003, Ferrer i Cancho, Solé, and Köh-

ler 2004), and in networks of speakers, and language dynamics such as in 

speech perception and production, in language processing, in language ac-

quisition, and in language change (Ninio 2006, Ellis 2008a). Zipfian cover-

ing, where, as concepts need to be refined for clear communication, they 

are split, then split again hierarchically (e.g. animal, canine, dog, retriever, 

Labrador ...), determines basic categorization, the structure of semantic 

classes, and the language form-semantic structure interface (Steyvers and 

Tenenbaum 2005, Manin 2008). Scale-free laws pervade both language 
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structure and usage. And not just language structure and use. Power law 

behavior like this has since been shown to apply to a wide variety of struc-

tures, networks, and dynamic processes in physical, biological, technologi-

cal, social, cognitive, and psychological systems of various kinds (e.g. 

magnitudes of earthquakes, sizes of meteor craters, populations of cities, 

citations of scientific papers, number of hits received by web sites, percep-

tual psychophysics, memory, categorization, etc.) (Newman 2005, Kello et 

al. 2010). It has become a hallmark of Complex Systems theory. Zipfian 

scale-free laws are universal. Complexity theorists suspect them to be fun-

damental, and are beginning to investigate how they might underlie lan-

guage processing, learnability, acquisition, usage and change (cf. Ellis and 

Larsen-Freeman 2009b, Beckner et al. 2009, Ferrer i Cancho and Solé 

2001, 2003, Ferrer i Cancho, Solé, and Köhler 2004, Solé et al. 2005). Var-

ious usage-based/functionalist/cognitive linguists (Goldberg 2006, Gold-

berg, Casenhiser, and Sethuraman 2004, Lieven and Tomasello 2008, 

Bybee 2008, e.g. Boyd and Goldberg 2009, Ellis 2008c, Ninio 1999, 2006, 

Bybee 2010) argue that it is the coming together of these distributions 

across linguistic form and linguistic function that makes language robustly 

learnable despite learners’ idiosyncratic experience and the ‘poverty of the 

stimulus’. 

In first language acquisition, Goldberg, Casenhiser and Sethuraman 

(2004) demonstrated that there is a strong tendency for VACs to be occu-

pied by one single verb with very high frequency in comparison to other 

verbs used, a profile which closely mirrors that of the mothers’ speech to 

these children. They argue that this promotes language acquisition: In the 

early stages of learning categories from exemplars, acquisition is optimized 

by the introduction of an initial, low-variance sample centered upon proto-

typical exemplars. This low variance sample allows learners to get a fix on 

what will account for most of the category members, with the bounds of the 

category being defined later by experience of the full breadth of exemplar 

types. 

In naturalistic second language (L2) acquisition, Ellis and Ferreira-

Junior (2009a) investigated type/token distributions in the items comprising 

the linguistic form of English VACs (VL verb locative, VOL verb object 

locative, VOO ditransitive) and showed that VAC verb type/token distribu-

tion in the input is Zipfian and that learners first acquire the most frequent, 

prototypical and generic exemplar (e.g. put in VOL, give in VOO, etc.).  
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3.2 Form (salience and perception) 

The general perceived strength of stimuli is commonly referred to as their 

salience. Low salience cues tend to be less readily learned. Ellis (2006a, 

2006b) summarized the associative learning research demonstrating that 

selective attention, salience, expectation, and surprise are key elements in 

the analysis of all learning, animal and human alike. As the Rescorla-

Wagner (1972) model encapsulates, the amount of learning induced from 

an experience of a cue-outcome association depends crucially upon the sa-

lience of the cue and the importance of the outcome. 

Many grammatical meaning-form relationships, particularly those that 

are notoriously difficult for second language learners like grammatical par-

ticles and inflections such as the third person singular -s of English, are of 

low salience in the language stream. For example, some forms are more 

salient: ‘today’ is a stronger psychophysical form in the input than is the 

morpheme ‘-s’ marking 3rd person singular present tense, thus while both 

provide cues to present time, today is much more likely to be perceived, 

and -s can thus become overshadowed and blocked, making it difficult for 

second language learners of English to acquire (Ellis 2006b, 2008a, Gold-

schneider and DeKeyser 2001). As for the cue, so for the interpretation – 

the meaning of ‘today’ is more salient, tangible, and less abstract than that 

of ‘-s’. 

3.3 Function (prototypicality of meaning) 

Categories have graded structure, with some members being better exem-

plars than others. In the prototype theory of concepts (Rosch and Mervis 

1975, Rosch et al. 1976), the prototype as an idealized central description is 

the best example of the category, appropriately summarizing the most rep-

resentative attributes of a category. As the typical instance of a category, it 

serves as the benchmark against which surrounding, less representative in-

stances are classified.  

Ellis and Ferreira-Junior (2009a) show that the verbs that L2 learners 

first used in particular VACs are prototypical and generic in function (go 

for VL, put for VOL, and give for VOO). The same has been shown for 

child language acquisition, where a small group of semantically general 

verbs, often referred to as light verbs (e.g. go, do, make, come) are learned 

early (Clark 1978, Ninio 1999, Pinker 1989). Ninio (1999) argues that, be-

cause most of their semantics consist of some schematic notion of transitiv-
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ity with the addition of a minimum specific element, they are semantically 

suitable, salient, and frequent; hence, learners start transitive word combi-

nations with these generic verbs. Thereafter, as Clark (1978: 53) describes, 

“many uses of these verbs are replaced, as children get older, by more spe-

cific terms. […] General purpose verbs, of course, continue to be used but 

become proportionately less frequent as children acquire more words for 

specific categories of actions”.  

3.4 Interactions between form and function (contingency of form-

function mapping) 

Psychological research into associative learning has long recognized that 

while frequency of form is important, so too is contingency of mapping 

(Shanks 1995). Consider how, in the learning of the category of birds, 

while eyes and wings are equally frequently experienced features in the 

exemplars, it is wings which are distinctive in differentiating birds from 

other animals. Wings are important features to learning the category of 

birds because they are reliably associated with class membership, eyes are 

neither. Raw frequency of occurrence is less important than the contingen-

cy between cue and interpretation. Distinctiveness or reliability of form-

function mapping is a driving force of all associative learning, to the degree 

that the field of its study has been known as ‘contingency learning’ since 

Rescorla (1968) showed that for classical conditioning, if one removed the 

contingency between the conditioned stimulus (CS) and the unconditioned 

(US), preserving the temporal pairing between CS and US but adding addi-

tional trials where the US appeared on its own, then animals did not devel-

op a conditioned response to the CS. This result was a milestone in the de-

velopment of learning theory because it implied that it was contingency, 

not temporal pairing, that generated conditioned responding. Contingency, 

and its associated aspects of predictive value, information gain, and statisti-

cal association, have been at the core of learning theory ever since. It is 

central in psycholinguistic theories of language acquisition too (Ellis 

2008b, MacWhinney 1987a, Ellis 2006a, Ellis 2006b, Gries and Wulff 

2005), with the most developed account for L2 acquisition being that of the 

Competition model (MacWhinney 1987b, 1997, 2001).  

Ellis and Ferreira-Junior (2009b) use a variety of metrics to show that 

VAC acquisition is determined by their contingency of form-function map-

ping. They show that the one-way dependency statistic ΔP (Allan 1980) 

that is commonly used in the associative learning literature (Shanks 1995), 
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as well as collostructional analysis measures current in corpus linguistics 

(Gries and Stefanowitsch 2004, Stefanowitsch and Gries 2003), predict ef-

fects of form-function contingency upon L2 VAC acquisition. Other re-

searchers use conditional probabilities to investigate contingency effects in 

VAC acquisition. This is still an active area of inquiry, and more research is 

required before we know which statistical measures of form-function con-

tingency are more predictive of acquisition and processing. 

Ellis and Larsen-Freeman (2009a) provided computational (Emergent 

connectionist) serial-recurrent network simulations of these various factors 

as they play out in the emergence of VACs (VL, VOL, VOO] as general-

ized linguistic schemas from their frequency distributions in the input. This 

fundamental claim that Zipfian distributional properties of language usage 

help to make language learnable has thus begun to be explored for these 

three VACs, at least. But three VACs is a pitifully small sample of English 

grammar. It remains an important research agenda to explore its generality 

across the wide range of the verb constructicon. 

The primary motivation of construction grammar is that we must bring 

together linguistic form, learner cognition, and usage. An important conse-

quence is that constructions cannot be defined purely on the basis of lin-

guistic form, or semantics, or frequency of usage alone. All three factors 

are necessary in their operationalization and measurement. Psychology the-

ory relating to the statistical learning of categories suggests that construc-

tions are robustly learnable when they are (1) Zipfian in their type-token 

distributions in usage, (2) selective in their verb form occupancy, and (3) 

coherent in their semantics. Our research here aims to assess this for a larg-

er sample of the verbal grammar of English, analyzing the way VACs map 

form and meaning, and providing an inventory of the verbs that exemplify 

these constructions and their frequency.  

4. Method 

Our research aims to empirically determine the semantic associations of 

particular linguistic forms, therefore it is important that such forms are ini-

tially defined by bottom-up means that are semantics-free. There is no one 

in corpus linguistics who ‘trusts the text’ more than Sinclair (2004) in his 

operationalizations of linguistic constructions on the basis of repeated pat-

terns of words in collocation, colligation, and phrases. Therefore we chose 

the definitions of VACs presented in the Verb Grammar Patterns (Hunston 

and Francis 1996) that arose out of the COBUILD project (Sinclair 1987) 
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for our first analyses. There are over 700 patterns of varying complexity in 

this volume. In subsequent work we hope to analyze them all in the same 

ways. Here we focus on a convenience sample of 23 constructions for our 

initial explorations. Most of these follow the verb – preposition – noun 

phrase structure, such as V into N, V after N, V as N (Goldberg 2006), but 

we also include other classic examples such as the ditransitive, and the way 

construction (Jackendoff 1997).  

Step 1 Construction inventory: COBUILD verb patterns 

The form-based patterns described in the COBUILD Verb Patterns volume 

(Francis, Hunston, and Manning 1996) take the form of word class and lex-

is combinations, such as the V across N pattern: 

 

The verb is followed by a prepositional phrase which consists of 

across and a noun group.  

This pattern has one structure: 

* Verb with Adjunct. 

 I cut across the field. 

Step 2 Corpus: BNC XML parsed corpora 

To get a representative sample of usage, the verb type-token distribution of 

these VACs was determined in the 100 million word British National Cor-

pus BNC (2007) parsed using the XML version of the BNC using the 

RASP parser (Briscoe, Carroll, and Watson 2006). For each VAC, we 

translate the formal specifications from the COBUILD patterns into queries 

to retrieve instances of the pattern from the parsed corpus.  

Step 3  Searching construction patterns 

Using a combination of part-of-speech, lemma and dependency constraints 

we construct queries for each of the construction patterns. For example, the 

V across N pattern is identified by looking for sentences that have a verb 

form within 3 words of an instance of across as a preposition, where there 

is an indirect object relation holding between across and the verb and the 

verb does not have any other object or complement relations to following 
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words in the sentence. The types of sentence captured are diverse, of 

course, as can be seen from these two example results:  

(1) She walked across the yard to check Shine On. 

(2) ‘The intellectual and rational conception of life has given way to a more 

creative interpretation’, wrote the British Surrealist Eileen Agar in 1931, 

‘and artistic life is under the sway of womb-magic’; and Agar give 

expression to this ‘womb-magic’ in the foetal and embryonic forms which 

play a central part in paintings such as ‘Family Trio’ or ‘The 

Autobiography of an Embryo’ where fluid shapes float across the picture 

plane to be captured in a net of geometric planes. 

Table 1 shows our 23 constructions, the number of verb types that occupy 

them, the total number of tokens found, and the type-token ratio. 

 

Table 1. Type-Token data for 23 VACs drawn from COBUILD Verb Patterns 

retrieved from the BNC 

Construction Types Tokens TTR Lead verb type 

V about N 365 3519 10.37 talk 

V across N 799 4889 16.34 come 

V after N 1168 7528 15.52 look 

V among pl-N 417 1228 33.96 find 

V around N 761 3801 20.02 look 

V as adj 235 1012 23.22 know 

V as N 1702 34383 4.95 know 

V at N 1302 9700 13.42 look 

V between pl-N 669 3572 18.73 distinguish 

V for N 2779 79894 3.48 look 

V in N 2671 37766 7.07 find 

V into N 1873 46488 4.03 go 

V like N 548 1972 27.79 look 

V N N  663 9183 7.22 give 

V off N 299 1032 28.97 take 

V of N 1222 25155 4.86 think 

V over N 1312 9269 14.15 go 

V through N 842 4936 17.06 go 
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V to N 707 7823 9.04 go 

V towards N 190 732 25.96 move 

V under N 1243 8514 14.6 come 

V way prep 365 2896 12.6 make 

V with N 1942 24932 7.79 deal 

 

Full details of the search methods, example sentences, and our methods for 

estimating precision and recall of the searches can be seen in Römer, 

O’Donnell, and Ellis (2013). Mean precision for the 23 constructions was 

0.78, mean recall 0.53. 

Step 4 A frequency ranked type-token VAC profile 

The sentences extracted using this procedure outlined for each of the 23 

construction patterns produced verb type distributions like the following 

one for the V across N VAC pattern: 

 
come 483     

walk 203     

cut 199 ...    

run 175 veer 4   

...  slice 4 ...  

  ...  navigate 1 

    scythe 1 

    scroll 1 

 

These distributions appear to be Zipfian, exhibiting the characteristic long 

right tail in a plot of rank against frequency. We generated logarithmic 

plots and linear regression to examine the extent of this trend using loga-

rithmic binning of frequency against log cumulative frequency. Figure 1 

shows such a plot for verb type frequency of the V across N construction, 

Figure 2 shows the same type of plot for verb type frequency of the ditran-

sitive V N N construction. Both distributions produce a good fit of Zipfian 

type-token frequency with R
2
 > 0.97 and slope (γ) around 1. Inspection of 

the construction verb types, from most frequent down, also demonstrates 

that the lead member is prototypical of the construction and generic in its 

action semantics. You may notice that some of these items, such as ‘come 

across N’, are phrasal verbs and have metaphorically extended their mean-
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ing (e.g. “I came across an interesting book”) while others like walk and 

run are more literal. We allowed our searches to capture this mixed bag 

because our goal was to analyse just what meanings were associated with 

the verb types that appeared in VACs that were simply operationalised at 

this first stage on the basis of their linguistic form. 

  

Figure 1. Verb type distribution for 

V across N 

Figure 2. Verb type distribution for 

V N N 

 

Since Zipf’s law applies across language, the Zipfian nature of these distri-

butions is potentially trivial. But they are more interesting if the company 

of verb forms occupying a construction is selective, i.e. if the frequencies of 

the particular VAC verb members cannot be predicted from their frequen-

cies in language as a whole. We measure the degree to which VACs are 

selective like this using a chi-square goodness-of-fit test and the statistic ‘1- 

τ’ where Kendall’s tau measures the correlation between the rank verb fre-

quencies in the construction and in language as a whole. Higher scores on 

both of these metrics indicate greater VAC selectivity. Another useful 

measure is Shannon entropy for the distribution. The lower the entropy, the 

more coherent the VAC verb family. Scores on all these metrics are given 

for all VACs later in Table 3. 
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Step 5 Determining the contingency between verbs and VACs 

Some verbs are closely tied to a particular construction (for example, give 

is highly indicative of the ditransitive construction, whereas leave, although 

it can form a ditransitive, is more often associated with other constructions 

such as the simple transitive or intransitive). The more reliable the contin-

gency between a cue and an outcome, the more readily an association be-

tween them can be learned (Shanks 1995), so constructions with more 

faithful verb members should be more readily acquired. The measures of 

contingency adopted here are (1) faithfulness (also known as “reliance”, 

Schmid and Küchenhoff 2013) – the proportion of tokens of total verb us-

age that appear in this particular construction (e.g. the faithfulness of give 

to the ditransitive is approximately 0.40; that of leave is 0.01), and (2) di-

rectional mutual information (MI Word → Construction: give 16.26, leave 

11.73 and MI Construction → Word: give 12.61, leave 9.11), an infor-

mation science statistic that has been shown to predict language processing 

fluency (e.g. Ellis, Simpson-Vlach, and Maynard 2008, Jurafsky 2003). 

Table 2 lists these contingency measures for the verbs occupying the V 

across N VAC pattern.  

 

Table 2. Top 20 verbs found in the V across N construction pattern in the BNC 

Verb Constr. 

Freq.  

Corpus 

Freq.  

Faith.  MI  

Word → 

Construction  

MI  

Construction 

→ Word  

come 474 122107 0.0039 15.369 10.726 

walk 203 17820 0.0114 16.922 15.056 

cut 197 16200 0.0122 17.016 15.288 

run 175 36163 0.0048 15.687 12.800 

spread 146 5503 0.0265 18.142 17.971 

move 114 34774 0.0033 15.125 12.295 

look 102 93727 0.0011 13.534 9.273 

go 93 175298 0.0005 12.498 7.333 

lie 80 18468 0.0043 15.527 13.610 

lean 75 4320 0.0174 17.530 17.708 

stretch 62 4307 0.0144 17.260 17.442 

fall 57 24656 0.0023 14.621 12.287 

get 52 146096 0.0004 11.922 7.020 

pass 42 18592 0.0023 14.588 12.661 

reach 40 21645 0.0018 14.298 12.152 

travel 39 8176 0.0048 15.666 14.924 
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fly 38 8250 0.0046 15.616 14.861 

stride 38 1022 0.0372 18.629 20.887 

scatter 35 1499 0.0233 17.957 19.663 

sweep 34 2883 0.0118 16.972 17.734 

Step 6  Identifying the meaning of verb types occupying the constructions 

Our semantic analyses use WordNet, a distribution-free semantic database 

based upon psycholinguistic theory which has been in development since 

1985 (Miller 2009). WordNet places words into a hierarchical network. At 

the top level, the hierarchy of verbs is organized into 559 distinct root syn-

onym sets (‘synsets’ such as move1 expressing translational movement, 

move2 movement without displacement, etc.) which then split into over 

13,700 verb synsets. Verbs are linked in the hierarchy according to rela-

tions such as hypernym (verb Y is a hypernym of the verb X) if the activity 

X is a [kind of] Y (to perceive is an hypernym of to listen), and hyponym 

[verb Y is a hyponym of the verb X if the activity Y is doing X in some 

manner (to lisp is a hyponym of to talk)]. Various algorithms to determine 

the semantic similarity between WordNet synsets have been developed 

which consider the distance between the conceptual categories of words, as 

well as considering the hierarchical structure of the WordNet (Pedersen, 

Patwardhan, and Michelizzi 2004).  

Polysemy is a significant issue of working with lexical resources such as 

WordNet, particularly when analyzing verb semantics. For example, in 

WordNet the lemma forms move, run and give used as verbs are found in 

16, 41 and 44 different synsets respectively. To address this we have ap-

plied word sense disambiguation tools specifically designed to work with 

WordNet (Pedersen and Kolhatkar 2009) to the sentences retrieved at Step 

3.  

The values on the metrics we have described so far are illustrated for the 

23 VACs in Table 3. It can be seen that for all of the VACs, the type-token 

distribution is Zipfian (mean R
2
 = 0.98) and that there is contingency be-

tween verbs and VACs (mean MIword-construction = 14.16) – particular verbs 

select particular constructions, and vice versa. 
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Table 3. Values for our 23 Verb Argument Constructions on metrics of Zipfian 

distribution, verb form selectivity, and semantic coherence 

VAC Pattern R
2
 γ Entropy χ

2
 1-τ Mean 

MIw-c 

Mean 

ΔPc-w 

Type 

entropy 
per root 

synset 

Token 

entropy 
per root 

synset 

Proportion 

of tokens 
covered by 

top 3 

synsets 

lch res 

V about N 0.98 -0.80 3.79 29919 0.74 15.55 0.011 3.17 2.42 0.45 0.162 0.271 

V across N 0.99 -1.08 5.30 23324 0.77 15.49 0.003 2.75 2.08 0.25 0.194 0.353 

V after N 0.99 -1.04 5.04 48065 0.69 12.87 0.002 3.33 2.12 0.31 0.103 0.184 

V among pl-N 0.99 -1.43 5.36 9196 0.77 17.51 0.009 2.93 2.79 0.11 0.096 0.174 

V around N 0.97 -1.17 5.51 40241 0.77 15.96 0.004 2.80 2.43 0.19 0.155 0.284 

V as adj 0.96 -0.98 4.05 8993 0.76 17.88 0.020 3.20 2.48 0.34 0.078 0.141 

V as N 0.99 -0.80 4.84 184085 0.87 10.36 0.003 3.55 2.56 0.25 0.079 0.146 

V at N 0.97 -1.02 4.94 66633 0.79 12.51 0.003 3.23 1.72 0.36 0.099 0.185 

V between pl-N 0.98 -1.08 5.17 47503 0.80 15.18 0.005 3.11 2.61 0.21 0.078 0.149 

V for N 0.97 -0.79 5.58 212342 0.73 9.54 0.002 3.38 2.70 0.16 0.117 0.198 

V in N 0.96 -0.96 6.22 61215 0.72 10.48 0.002 3.56 2.90 0.10 0.079 0.138 
V into N 0.98 -0.82 5.22 82396 0.71 11.44 0.003 3.21 2.39 0.26 0.168 0.289 

V like N 0.98 -1.08 4.80 12141 0.66 15.84 0.009 2.99 1.92 0.34 0.121 0.216 

V N N  0.99 -0.84 3.79 51652 0.66 11.52 0.004 3.21 2.38 0.41 0.139 0.236 

V off N 0.98 -1.29 4.89 10101 0.60 17.84 0.011 2.64 2.46 0.21 0.198 0.358 

V of N 0.97 -0.76 4.26 319284 0.88 11.15 0.003 3.31 2.56 0.33 0.11 0.189 

V over N 0.98 -1.08 5.95 77407 0.87 13.72 0.002 2.87 2.33 0.17 0.237 0.404 

V through N 0.99 -1.11 5.37 29525 0.83 14.84 0.003 3.05 2.10 0.26 0.147 0.266 

V to N 0.95 -0.92 5.02 25729 0.72 13.50 0.003 2.88 2.59 0.19 0.189 0.325 

V towards N 0.98 -1.16 4.36 15127 0.78 19.59 0.017 2.68 2.35 0.31 0.149 0.274 

V under N 0.97 -1.10 5.74 19244 0.70 13.13 0.002 3.07 2.54 0.16 0.14 0.248 

V way prep 0.99 -0.83 3.61 29827 0.81 17.26 0.013 3.27 2.46 0.39 0.105 0.194 
V with N 0.98 -0.96 5.59 192521 0.81 12.56 0.003 3.16 2.50 0.18 0.136 0.231 

Mean 0.98 -1.00 4.97 69412 0.76 14.16 0.006 3.10 2.41 0.26 0.134 0.237 

Step 7 Generating distributionally-matched, control ersatz constructions 

(CECs) 

Because so much of language distribution is Zipfian, for each of the 23 

VACs we analyze, we generate a distributionally-yoked control (a ‘control 

ersatz construction’ [CEC]), which is matched for type-token distribution 

but otherwise randomly selected to be grammatically and semantically un-

informed. We use the following method. For each type in a distribution de-

rived from a VAC pattern (e.g. walk in V across N occurs 203 times), ascer-

tain its corpus frequency (walk occurs 17820 times in the BNC) and ran-

domly select a replacement type from the list of all verb types in the corpus 

found within the same frequency band (e.g. from learn, increase, explain, 

watch, stay, etc. which occur with similar frequencies to walk in the BNC). 

This results in a matching number of types that reflect the same general 

frequency profile as those from the VAC. Then, using this list of replace-

ment types, sample the same number of tokens (along with their sentence 

contexts) as in the VAC distribution (e.g. 4889 for V across N) following 

the probability distribution of the replacement types in the whole corpus 

(e.g. walk, with a corpus frequency of 17820, will be sampled roughly 

twice as often as extend, which occurs 9290 times). The resulting distribu-

tion has an identical number of types and tokens to its matching VAC, al-

though, if the VAC does attract particular verbs, the lead members of the 
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CEC distribution will have a token frequency somewhat lower than those in 

the VAC. We then assess, using paired-sample tests, the degree to which 

VACs are more coherent than expected by chance in terms of the associa-

tion of their grammatical form and semantics. We show such comparisons 

for the VACs and their yoked CECs in Table 4. 

Step 8 Evaluating semantic cohesion in the VAC distributions 

The VAC type-token list shows that the tokens list captures the most gen-

eral and prototypical senses (come, walk, move etc. for V across N and 

give, make, tell, for V N N), while the list ordered by faithfulness highlights 

some quite construction specific (and low frequency) items, such as scud, 

flit and flicker for V across N. Using the structure of WordNet, where each 

synset can be traced back to a root or top-level synset, we compared the 

semantic cohesion of the top 20 verbs, using their disambiguated WordNet 

senses, from a given VAC to its matching CEC. For example, in V across 

N, the top level hypernym synset travel.v.01 accounts for 15% of tokens, 

whereas the most frequent root synset for the matching CEC, pro-

nounce.v.1, accounts for just 4% of the tokens. The VAC has a more com-

pact semantic distribution in that the 3 top-level synsets account for 25% of 

the tokens compared to just 11% for the CEC. 

We use various methods of evaluating the differences between the se-

mantic sense distributions for each VAC-CEC pair. First, we measure the 

amount of variation in the distribution using Shannon entropy according to 

(1) number of sense types per root (V across N VAC: 2.75 CEC: 3.37) and 

(2) the token frequency per root (V across N VAC: 2.08 CEC: 3.08), the 

lower the entropy the more coherent the VAC verb semantics. Second, we 

assess the coverage of the top three root synsets in the VAC and its corre-

sponding CEC. Third, we quantify the semantic coherence of the disambig-

uated senses of the top 20 verb forms in the VAC and CEC distributions 

using two measures of semantic similarity from Pedersen, Patwardhan and 

Michelizzi’s (2004) Perl WordNet::Similarity package, lch based on the 

path length between concepts in WordNet Synsets and res that additionally 

incorporates a measure called ‘information content’ related to concept spec-

ificity. For instance, using the res similarity measure the top 20 verbs in V 

across n VAC distribution have a mean similarity score of 0.35 compared 

to 0.17 for the matching CEC. 
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5. Results 

Our core research questions concern the degree to which VAC form, func-

tion, and usage promote robust learning. As we explained in the theoretical 

background, the psychology of learning as it relates to these psycholinguis-

tic matters suggests, in essence, that learnability will be optimized for con-

structions that are (1) Zipfian in their type-token distributions in usage, (2) 

selective in their verb form occupancy, (3) coherent in their semantics. We 

show comparisons for the VACs and their yoked CECs on these aspects in 

Table 4. 

 

Table 4. Comparisons of values for our 23 VACs and CECs on metrics of  

Zipfian distribution, verb form selectivity, and semantic coherence 

Criterion 

dimension 

Metric Mean 

VACs 

Mean 

CECs 

t value for 

paired t-test 

(d.f. 22) 

***=p<.001 

 

Zipfian 

distribution 

 

R
2
 

γ 

χ
2
 

1-τ 

Entropy 

 

 

0.98 

-1.00 

69412 

0.76 

4.97 

 

0.96 

-1.12 

698 

0.21 

5.54 

 

6.49 *** 

6.04 *** 

4.09 *** 

25.94 *** 

5.76 *** 

 

Verb form 

selectivity 

 

Faithfulness 

Mean MIw-c 

Mean MIc-w 

 

 

0.016 

14.16 

14.11 

 

0.002 

12.80 

10.86 

 

5.13 *** 

3.53 *** 

10.79 *** 

 

Semantic 

Coherence 

 

Type entropy per root 

synset 

Token entropy per root 

synset 

Proportion of tokens cov-

ered by top 3 synsets 

lch 

res 

 

 

3.1 

 

2.41 

 

0.26 

 

0.134 

0.237 

 

3.51 

 

3.08 

 

0.11 

 

0.094 

0.22 

 

5.01 *** 

 

5.51 *** 

 

5.23 *** 

 

4.30 *** 

4.45 *** 
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The results demonstrate: 

(1) Type-token usage distributions: All of the VACs are Zipfian in their 

type-token distributions in usage (VACs: Mean γ = -1.00, Mean R2 = 0.98). 

So too are their matched CECs (Mean γ = -1.12, Mean R2 = 0.96). Inspec-

tion of the graphs for each of the 23 VACs shows that the highest frequen-

cy items take the lion’s share of the distribution and, as in prior research, 

the lead member is prototypical of the construction and generic in its action 

semantics. 

(2) Family membership and Type occupancy: VACs are selective in 

their verb form family occupancy. There is much less entropy in the VACs 

than the CECs, with fewer forms of a less evenly-distributed nature. The 

distribution deviation (χ2) from verb frequency in the language as a whole 

is much greater in the VACs than the CECs. The lack of overall correlation 

(1-τ) between VAC verb frequency and overall verb frequency in the lan-

guage is much greater in the VACs. Verbs are more faithful to VACs than 

to CECs. Individual verbs select particular constructions (Mean MIw-c) 

and particular constructions select particular words (Mean MIc-w). Overall 

then, there is greater contingency between verb types and constructions. 

(3) Semantic coherence: VACS are coherent in their semantics with 

lower type and token sense entropy. The proportion of the total tokens cov-

ered by their three most frequent WordNet roots is much higher in the 

VACs. Finally, the VAC distributions are higher on the Pedersen semantic 

similarity measures (lch and res). 

6. Discussion 

Twenty-three constructions is a better sample of constructions than three, 

and the 16,141,058 tokens of verb usage analyzed here is a lot more repre-

sentative than the 14,474 analyzed in Ellis and Ferreira-Junior (2009a,b). 

Nevertheless, the conclusions from those earlier studies seem to generalize. 

These analyses show that constructions are (1) Zipfian in their type-token 

distributions in usage, (2) selective in their verb form occupancy, and (3) 

coherent in their semantics. 

 

Psychology theory relating to the statistical learning of categories suggests 

that these are the factors which make concepts robustly learnable. We sug-

gest, therefore, that these are the mechanisms which make linguistic con-

structions robustly learnable too, and that they are learned by similar 

means. Complex systems are characterized by their robustness to different 
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kinds of perturbations, by their scale-free properties, and by their structures 

emerging from the interactions of agents and components at many levels 

(Page 2009). We believe that the robustness of language emerges as a con-

sequence of its dynamics as a complex adaptive system (Beckner et al. 

2009). 
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