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chapter 2

Using COBUILD grammar patterns for a  
large-scale analysis of verb-argument 
constructions

Exploring corpus data and speaker knowledge

Ute Römer1, Matthew B. O’Donnell2 and Nick C. Ellis3

1Georgia State University / 2University of Pennsylvania / 3University of Michigan

This paper takes patterns identified in COBUILD Grammar Patterns 1: Verbs 
(Francis et al. 1996) as a starting point for the systematic, large-scale analysis of 
English verb-argument constructions (VACs), using both corpus/computational 
methods and psycholinguistic experiments. We work in an iterative cycle 
to define, search, review and refine patterns to retrieve VACs from a parsed 
version of the BNC and examine the distributions of the verb types and their 
token frequencies for each VAC. The findings allow us to make predictions 
regarding language users’ knowledge of verbs in constructions. We then test these 
predictions in psycholinguistic experiments, in which native and non-native 
speakers of English think of the first word that comes to mind to fill the V slot in 
a particular VAC frame. We compare the results from the experiments and the 
corpus analysis in terms of verb selection preferences. This research demonstrates 
the productive synergy of corpus linguistic and psycholinguistic methods and 
findings.

1.  �Introduction: Analysing verb-argument constructions (VACs) at scale

Corpus linguistics has shown that language is highly patterned. Written sentences 
and spoken utterances are made up to a large extent of fixed or semi-fixed ele-
ments variously referred to as clusters, phrases, phraseological items, chunks, lexi-
cal bundles, n-grams, collocational frameworks, formulaic sequences, multi-word 
units, or constructions. Construction Grammar suggests a fixed form-meaning 
correspondence and argues that combinations of words (constructions) carry 
meanings as a whole (Goldberg 2003, 2006). An oft-cited example of this is the 
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‘verb object object’ (V obj obj) or ditransitive construction, in which a verb form 
is followed by an indirect and a direct object, as in ‘we gave Susan a book for 
her birthday’. Part of our linguistic knowledge is the knowledge of what kinds of 
verbs may or may not occur in this construction. We know which lexical items 
the ditransitive construction tends to select. Also part of our linguistic knowl-
edge is the knowledge of a verb’s preferred complementation patterns or subcat-
egorisation frames. We know which constructions the verb GIVE tends to occur 
in. Even when we are faced with a novel utterance that contains a nonsense verb 
such as ‘they spugged her a present’, we are able to identify SPUG as a verb that 
expresses some kind of transfer. SPUG here inherits its interpretation of meaning 
from echoes of the verbs we usually encounter in this construction: GIVE, MAKE, 
TELL, TAKE, and SEND. We assume that, because it occurs in the ditransitive, 
SPUG is semantically related to these verbs.

Small sets of patterns including ‘V obj obj’ have been studied in Construction 
Grammar and in first and second language acquisition (e.g. Ellis & Ferreira-Junior 
2009; Goldberg 2006; Goldberg, Casenhiser & Sethuraman 2004). These studies 
concluded that, based on samples of native speaker and learner data, there is a 
strong tendency for one single verb to occur with a particularly high frequency 
in comparison to other verbs, and that the overall distribution of verbs in pat-
terns or constructions follows Zipf ’s law, which states that the frequency of words 
decreases as a power function of their ranks in the frequency table (Zipf 1935). 
The studies show how the frequencies of verbs influence acquisition, and how 
Zipfian distributional properties of language usage help make language learnable, 
both for first and second language learners. The findings are revealing but have yet 
to be backed up by evidence from more constructions and larger datasets.

In a collaborative project among psycho-, corpus, and computational linguists, 
we are investigating the use and acquisition of a large number of verb-argument 
constructions (VACs) at scale, through corpus analyses and psycholinguistic exper-
iments. Our aims are to empirically determine the type and token frequencies of 
verbs in constructions, their semantic associations, and the entrenchment of VACs 
in the native speaker’s and the second language learner’s mind. We have taken a 
large sample of patterns identified and discussed in COBUILD Grammar Patterns 
1: Verbs (Francis et al. 1996) as a starting point for a systematic analysis of VACs 
in the 100-million word British National Corpus (BNC). In this paper, we first 
discuss the method we developed to define, review and refine search strings that 
allow us to retrieve VACs from a parsed version of the BNC with a high degree of 
accuracy in terms of precision and recall (Section 2). We then present some initial 
results from the corpus analysis (Section 3) and compare the corpus findings with 
observations made in psycholinguistic experiments on native speaker and learner 
associations of verbs and constructions (Section 4). We close with a summary of 
our findings and thoughts on future research on VAC usage and acquisition.
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2.  �From COBUILD patterns to corpus VACs

As previously mentioned, our research aims to empirically determine not just the 
type and token frequencies, but also the semantic associations of verbs and con-
structions. It is therefore important to initially define the forms that will be ana-
lysed in a semantics-free, bottom-up manner. We chose the definition of VACs 
presented in Volume 1 of the Grammar Patterns series (Francis et al. 1996) that 
came out of the COBUILD project in corpus- and pedagogy-driven lexical com-
puting – a project in which the corpus came first and the text was to be trusted 
(Sinclair 2004).

Francis et al. (1996) contains over 700 patterns of varying complexity, organ-
ised by verb type and part of speech of the pattern constituents. For example, 
Chapter 2 deals with “Simple Patterns with Prepositions and Adverbs” (e.g. V 
about n), while Chapter 9 covers “Verb Patterns with it” (e.g. it V that). For each of 
the patterns, the book provides information on their structural configurations and 
the meaning groups formed by the verbs that occur in the patterns in the 300 mil-
lion word version of the Bank of English corpus. The first part of the entry for the 
V about n pattern is presented in Figure 1. For each of the structural realisations 
of the pattern, the book provides corpus-derived example sentences and informa-
tion on verb preferences. In the case of V about n, only two verbs (BOTHER and 
FORGET) are listed for Structure I. Verbs found in Structure II patterns belong to 
three meaning groups: the ‘talk’ group, the ‘think’ group and the ‘learn’ group. 
Structure III verbs (including PHONE and WRITE IN) are concerned with tele-
phone or written communication (Francis et al. 1996: 146–150). As Hunston and 
Francis (1999: 36) note, the descriptions in the Grammar Patterns volumes aim at 
a comprehensive coverage of all the lexical items that occur in a particular pattern 
(based on the Bank of English). For some patterns that have especially long lists 
of verbs, however, only the most frequent verbs are included. The entries do not 
indicate how frequent each of the listed verb types are.

Figure 1.  Part of the COBUILD Grammar Patterns entry for V about n (Francis et al. 
1996: 145)



© 2015. John Benjamins Publishing Company
All rights reserved

	 Ute Römer, Matthew B. O’Donnell and Nick C. Ellis

2.1  �Defining search graphs from COBUILD descriptions

The definitions of VACs in the COBUILD descriptions, such as the one in Figure 1, 
make use of grammatical/syntactical categories such as prepositional phrase, noun 
group and wh-clause. Such categories involve combinations of words and are, to 
one degree or another, abstractions from the lexical level of text. They are, there-
fore, not easy to capture through a simple concordance search with any degree 
of precision.1 Because of this, we decided to make use of a parsed corpus for the 
VAC searches. We selected a dependency based analysis as it does not impose 
constituents over words in a sentence but does capture the primary word-to-word 
relations necessary for identifying VACs. Andersen et al. (2008) ran the whole 
BNC-XML through an NLP pipeline including the RASP parser (Briscoe et al. 
2006) to produce a dependency parsed version of the corpus, with a separate level 
of XML annotation indicating dependency pairs. To make searching across word, 
lemma, part-of-speech and dependency levels easier, we transformed this XML 
into GraphML (an XML representation of a property graph, with words as nodes 
and edges as dependency relations). Figure 2 shows a visual representation of the 
annotation of the sentence I know he fantasises about it (BNC G2V.1676). The 
numbers indicate word position, followed by lexical form. Below this are the POS 
tags, first the simplified word class, then the CLAWS tag separated by a dash from 
the RASP POS tag. The arrows indicate dependency relations, pointing from head 
word to dependent word (with the arrow head), e.g. know is the head of I through 
an ‘ncsubj’ (subject) grammatical relation (see Briscoe et al. 2006).

The property graph representation allows for searches to be defined for words 
(nodes) on any of their properties (lexical and lemma forms and/or POS catego-
ries) and for required and disallowed relations between these words. For example, 
for V about n, we would begin with the node in the graph that represents about 
that also has a direct object grammatical relation to the head of a noun phrase. The 
head could be a noun or a pronoun. Also the about node should be the dependent 
of a verbal node. This is again best illustrated visually. Figure 3 shows the initial 
search graph corresponding to this process for the V about n pattern.

Node ‘n1’ is the search start point and has a restriction on the lemma prop-
erty to equal about. From here, dependent grammatical relations from about are 
queried, looking for one with a value ‘dobj’ (direct object). The dependent node 
in this relation (‘n3’) needs to be a noun (‘N’) or pronoun (‘PN’) (the ‘c5’ prop-
erty is the CLAWS POS tag for a word) and is checked through a regular expres-
sion match. If the search reaches this point, then half of the match requirements 
have been met: about is the head of a prepositional phrase with a noun group 

.  Many of these issues and some tentative solutions for automatically retrieving verb 
patterns are discussed in some detail by Mason and Hunston (2004).
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2: know
VERB

VVB – VVO

ccompncsubj

ncsubj

3: he
PRON

PNP – PPHS1

6: it
PRON

PNP – PPH1

5: about
PREP

PRP – II

iobj

dobj

1: I
PRON

PNP – PPIS1

4: fantasises
VERB

VVZ – VVZ

Figure 2.  Representation of RASP dependency annotation of BNC G2V.1676

n1
lem = about

n3
c5~^(PNIN)

passiven2
c5~^V

rpos~^V

(r1)
dobj

(r2) iobj

Figure 3.  Representation of first stage search graph for the V about n VAC

object. Next the search looks for incoming edges (dependent relations) to about 
(n1) and specifically one with value ‘iobj’ (indirect object), since Francis et al. 
(1996: 145) state “the verb is followed by a prepositional phrase”, pointing out 
that this may be either a prepositional object (Structure II) or an adjunct (Struc-
ture III). If such an edge exists, the node ‘n2’ (head word of the ‘iobj’ GR) is 
checked to see if both POS taggers agree it is a verb. The final check is to ensure 
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that this verb is not in a passive construction (the dashed edge indicates a disal-
lowed relation) as this is specifically excluded in the description of V about n in 
Francis et al. (1996).

We found that using a visual specification for a VAC search pattern provides a 
useful communicative bridge between the computational and linguistic members 
of our team. Once the search is drawn in this way, it is transferred into a descrip-
tive XML markup that defines how the search should be carried out (technically 
defining a graph traversal – a record of ‘walking’ through the dependency struc-
ture for the sentence from word to word along the grammatical relation paths – 
that will result in a successful match between the VAC pattern and a sentence in 
the corpus). This XML is used by a Python script to search the GraphML database 
and returns hits of sentences matching the pattern.

2.2  �Checking precision and recall of VAC searches

It is inevitable that real language in the corpus will turn out to be more complex 
and varied than anticipated in the specification of an abstract structure search. 
So the next step in our process was to carry out a precision analysis on a ran-
dom sample of 500 sentences retrieved by the search. We developed a web-based 
interface that allowed our precision checkers to independently view these 500 
sentences and compare them with the COBUILD description of the respective 
VAC (see Figure 4).

Figure 4.  Precision analysis interface shown reviewing a sample of V about n sentences
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The precision checkers then marked errors and were able to leave specific 
comments on each BNC example. In Figure 4 you can see that annotator Mary has 
marked sample sentence 6, Cottle was becoming clamorous about preparations for, 
as an error and suggested that it is actually an instance of the V adj about n VAC. 
There is a link by each sentence allowing the dependency graph for the sentence to 
be displayed (see Figure 5).

Figure 5.  Representation of a sentence incorrectly identified as an instance of the V about n VAC

Examining this dependency graph reveals that in this instance the error 
results from the way in which RASP has chosen to classify the adjective clamorous 
as a ‘ncmod’ (non-clausal modifier) of the preposition about instead of attaching 
it to the verb form becoming. If such attachment errors resulting from tendencies 
(or quirks) of the parser appear consistently, they can be controlled for by adjust-
ing the search to exclude them. The number of errors is used to calculate a preci-
sion figure. For example, for the initial search graph for V about n the annotators 
marked 104 out of the 500 sample sentences as errors, which gives a precision 
score of 79.2%.

The precision analysis provides an indication of how well the search graph 
specification for a particular VAC matches the definition from COBUILD. The 
other component of analysing accuracy – recall analysis – determines what pro-
portion of the actual instances of a VAC in the corpus are identified by the search 
graph definition. Because of the variability and complexity of real language in a 
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corpus, the abstract specification of a VAC pattern in terms of grammatical depen-
dency relations is likely to miss some unanticipated but common patterns. We car-
ried out recall analyses using a very simple search, i.e. just the single word about 
for the V about n VAC, in the BNCweb interface (Hoffmann et al. 2008). Each 
of two annotators carried out this search and each reviewed 500 separate results, 
which were randomly selected. Using the categorisation feature for KWIC lines in 
BNCweb, correct instances of the VAC were marked and these were exported and 
compared with the results of the BNC VAC search.

danny = 100
vaboutn_rev1 = 10378

10336

86
14

0 0

73

katie = 101

28

Figure 6.  Recall results for initial search of V about n

Figure 6 illustrates this comparison. For the V about n VAC, two coders, 
Danny and Katie, carried out recall analysis of 500 randomly selected sentences 
containing about. Danny identified 100 of his sentences as genuine instances of 
the VAC; Katie found 101 of her sentences to be genuine V about n hits. They had 
no sentences in common. The corpus search based on our initial search graph for 
V about n retrieved 10,378 sentences. Forty-two of the 201 sentences in the recall 
set were among these results, giving a recall figure of 20.9%. The recall figure in 
particular is somewhat disappointing and should be improved in order to be able 
to state broad coverage in our claims regarding verbs in VACs. However, we chose 
to prioritise improving precision (rather than recall) as much as possible so that 
the statistical and semantic interpretation of our results (see Section 3) would be 
as reliable as possible for the subset of retrieved corpus instances. The combined 
F-score (using α=0.5) is therefore 1/(0.5/0.792 + 0.5/0.209) = 0.331.2

2.3  �Refining the search graphs

The web interfaces used for both the precision and recall analyses provide links to 
the dependency graphs for all sentences analysed. This makes it possible to easily 

.  The F-score is a measure of the accuracy of a test or procedure which considers both its 
precision and recall results.
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inspect how a sentence was analysed by the RASP parser and the POS taggers in 
order to discover why an incorrect sentence was included in our search results (see 
Figure 5) or why a correct one was excluded.

Figure 7.  Representation of a true V about n sentence excluded by the initial search graph

For instance, the recall analysis of V about n identified the sentence, Because 
I when you do think about the word then you leave some of the letters out (BNC 
FMF.494), which the original search excluded. This is an instance of speech with 
a false start and switch of person reference from I to you. RASP clearly has dif-
ficulty assigning grammatical relations in cases like this. RASP seems to have 
falsely assigned an obj relation between think and I here (see Figure 7) and thus 
discounted this sentence as an instance of V about n, classifying it instead as V n 
about n.

In the review process, we collected notes on potential changes to the search 
graph that would exclude consistent errors found in the precision analysis and oth-
ers that would broaden the coverage of the search discovered during recall analy-
sis. Many of these potential changes stemmed from noticing the ways in which 
the RASP parser dealt with certain words and grammatical relations. For instance, 
we initially assumed that the relation between the preposition (e.g. about) and the 
head of the noun phrase would always be a ‘dobj’ (direct object) relation. However, 
through review of the sentences found in the recall analysis but not captured in 
the search, we discovered that complement grammatical relations, ‘ccomp’ and 
‘xcomp’, could also occur. Similarly, we found that conjunctions creating complex 
noun (1) and verb phrases (2) result in structures where the conjunctions become 
head words intervening between the preposition and noun or verb phrase heads 
(see Figure 8).
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	 (1)	� …people who (VP write (PP about (NP psychoanalyses and the social 
sciences NP) PP) VP)… (BNC HUK.218)

	 (2)	� He’s fucking mad, Simon, he always makes people (VP (VP think and talk 
VP) (PP about (NP these mad things NP) PP) VP)… (BNC KC7.516)

Figure 8.  Search complexities introduced by complex conjunctive relations in noun and verb 
phrases

In addition, we found further grammatical relations and lexical combinations 
that needed to be excluded to ensure retrieved instances were actual instances of 
the VAC. For example, in the V about n VAC the verb should not have any addi-
tional object grammatical relations (dobj, obj, iobj) aside from the one between the 
verb and about. Lexical phrases sure about, just about, round or around about are 
not recognised as units by the parser but should be excluded from consideration.

Figure 9 shows the search graph for V about n after 3 cycles of precision, 
recall and revision (compare to Figure 3). You can see how the conjunctive rela-
tions discussed above have been allowed for between the verb (‘n2’) and about 
(‘n1’) and between about and the head of the noun phrase (‘n3’ or ‘n5’). Notice 
how the part-of-speech regular expressions have expanded for this node to allow 
for determiners (about this) and -ing forms (about clearing up), as in Structure I 
of the description in Francis et al. (1996). The dashed edges and attached nodes 
indicate relations and patterns that are disallowed and should cause the search to 
make no match.

2.4  �Balancing precision and recall against fidelity to COBUILD definitions

Given our primary aim of investigating patterns of verbal usage in VACs from a 
quantitative perspective, we opted to prioritise precision over recall. This is the 
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reverse of the usual practice adopted in corpus linguistic research (e.g. Hoffmann 
et al. 2008), which advocates an approach that produces wide coverage (i.e. high 
recall) and the use of manual correction, such as would be the case in a KWIC-cen-
tered analysis (e.g. Sinclair 2003). The reasoning behind this choice was that, given 
the size and linguistic diversity of the BNC as well as the restricted nature of our 
search definitions, we expect the results to be highly representative of specific VACs 
defined according to surface and syntactic criteria. Further, in order to carry out the 
kinds of analysis detailed in Section 3, including measuring the contingency of spe-
cific verb types to specific VACs and the semantic coherence of verb types within 
constructions, precise results of a reasonable size are more useful than a larger set of 
noisy results. Table 1 shows summary data, including precision and recall statistics, 
for 18 VACs drawn from the second chapter of Francis et al. (1996) – all are of the 
form ‘V prep n’. For these 18 VACs after three cycles of search – precision-recall – 
refine, we achieved a mean precision of 78%, and recall of 53%, giving a combined 
F-score of 0.612. (The best value for an F-score is 1 and the worst score is 0.)

The use of a parsed corpus and syntactic search constraints, as detailed 
in the previous sections, does mean that our VACs, although drawn from the 
COBUILD patterns (Francis et al. 1996), are in many cases restricted versions 
of those patterns. In the same way that definitions of constructions in Construc-
tion Grammar (such as Goldberg 2003, 2006) include semantic constraints (e.g. 
an oblique encoding direction, means or manner), we often found semantic ele-
ments in the COBUILD definitions, particularly those distinguishing the dif-
ferent structures for a pattern, that we were unable to capture. The COBUILD 
definitions also contain a considerable richness and level of detail resulting from 

n1
lem = about

n8
c5 = CJC

rpos = CC

n7
pos = PREP

n9
pos = SUBST

(r2)
conj

(r1)
dobjl[cx]comp

n3
c5~^(PNIN)IDT.IV.G
rpos~^[PN]IDD.IV.G

n5
c5~^(PNIN)IDT.IV.G
rpos~^[PN]IDD.IV.G

n4
c5 = CJC

rpos = CC

conj+

n11
lem = at

NOT(n1)

{L} (n1)

ncmod

passive

pcomp
[di]?obj2?lxsubj

[cx]compl[cp]mod

n10
lem~surela?roundljust

n2
c5~^V

rpos~^V

ncmod

(r2)

(r2)

[cx]comp

ccomp

Figure 9.  Representation of revised search graph for the V about n VAC
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the close inspection of KWIC lines on which they are based that we have not tried 
to reproduce in our analysis. We think, however, that our VAC definitions and the 
resulting datasets are adequate (in terms of quality and quantity) for the purposes 
of the present project.

3.  �Initial results: VACs in a corpus

Table 1 shows the 18 selected constructions, the number of verb types that occupy 
them, the total number of tokens found, type-token ratios, and precision and 
recall figures.

Table 1.  Type-token data for 18 ‘V prep n’ VACs drawn from Francis et al. (1996) and 
retrieved from the BNC

VAC Types Tokens TTR Lead verb type (-BE) Precision Recall F-score

V about n 908 24244 3.75 TALK 0.778 0.454 0.573
V across n 669 5261 12.72 COME 0.916 0.614 0.735
V against n 838 8978 9.33 LEAN 0.888 0.600 0.716
V among pl-n 478 2859 16.72 LIVE 0.816 0.681 0.743
V around n 799 5243 15.24 LOOK 0.806 0.515 0.628
V as n 1431 22857 6.26 ACT 0.482 0.516 0.498
V between pl-n 852 8300 10.27 DISTINGUISH 0.850 0.594 0.699
V for n 2281 90980 2.51 LOOK 0.798 0.504 0.618
V in n 3573 190370 1.88 LIVE 0.756 0.333 0.463
V into n 1689 50070 3.37 GO 0.892 0.621 0.733
V like n 1232 15985 7.71 LOOK 0.742 0.339 0.465
V off n 295 1603 18.40 GO 0.764 0.031 0.060
V of n 1090 44418 2.45 THINK 0.596 0.527 0.559
V over n 1516 19710 7.69 TAKE 0.612 0.574 0.592
V through n 1418 21583 6.57 GO 0.892 0.703 0.786
V towards n 639 8005 7.98 MOVE 0.928 0.720 0.811
V under n 1064 10881 9.78 COME 0.768 0.724 0.745
V with n 3087 105496 2.93 DEAL 0.704 0.509 0.591

0.777 0.531 0.612

3.1  �A frequency-ranked type-token VAC profile

The sentences extracted using the procedure described above produced verb type 
distributions like the following one for the V across n VAC:
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COME 628
WALK 243
RUN 202 …
CUT 198 VEER 3
… RIP 3 …

… BUMP 1
HARE 1
WHIR 1

These distributions appear to be Zipfian, exhibiting the characteristic long-
tail in a plot of rank against frequency. Zipf ’s law, like other power-law distribu-
tions, is most easily observed when plotted on doubly logarithmic axes, where the 
relationship between log (rank order) and log (frequency) is linear. The advised 
method to do this is via the (complementary) cumulative distribution (Adamic & 
Huberman 2002). We generated logarithmic plots and linear regressions to exam-
ine the extent of this trend using logarithmic binning of frequency against log 
cumulative frequency. The binning allows us to select and illustrate an example 
verb type from each frequency band. Figure 10a shows such a plot for verb type 
frequency of the V across n construction; Figure 10b shows the same type of plot 
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Figure 10.  Verb type distributions for (a) V across n and (b) V about n
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for verb type frequency of the V about n construction. Both distributions produce 
a good fit of Zipfian type-token frequency with R2 > 0.98 and slope (γ) around 1. 
Inspection of the construction verb types, from most frequent down, also demon-
strates that the lead member is prototypical of the construction and generic in its 
action semantics (COME for V across n; TALK for V about n).

Since Zipf ’s law applies across language phenomena, the Zipfian nature of 
these distributions is potentially trivial. But they are more interesting if the com-
pany of verb forms occupying a construction is selective, i.e. if the frequencies of 
the particular VAC verb members cannot be predicted from their frequencies in 
language as a whole. We measure the degree to which VACs are selective like this 
using a chi-square goodness-of-fit test and the statistic ‘1-tau’ where Kendall’s tau 
measures the correlation between the rank verb frequencies in the construction 
and in language as a whole. Higher scores on both of these metrics indicate greater 
VAC selectivity. Another useful measure is Shannon entropy for the distribution. 
The lower the entropy, the more coherent the VAC verb family.

3.2  �Determining the contingency between verbs and VACs

Some verbs are closely tied to a particular construction (for example, GIVE is 
highly indicative of the ditransitive construction, whereas LEAVE, although it 
can form a ditransitive, is more often associated with other constructions such 
as the simple transitive or intransitive). The more reliable the contingency 
between a cue and an outcome, the more readily an association between them 
can be learned (Shanks 1995), so constructions with more faithful verb members 
should be more readily acquired. The measures of contingency adopted here are 
(1) ‘faithfulness’ – the proportion of tokens of total verb usage that appear in 
this particular construction (e.g. the faithfulness of GIVE to the ditransitive is 
approximately 0.40; that of LEAVE is 0.01) and (2) ‘directional mutual informa-
tion’ (MI word → construction: GIVE 16.26, LEAVE 11.73 and MI construc-
tion → word: GIVE 12.61 LEAVE 9.11), an information science statistic that has 
been shown to predict language processing fluency (e.g. Ellis et al. 2008; Jurafsky 
2003).

Table 2 lists these contingency measures for the 20 most frequent verbs occu-
pying the V across n VAC. It also shows the top 20 verbs ordered by the contin-
gency measure MIwc (mutual information in the direction word to construction) 
and the top 20 ordered according to total corpus frequency (i.e. not just within the 
VAC). So the top 5 most frequent verbs in V across n are COME, WALK, RUN, 
CUT and LOOK. But when the strength of association between verb and con-
struction is considered, the top 5 are SCUD, FLIT, SLANT, SCUTTLE and SKID 
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Table 2.  Top 20 verbs found in the V across n construction in the BNC

Verb Constr.  
freq. 

Corpus  
freq. 

Faith. MI
word→ constr 

MI
constr→ word 

Top 20 by 
MIwc

Top 20 by 
corpus freq

COME 628 143580 0.004 15.607 10.837 SCUD BE
WALK 243 19994 0.012 17.081 15.155 FLIT GO
RUN 202 38688 0.005 15.862 12.984 SLANT GET
CUT 198 17759 0.011 16.957 15.202 SCUTTLE SEE
LOOK 188 108373 0.002 14.273 9.908 SKID COME
BE 152 4090106 0.000 8.728 -0.875 SPRAWL LOOK

GO 139 224168 0.001 12.788 7.375 TRAMP PUT
MOVE 136 37573 0.004 15.334 12.498 SCURRY WORK
LEAN 120 4464 0.027 18.227 18.464 FLICKER CALL
SPREAD 96 5714 0.017 17.548 17.429 STRIDE START
GET 75 211788 0.000 11.980 6.649 SPRINT RUN
FALL 66 26023 0.003 14.821 12.514 SKIM SET
STARE 58 7573 0.008 16.415 15.890 STUMBLE MOVE
LAY 55 15799 0.003 15.278 13.691 DIFFUSE PLAY
STRETCH 55 4446 0.012 17.107 17.350 LEAN LIVE
TRAVEL 51 8290 0.006 16.099 15.443 FLASH MEET
REACH 50 22300 0.002 14.643 12.559 SPLASH CARRY
SET 45 38630 0.001 13.698 10.822 HOP SIT
STRIDE 44 1049 0.042 18.868 21.195 CRAWL FALL
LIE 44 13190 0.003 15.216 13.890 SPREAD REACH

(each of which are of relatively low frequency, both in the VAC and the BNC as a 
whole).

Table 3 shows these same data for V about n. TALK, THINK, BE, KNOW 
and WORRY are the most frequent verbs, while REMINISCE, WORRY, TALK, 
RAVE and ENTHUSE are most strongly associated (in Mutual Information 
terms) with the VAC. The intersection of these two orderings (VAC verb fre-
quency and VAC verb contingency) is the overall frequency of a verb in the 
corpus as a whole, shown in the final columns of Tables 2 and 3. In Section 4 
we examine speaker knowledge of verbs in constructions and will consider the 
effect of VAC verb frequency, VAC verb contingency and verb corpus frequency 
upon usage.
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Table 3.  Top 20 verbs found in the V about n construction in the BNC

Verb Constr.  
freq. 

Corpus  
freq. 

Faith. MI
word→  
constr 

MI
constr→  

word 

Top 20 by  
MIwc

Top 20 by 
corpus freq

TALK 3832 28867 0.133 16.122 15.870 REMINISCE BE
THINK 3153 142884 0.022 13.533 10.974 WORRY SAY
BE 2827 4090106 0.001 8.537 1.138 TALK GO
KNOW 1812 177192 0.010 12.424 9.554 RAVE GET
WORRY 910 5822 0.156 16.358 18.416 ENTHUSE MAKE
SAY 721 314459 0.002 10.267 6.570 GENERALISE SEE
BRING 712 42271 0.017 13.144 12.342 GENERALIZE KNOW
HEAR 604 34142 0.018 13.214 12.721 COMPLAIN TAKE
FORGET 556 11774 0.047 14.631 15.673 FRET COME
WRITE 517 38144 0.014 12.830 12.176 FUSS THINK
GO 502 224168 0.002 10.233 7.024 SPECULATE GIVE
FEEL 482 57807 0.008 12.129 10.876 GOSSIP LOOK
CARE 435 7607 0.057 14.907 16.579 CARE FIND
ASK 429 57431 0.007 11.971 10.726 GRUMBLE TELL
COMPLAIN 427 4206 0.102 15.735 18.262 ENQUIRE PUT
LEARN 347 18701 0.019 13.283 13.658 INQUIRE MEAN
SPEAK 320 23910 0.013 12.812 12.832 CHAT FEEL
FIND 247 95330 0.003 10.443 8.468 FORGET ASK
READ 225 21154 0.011 12.480 12.677 MOAN HOLD
WONDER 170 11457 0.015 12.961 14.042 JOKE BRING

3.3  �Identifying the meaning of verb types occupying the constructions and 
constructing a semantic graph/network

Our semantic analyses use WordNet, a distribution-free semantic database based 
upon psycholinguistic theory which has been in development since 1985 (Miller 
2009). WordNet places words into a hierarchical network. At the top level, the 
hierarchy of verbs is organised into 559 distinct root synonym sets (‘synsets’, 
such as ‘move1’ expressing translational movement, ‘move2’ movement without 
displacement, etc.) which are then split into over 13,700 verb synsets. Verbs are 
linked in the hierarchy according to relations such as hypernym [verb Y is a hyper-
nym of the verb X if the activity X is a (kind of) Y (to perceive is an hypernym of 
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to listen], and hyponym [verb Y is a hyponym of the verb X if the activity Y is 
doing X in some manner (to lisp is a hyponym of to talk)]. Various algorithms to 
determine the semantic similarity between WordNet synsets have been developed 
which consider the distance between the conceptual categories of words, as well as 
considering the hierarchical structure of the WordNet (Pedersen et al. 2004). Poly-
semy is a significant issue when working with lexical resources such as WordNet, 
particularly when analysing verb semantics. For example, in WordNet the lemmas 
MOVE, RUN and GIVE used as verbs are found in 16, 41 and 44 different synsets, 
respectively.

In order to analyse VAC meaning patterns, we build semantic networks 
where the nodes/vertices are the more frequent verb types extracted from the 
VAC distribution and the edges/links between these nodes indicate some kind 
of semantic relation. First we construct a similarity matrix consisting of the 
WordNet Path Similarity scores for each of the pairs of verbs in the matrix. This 
ranges from 0 (no similarity) to 1 (items in the same synset). There is an extra 
step to arrive at a similarity score for two verb lemmas, e.g. THINK and KNOW, 
because WordNet similarity measures work on senses (synsets) and not lemmas. 
The lemma THINK occurs in 13 different synsets and KNOW in 11. Without 
carrying out word sense disambiguation to determine which sense of THINK to 
compare with which sense of KNOW, we calculate scores for each of the 143 pos-
sible synset pairs and use the maximum value. For THINK and KNOW this value 
of path similarity is 0.5 (using the path similarity measure) and results from the 
synset pair ‘remember#v#1’ and ‘know#v#11’ (i.e. the distance in WORD from 
the first synset for the verb form of REMEMBER and the 11th verb synset for the 
verb form of KNOW). Next we select a threshold value for the inclusion of an 
edge between nodes.

An example network for V about n is shown in Figure 11. The width of the 
edge (its weight) represents the similarity score. The graph is undirected because 
the similarity scores are symmetrical. Inspection reveals two major groupings: 1. 
TALK, WRITE, SPEAK, ASK (with SAY loosely attached) and 2. FIND, LEARN, 
HEAR, THINK, KNOW. The COBUILD Grammar Patterns entry for V about 
n (Francis et al. 1996: 146–147) identifies a ‘talk’ group, a ‘think’ group and a 
‘learn’ group, but this categorisation came from qualitative concordance analysis 
and introspection. The advantage of our automated methods is that they allow 
more objective quantitative measurement of the semantic cohesion of the mean-
ing space of VACs using network measures such as network density, average clus-
tering, and degree centrality. We are also implementing and evaluating techniques 
to identify communities of meaning within the large networks (Ellis et al. 2013; 
O’Donnell et al. 2012).
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Figure 11.  Semantic similarity network for the top 15 verbs in V about n using the WordNet 
Path Similarity measure

4.  �VACs in the mind: Native speaker and learner evidence

The corpus analyses above have highlighted central structural and distributional 
properties of a range of VACs in language use. Our next goal was to test whether 
these properties are the same for VAC representations in the minds of language 
users. This involved addressing the following questions: do the corpus findings 
mirror what speakers know about verbs in constructions or are speaker mental 
representations different from usage? Does the verb/construction knowledge of 
native speakers differ from that of non-native speakers?

In order to address these questions, we had English native speakers and 
advanced English language learners (L1 German) complete the same type of 
generative free association task. We designed a series of experiments involving a 
web-based survey in which we presented participants with VAC frames such as 
she ___ about the … or it ___ across the… and asked them to type the first word 
that came to mind to fill the slot. For each VAC, we recorded the range of verbs 
that subjects generated as well as their speed of access. In the first two experi-
ments we collected responses on 20 VACs from 276 native speakers (Experiment 
1) and 276 German learners (Experiment 2). We lemmatised the lists of responses 
by verb type and ordered them by token frequencies. We then compared the 
results of the experiments with the results from the previous BNC analyses (see 
Section 3). We also compared Experiment 1 and Experiment 2 against each other 
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to determine how closely native-speaker and learner knowledge of the selected 
VACs are related and in what ways the two groups differ in terms of verb selection 
preferences. The following sections discuss our findings for two verb-argument 
constructions: V across n and V about n.

4.1  Native speaker and learner verb preferences vs. corpus findings

For all 20 VACs, including V across n and V about n, we observed strong cor-
respondences between the frequencies of verb exemplars in natural usage (BNC 
data) and native speakers’ free associations to particular frames (see Ellis et al. 
2014). Figures 12 and 13 illustrate the correlations between the responses from 
Experiments 1 and 2 and the corpus data for V across n and V about n in scatter 
plots.

The y-axis shows the logarithmic frequency of the verb type in the speakers’ 
responses in the two experiments. The x-axis shows the logarithmic frequency of 
the verb type in the VAC from the search of the BNC. For example, in Figure 12, 
the native speaker responses for V across n show RUN, COME and SWIM as the 
most frequent responses, with frequencies of 88, 56 and 43 respectively. In the BNC 
search for the same VAC, these three verbs have ranks and frequencies as follows: 
RUN (3 – 202), COME (1 – 628) and SWIM (46 – 19). A perfect correspondence 
between frequency in speaker responses and VAC verb frequency would place all 
verbs on the diagonal. Items in the right (lower) corner of the plot are markedly 
less frequent in the speaker responses than their relative frequency in the corpus 
distribution, e.g. CUT across (corpus – rank: 4, frequency: 198; L1 English – rank: 
98, freq: 1). Conversely, verbs in the (top) left region of the plot are relatively much 
more frequent in the speaker responses than in the corpus VAC distribution, e.g. 
SKATE across (corpus – rank: 362, freq: 1; L1 English – rank: 12, freq: 7). The size 
of the word in the scatter plots indicates its overall frequency in the BNC.

Each plot also shows the correlation coefficient r for the comparison.3 It is 
interesting to note that for V across n the German L1 speakers’ responses match 
the corpus distribution more closely (r=0.884) than do those of the native Eng-
lish speakers (r=0.633). Regional variation in English could be at least a partial 
possible explanation for this finding. While our native speaker participants are 
almost exclusively speakers of American English, British English is the norm that 
the majority of our advanced German learners wish to approximate to. This may 
be why their responses are more in line with VAC distributions in the British 
National Corpus. In order to address this issue and confirm this hypothesis, we 
have started to collect survey data from native speakers of British English.

.  Pearson’s correlation coefficient: r=1 perfect positive correlation; r=0 no correlation; r=-1 
perfect negative correlation.
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Figure 12.  V across n, comparison of native speaker (Experiment 1) and L1 German speaker 
(Experiment 2) responses against corpus data (VAC frequencies). x-axis = log verb in VAC 
frequency in BNC; y-axis = log verb in speaker responses
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Figure 13.  V about n: comparison of native speaker (Experiment 1) and L1 German speaker 
(Experiment 2) responses against corpus data (VAC frequencies). x-axis = log verb in VAC 
frequency in BNC; y-axis = log verb in speaker responses
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For the V about n VAC we did not observe a similar effect. The correlation 
coefficients for the speaker/BNC comparisons are almost identical for the learner 
(r=0.884) and native speaker respondents (r=0.881) (see Figure 13). Despite the 
very abstract prompts they were given in the form of bare frames, native speaker 
and non-native speaker subjects generate verb-preposition clusters that are similar 
to those found in the BNC analyses. This implies that both groups of respondents 
have intuitions about verbs in this construction that are very much in line with 
the frequency distributions found in actual language usage. There are only a few 
verbs which are comparatively more frequent in the BNC VAC data than in the 
English and German speaker data, including SAY, WORRY, LEARN, and FEEL. 
On the other hand, a number of low-frequency verbs (small font type in the scat-
ter plots in Figure 13) are relatively more common in the speaker responses than 
in the BNC VAC frequency list. The verb LAUGH belongs to this group, as do the 
motion verbs JUMP, MOVE, WALK, RUN, and DANCE.

4.2  �Learner vs. native speaker verb preferences

In addition to the comparisons of BNC findings with native speaker survey data 
(Experiment 1) and BNC findings with German learner survey data (Experiment 
2), we also analysed for the selected VACs how similar or different the native 
speaker and learner responses were. Figures 14 and 15 summarise the results of 
these comparisons for the V across n and V about n constructions. Lists of the 20 
most frequent verbs in Experiments 1 and 2 are given in Table 4 (V across n) and 
Table 5 (V about n). Verbs that appear in both lists (native speaker and German 
learner) are displayed in italics.

The first thing we observe for the V across n construction is a strong cor-
respondence between native speakers’ and learners’ free associations to the VAC 
frame. The r-value for this VAC is 0.789, and 11 out of the top-20 verbs are shared 
across lists. Both experiment groups most frequently respond to the frame with 
verbs of physical motion such as RUN, COME, WALK, GO, FLY and SWIM. The 
verbs ROLL and FALL, which also occur in both lists in Table 4, may have been 
picked up from the survey instructions (the examples it rolls down the… and it fell 
down the… were given at the beginning of the online questionnaire to illustrate the 
procedure). As their font size in Figure 14 indicates, RUN, COME, WALK and GO 
also occur very frequently in the BNC. FLY and SWIM are not quite as frequent in 
the BNC data (smaller font size) and occur comparatively more often in the native 
speaker than in the learner responses (see their position in the plot in Figure 14 
and the response counts in Table 4). Other verbs produced considerably more 
often by native speaker informants than German learners include SKIP (rank 10 
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in native speaker list), SKATE (rank 12), SIT (rank 14) and SLIDE (rank 19). None 
of these verbs appears in the top-20 verb list based on learner responses. For SKIP, 
SKATE, SIT and SLIDE we observed low BNC token frequencies but high faithful-
ness scores (see values in Table 2).

Table 4 also lists a few verbs that are produced repeatedly by the L1 German 
participants but not at all (or very infrequently) by the 276 native speakers. Among 
this group of verbs are LIE (rank 10 in the learner responses), DRIVE (rank 15), 
TRAVEL (rank 18) and SPREAD (rank 19). These verbs show high BNC frequen-
cies, as illustrated by their font sizes in Figure 14 (see especially SPREAD and LIE), 
but lower contingency scores for this particular VAC. These findings suggest that 
the native speakers who participated in the survey produced verbs which are more 
strongly associated with the V across n frame in natural production data while the 
German learners essentially picked up on high frequency verbs.

In the data we collected for the V about n construction, the correlations 
between native speaker and German learner responses are even more pronounced 
than for V across n. Figure 15 and Table 5 summarise the results on verb selections 
by both groups of respondents. We found a very high r-value of 0.937 for this com-
parison, and 17 of the 20 most frequently produced verbs for this VAC are shared 
among native speaker and learner lists. The participants in both groups most com-
monly responded to this VAC frame with verbs of communication and cognition, 
including TALK, ASK, TELL, SPEAK, HEAR, THINK, KNOW and WONDER. 
The number one verb in both lists is TALK. Of the 276 German learners, 117 
typed in a form of this verb, either as a response to the it __ about the… frame or 
to she __ about the…. Apart from the verbs that were also produced by the native 
speaker informants, a number of our German learners responded with the verb 
COMPLAIN to this VAC frame. COMPLAIN is not used by the native speakers 
in the survey but it has a fairly high frequency in the BNC. The same applies to 
WRITE, which is also covered in the German learner top-20 but not in the native 
speaker list (see Table 5).

Finally, the verb DISCUSS presents a very interesting case. Three of our Ger-
man respondents completed the she/he __ about the… frame with the form discuss 
or discussed. A prescriptive grammar of English would consider this type of use 
ungrammatical. It is, however, debatable whether we are here dealing with a learner 
error or a creative new usage of language that has also been observed in spoken 
English as a Lingua Franca (Mauranen 2012) and in postcolonial or ‘outer circle’ 
varieties of English, such as Indian English (Mukherjee 2009: 123). Of course, in 
the case of German learners, discuss about could be interpreted as a transfer phe-
nomenon from the first language (German ‘diskutieren über’) but given the evi-
dence from other sources, we suspect that this is a wider-ranging phenomenon. 
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We may be observing the development of a new prepositional verb, formed in 
analogy with speak about or talk about.4 In fact, there are more than 20 instances 
of discussed about and a dozen instances of discuss about in the current (20 Nov 
2011) version of the Corpus of Contemporary American English (COCA), includ-
ing one from a 2009 ABC Primetime interview with Barack Obama in which the 
US president says: “It doesn’t come from the evidence-based care and changes in 
reimbursement that I’ve already discussed about, […]”.
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Figure 14.  V across n: comparison of native speaker (Experiment 1) and German learner 
responses (Experiment 2)

Table 4.  V across n, top-20 verbs in native speaker and German learner responses

Rank Native speakers German learners

1 RUN 88 COME 113
2 COME 56 WALK 85
3 SWIM 43 GO 82
4 FLY 40 RUN 60
5 GO 33 FLY 16

.  For further discussion of the role that pattern-based analogies might play in language 
change see Hunston & Francis (1999: 96–98).

(Continued)
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Rank Native speakers German learners

6 WALK 30 LOOK 16
7 ROLL 18 ROLL 14
8 JUMP 15 SWIM 13
9 FALL 13 JUMP 13
10 SKIP 11 LIE 13
11 LOOK   8 MOVE     9
12 SKATE   7 SAIL     6
13 DANCE   7 LIVE     6
14 SIT   6 FALL     5
15 MOVE   6 DRIVE     5
16 CRAWL   5 LAY     3
17 LEAP   5 STAND     3
18 SAIL   5 TRAVEL     2
19 SLIDE   5 SPREAD     2
20 SPILL   4 RIDE     2

r = 0.937
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Figure 15.  V about n: comparison of native speaker (Experiment 1) and German learner 
responses (Experiment 2)

Table 4. (Continued) 
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Table 5.  Top-20 V about n verbs in native speaker and German learner responses

Rank Native speakers German learners

1 TALK 74 TALK 117
2 THINK 65 THINK 75
3 KNOW 23 ASK 16
4 RUN 22 TELL 16
5 GO 19 KNOW 12
6 ASK 16 COMPLAIN 11
7 READ 11 LAUGH 8
8 HEAR 10 GO 4
9 TELL 9 HEAR 4
10 WALK 9 WALK 4
11 LOOK 7 WONDER 4
12 WONDER 7 LIE 4
13 FALL 6 SPEAK 4
14 LIE 6 READ 3
15 DANCE 6 LOOK 3
16 SAY 5 FALL 3
17 SPEAK 5 WRITE 3
18 LAUGH 5 DISCUSS 3
19 SWIM 5 RUN 2
20 MOVE 4 MOVE 2

5.  �Conclusion

This paper has taken a selection of patterns defined in COBUILD Grammar Patterns 
1 (Francis et al. 1996) as a starting point for an in-depth analysis of verb-argument 
constructions in English. It has discussed some important methodological issues 
in corpus mining (including questions related to precision/recall) and suggested 
an innovative approach to making verb construction analyses scalable. It has also 
addressed questions about the type/token frequencies and semantics of VACs and 
about native and non-native speakers’ knowledge of verbs in constructions. Cor-
pus analyses showed how verbs are distributed across constructions and which 
preferences constructions have for certain groups of verbs, and vice versa. Major 
challenges lay in balancing automatic corpus extraction and human intervention, 
and in defining BNC searches based on COBUILD descriptions that provide accu-
rate and comprehensive results of the VACs in question. Through the development 
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of a cyclical process of corpus searches, precision and recall analyses, and revi-
sions of search strings, we were able to refine our initial searches and increase the 
amount and accuracy of VAC results retrieved from the corpus.

Through psycholinguistic experiments we gained insights into how entrenched 
selected VACs are in the native speaker’s and in the second language learner’s mind. 
Our findings, based on a set of 20 VACs indicate that native and non-native speak-
ers have a strong constructional knowledge and make selections which, to a large 
extent, match actual usage patterns. Even rather bare grammatical frames seem to 
carry fairly specific meanings and trigger semantically related verbs that are also 
found in the respective VAC in the corpus data. While there are some interest-
ing differences between learners’ and native speakers’ psychological associations 
of frames and lexical items, there is a large amount of overlap among the most 
common responses, at least for the VACs discussed in this paper. The responses of 
both groups show strong correlations with the data retrieved from the BNC. These 
findings demonstrate that VACs are psychologically real – not just in the minds of 
native speakers but also in the minds of advanced second language learners.

One goal of this paper was to make a case for combining insights, tools and 
techniques from corpus, computational and psycholinguistics. We believe that 
this kind of interdisciplinary work can lead to important findings that are of rel-
evance to linguistic description, second language acquisition theory and peda-
gogical practice (cf. McEnery & Hardie 2012: 192–223). In the case of the present 
study, one implication would be that constructions (and phraseology in general) 
need to be taken more seriously in theory and practice. Our VAC analyses provide 
additional evidence for the inseparability of lexis and grammar and hence sup-
port claims made in Construction Grammar and pattern grammar studies. Our 
findings on verb-construction associations extend previous studies in terms of 
coverage, statistical detail and semantic grouping. We are currently working on 
expanding the analyses to include a larger set of VACs and cover a range of differ-
ent L1s in the psycholinguistic experiments.

In the conclusion to Pattern Grammar, Hunston and Francis say that they 
“look forward to the development of an automatic pattern identifier” (1999: 272). 
As far as we know, such a tool is still non-existent, but we think that the suite of 
tools and series of analytic techniques we have developed in the context of the 
VAC project brings us a little closer to that goal.
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