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1. Introductory Overview

One of the key mysteries of language development is that each of us as

learners has had di¤erent language experiences and yet somehow we have

converged on broadly the same language system. From diverse, noisy

samples, we end up with similar competence. How so? Some views hold

that there are constraints in the learner’s estimation of how language

works, as expectations of linguistic universals pre-programmed in some

innate language acquisition device. Others hold that the constraints are in

the dynamics of language itself – that language form, language meaning,

and language usage come together to promote robust induction by means

of statistical learning over limited samples. The research described here

explores this question with regard English verbs, their grammatical form,

semantics, and patterns of usage.

As a child, you engaged your parents and friends talking about things

of shared interest using words and phrases that came to mind, and all the

while you learned language. We were privy to none of this. Yet somehow

we have converged upon a similar-enough ‘English’ to be able to commu-

nicate here. Our experience allows us similar interpretations of novel utter-

ances like ‘‘the ball mandoolz across the ground’’ or ‘‘the teacher spugged

the boy the book.’’ You know that mandool is a verb of motion and have

some idea of how mandooling works – its action semantics. You know

that spugging involves some sort of transfer, that the teacher is the donor,

the boy the recipient, and that the book is the transferred object. How is

this possible, given that you have never heard these verbs before? Each

word of the construction contributes individual meaning, and the verb

meanings in these Verb-Argument Constructions (VACs) is usually at the

core. But the larger configuration of words has come to carry meaning as

a whole too. The VAC as a category has inherited its schematic meaning

from all of the examples you have heard. Mandool inherits its interpreta-

tion from the echoes of the verbs that occupy this VAC – words like come,
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walk, move, . . . , scud, skitter and flit – in just the same way that you can

conjure up an idea of the first author’s dog Phoebe, who you have never

met either, from the conspiracy of your memories of dogs.

Knowledge of language is based on these types of inference, and verbs

are the cornerstone of the syntax-semantics interface. To appreciate your

idea of Phoebe, we would need a record of your relevant evidence (all of

the dogs you have experienced, in their various forms and frequencies) and

an understanding of the cognitive mechanisms that underpin categoriza-

tion and abstraction. In the same way, if we want a scientific understand-

ing of language knowledge, we need to know the evidence upon which

such psycholinguistic inferences are based, and the relevant psychology of

learning. These are the goals of our research. To describe the evidence,

we take here a sample of VACs based upon English form, function, and

usage distribution. The relevant psychology of learning, as we will explain,

suggests that learnability will be optimized for constructions that are (1)

Zipfian in their type-token distributions in usage (the most frequent word

occurring approximately twice as often as the second most frequent word,

which occurs twice as often as the fourth most frequent word, etc.), (2)

selective in their verb form occupancy, and (3) coherent in their semantics.

We assess whether these factors hold for our sample of VACs.

In summary, our methods are as follows; we will return to explain each

step in detail. We search a tagged and dependency-parsed version of the

British National Corpus (BNC 2007), a representative 100-million word

corpus of English, for 23 example VACs previously identified in the

Grammar Patterns volumes (Francis, Hunston, and Manning 1996; Hunston

and Francis 1996) resulting from the COBUILD corpus-based dictionary

project (Sinclair 1987). For each VAC, such as the pattern V(erb) across

N(oun phrase), we generate (1) a list of verb types that occupy each con-

struction (e.g. walk, move, skitter). We tally the frequencies of these verbs

to produce (2) a frequency ranked type-token profile for these verbs, and

we determine the degree to which this is Zipfian (e.g. come 474 . . . spread

146 . . . throw 17 . . . stagger 5; see Fig. 1 below). Because some verbs are

faithful to one construction while others are more promiscuous, we next

produce (3) a contingency-weighted list which reflects their statistical asso-

ciation (e.g. scud, skitter, sprawl, flit have the strongest association with V

across N ). Because verbs are highly polysemous, we apply word sense dis-

ambiguation algorithms to assign (4) senses to these verbs in the sentences

where they are present, according to WordNet (Miller 2009). We use tech-

niques for identifying clustering and degrees of separation in networks to

determine (5) the degree to which there is semantic cohesion of the verbs
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occupying each construction (e.g., semantic fields travel and move are

most frequent for V across N ), and whether they follow a prototype/radial

category structure. In order to gauge the degree to which each VAC is

more coherent than expected by chance in terms of the association of its

grammatical form and semantics we generate a distributionally-yoked

control (a ‘control ersatz construction’, CEC), matched for type-token

distribution but otherwise randomly selected to be grammatically and

semantically uninformed. Through the comparison of VACs and CECS

of these various measures, and following what is known of the psychology

of learning, we assess the consequences for acquisition.

This work is a preliminary interdisciplinary test, across significantly

large language usage and learning corpora, of the generalizability of con-

struction grammar theories of language learning informed by cognitive

linguistics, learning theory, categorization, statistical learning, usage-based

child language acquisition, and complex systems theory.

2. Construction Grammar and Usage

Constructions are form-meaning mappings, conventionalized in the speech

community, and entrenched as language knowledge in the learner’s mind.

They are the symbolic units of language relating the defining properties of

their morphological, lexical, and syntactic form with particular semantic,

pragmatic, and discourse functions (Goldberg 2006, 1995). Verbs are central

in this: their semantic behavior is strongly intertwined with the syntagmatic

constraints governing their distributions. Construction Grammar argues

that all grammatical phenomena can be understood as learned pairings of

form (from morphemes, words, idioms, to partially lexically filled and

fully general phrasal patterns) and their associated semantic or discourse

functions: ‘‘the network of constructions captures our grammatical knowl-

edge in toto, i.e. it’s constructions all the way down’’ (Goldberg, 2006,

p. 18). Such beliefs, increasingly influential in the study of child language

acquisition, emphasize data-driven, emergent accounts of linguistic system-

aticities (e.g., Tomasello 2003; Clark and Kelly 2006).

Frequency, learning, and language come together in usage-based ap-

proaches which hold that we learn linguistic constructions while engaging

in communication (Bybee 2010). The last 50 years of psycholinguistic

research provides the evidence of usage-based acquisition in its demonstra-

tions that language processing is exquisitely sensitive to usage frequency at

all levels of language representation from phonology, through lexis and
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syntax, to sentence processing (Ellis 2002). That language users are sensi-

tive to the input frequencies of these patterns entails that they must have

registered their occurrence in processing. These frequency e¤ects are thus

compelling evidence for usage-based models of language acquisition which

emphasize the role of input. Language knowledge involves statistical

knowledge, so humans learn more easily and process more fluently high

frequency forms and ‘regular’ patterns which are exemplified by many

types and which have few competitors (e.g., MacWhinney 2001). Psycho-

linguistic perspectives thus hold that language learning is the associative

learning of representations that reflect the probabilities of occurrence of

form-function mappings.

If constructions as form-function mappings are the units of language,

then language acquisition involves inducing these associations from expe-

rience of language usage. Constructionist accounts of language acquisition

thus involve the distributional analysis of the language stream and the

parallel analysis of contingent perceptuo-motor activity, with abstract

constructions being learned as categories from the conspiracy of concrete

exemplars of usage following statistical learning mechanisms (Christiansen

and Chater 2001; Jurafsky and Martin 2000; Bybee and Hopper 2001;

Bod, Hay, and Jannedy 2003; Ellis 2002; Perruchet and Pacton 2006)

relating input and learner cognition.

3. Determinants of Construction Learning

Psychological analyses of the learning of constructions as form-meaning

pairs is informed by the literature on the associative learning of cue-outcome

contingencies where the usual determinants include: (1) input frequency

(type-token frequency, Zipfian distribution), (2) form (salience and percep-

tion), (3) function (prototypicality of meaning), and (4) interactions between

these (contingency of form-function mapping) (Ellis and Cadierno 2009).

We will briefly consider each in turn, along with studies demonstrating

their applicability:

3.1. Input Frequency

3.1.1. Construction Frequency

Frequency of exposure promotes learning and entrenchment (e.g., Anderson

2000; Ebbinghaus 1885; Bartlett [1932] 1967). Learning, memory and
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perception are all a¤ected by frequency of usage: the more times we expe-

rience something, the stronger our memory for it, and the more fluently

it is accessed. The more recently we have experienced something, the

stronger our memory for it, and the more fluently it is accessed [hence

your reading this sentence more fluently than the preceding one]. The

more times we experience conjunctions of features, the more they become

associated in our minds and the more these subsequently a¤ect perception

and categorization; so a stimulus becomes associated to a context and we

become more likely to perceive it in that context.

Frequency of exposure also underpins statistical learning of categories

(Mintz 2002; Hunt and Aslin 2010; Lako¤ 1987; Taylor 1998; Harnad

1987). Human categorization ability provides the most persuasive testa-

ment to our incessant unconscious figuring or ‘tallying’. We know that

natural categories are fuzzy rather than monothetic. Wittgenstein’s (1953)

consideration of the concept game showed that no set of features that we

can list covers all the things that we call games, ranging as the exemplars

variously do from soccer, through chess, bridge, and poker, to solitaire.

Instead, what organizes these exemplars into the game category is a set of

family resemblances among these members – son may be like mother, and

mother like sister, but in a very di¤erent way. And we learn about these

families, like our own, from experience. Exemplars are similar if they

have many features in common and few distinctive attributes (features

belonging to one but not the other); the more similar are two objects on

these quantitative grounds, the faster are people at judging them to be

similar (Tversky 1977). The greater the token frequency of an exemplar,

the more it contributes to defining the category, and the greater the likeli-

hood it will be considered the prototype. The operationalization of this

criterion predicts the speed of human categorization performance – people

more quickly classify as dogs Labradors (or other typically sized, typically

colored, typically tailed, typically featured specimens) than they do dogs

with less common features or feature combinations like Shar Peis or

Neapolitan Masti¤s. Prototypes are judged faster and more accurately,

even if they themselves have never been seen before – someone who has

never seen a Labrador, yet who has experienced the rest of the run of the

canine mill, will still be fast and accurate in judging it to be a dog (Posner

and Keele 1970). Such e¤ects make it very clear that although people

don’t go around consciously counting features, they nevertheless have

very accurate knowledge of the underlying frequency distributions and

their central tendencies.
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3.1.2. Type and Token Frequency

Token frequency counts how often a particular form appears in the input.

Type frequency, on the other hand, refers to the number of distinct lexical

items that can be substituted in a given slot in a construction, whether it is

a word-level construction for inflection or a syntactic construction specify-

ing the relation among words. For example, the ‘‘regular’’ English past

tense -ed has a very high type frequency because it applies to thousands

of di¤erent types of verbs, whereas the vowel change exemplified in swam

and rang has much lower type frequency. The productivity of phonologi-

cal, morphological, and syntactic patterns is a function of type rather than

token frequency (Bybee and Hopper 2001). This is because: (a) the more

lexical items that are heard in a certain position in a construction, the less

likely it is that the construction is associated with a particular lexical item

and the more likely it is that a general category is formed over the items

that occur in that position; (b) the more items the category must cover, the

more general are its criterial features and the more likely it is to extend to

new items; and (c) high type frequency ensures that a construction is used

frequently, thus strengthening its representational schema and making it

more accessible for further use with new items (Bybee and Thompson

2000). In contrast, high token frequency promotes the entrenchment or

conservation of irregular forms and idioms; the irregular forms only survive

because they are high frequency. There is related evidence for type-token

matters in statistical learning research (Gómez 2002; Onnis et al. 2004).

These findings support language’s place at the center of cognitive research

into human categorization, which also emphasizes the importance of type

frequency in classification.

3.1.3. Zipfian Distribution

In natural language, Zipf ’s law (Zipf 1935) describes how the highest fre-

quency words account for the most linguistic tokens. Zipf ’s law states that

the frequency of words decreases as a power function of their rank in the

frequency table. If pf is the proportion of words whose frequency in a

given language sample is f, then pf � f �� with � � 1. Zipf showed this

scaling law holds across a wide variety of language samples. Subsequent

research provides support for this law as a linguistic universal. Many lan-

guage events across scales of analysis follow his power law: phoneme and

letter strings (Kello and Beltz 2009), words (Evert 2005), grammatical

constructs (Ninio 2006; O’Donnell and Ellis 2010), formulaic phrases

(O’Donnell and Ellis 2009) etc. Scale-free laws also pervade language
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structures, such as scale-free networks in collocation (Solé et al. 2005;

Bannard and Lieven 2009), in morphosyntactic productivity (Baayen

2008), in grammatical dependencies (Ferrer i Cancho & Solé, 2001, 2003;

Ferrer i Cancho, Solé, & Köhler, 2004), and in networks of speakers, and

language dynamics such as in speech perception and production, in lan-

guage processing, in language acquisition, and in language change (Ninio

2006; Ellis 2008). Zipfian covering, where, as concepts need to be refined

for clear communication, they are split, then split again hierarchically,

determines basic categorization, the structure of semantic classes, and the

language form-semantic structure interface (Steyvers and Tennenbaum

2005; Manin 2008). Scale-free laws pervade both language structure and

usage. And not just language structure and use. Power law behavior like

this has since been shown to apply to a wide variety of structures, networks,

and dynamic processes in physical, biological, technological, social, cogni-

tive, and psychological systems of various kinds (e.g. magnitudes of earth-

quakes, sizes of meteor craters, populations of cities, citations of scientific

papers, number of hits received by web sites, perceptual psychophysics,

memory, categorization, etc.) (Newman 2005; Kello et al. 2010). It has

become a hallmark of Complex Systems theory. Zipfian scale-free laws

are universal. Complexity theorists suspect them to be fundamental, and

are beginning to investigate how they might underlie language processing,

learnability, acquisition, usage and change (Beckner, et al., 2009; Ellis &

Larsen-Freeman, 2009b; Ferrer i Cancho & Solé, 2001, 2003; Ferrer i

Cancho, et al., 2004; Solé, et al., 2005) Various usage-based/functionalist/

cognitive linguists (e.g., Boyd & Goldberg, 2009; Bybee, 2008, 2010; Ellis,

2008a; Goldberg, 2006; Goldberg, Casenhiser, & Sethuraman, 2004; Lieven

& Tomasello, 2008; Ninio, 1999, 2006) argue that it is the coming together

of these distributions across linguistic form and linguistic function that

makes language robustly learnable despite learners’ idiosyncratic experience

and the ‘poverty of the stimulus’.

In first language acquisition, Goldberg, Casenhiser & Sethuraman (2004)

demonstrated that there is a strong tendency for VACs to be occupied by

one single verb with very high frequency in comparison to other verbs

used, a profile which closely mirrors that of the mothers’ speech to these

children. They argue that this promotes language acquisition: In the early

stages of learning categories from exemplars, acquisition is optimized by

the introduction of an initial, low-variance sample centered upon proto-

typical exemplars. This low variance sample allows learners to get a fix

on what will account for most of the category members, with the bounds
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of the category being defined later by experience of the full breadth of

exemplar types.

In naturalistic second language (L2) acquisition, Ellis and Ferreira-

Junior (2009) investigated type/token distributions in the items comprising

the linguistic form of English VACs (VL verb locative, VOL verb object

locative, VOO ditransitive) and showed that VAC verb type/token dis-

tribution in the input is Zipfian and that learners first acquire the most

frequent, prototypical and generic exemplar (e.g. put in VOL, give in VOO,

etc.).

3.2. Function (Prototypicality of Meaning)

Categories have graded structure, with some members being better exem-

plars than others. In the prototype theory of concepts (Rosch and Mervis

1975; Rosch et al. 1976), the prototype as an idealized central description

is the best example of the category, appropriately summarizing the most

representative attributes of a category. As the typical instance of a cate-

gory, it serves as the benchmark against which surrounding, less represen-

tative instances are classified.

Ellis & Ferreira-Junior (2009) show that the verbs that L2 learners first

used in particular VACs are prototypical and generic in function (go for

VL, put for VOL, and give for VOO). The same has been shown for child

language acquisition, where a small group of semantically general verbs,

often referred to as light verbs (e.g., go, do, make, come) are learned early

(Clark 1978; Ninio 1999; Pinker 1989). Ninio (1999) argues that, because

most of their semantics consist of some schematic notion of transitivity

with the addition of a minimum specific element, they are semantically

suitable, salient, and frequent; hence, learners start transitive word com-

binations with these generic verbs. Thereafter, as Clark describes, ‘‘many

uses of these verbs are replaced, as children get older, by more specific

terms. . . . General purpose verbs, of course, continue to be used but become

proportionately less frequent as children acquire more words for specific

categories of actions’’ (p. 53).

3.3. Interactions between these (Contingency of Form-Function

Mapping)

Psychological research into associative learning has long recognized that

while frequency of form is important, so too is contingency of mapping

(Shanks 1995). Consider how, in the learning of the category of birds,

while eyes and wings are equally frequently experienced features in the
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exemplars, it is wings which are distinctive in di¤erentiating birds from

other animals. Wings are important features to learning the category of

birds because they are reliably associated with class membership, eyes are

neither. Raw frequency of occurrence is less important than the con-

tingency between cue and interpretation. Distinctiveness or reliability of

form-function mapping is a driving force of all associative learning, to

the degree that the field of its study has been known as ‘contingency learn-

ing’ since Rescorla (1968) showed that for classical conditioning, if one

removed the contingency between the conditioned stimulus (CS) and the

unconditioned (US), preserving the temporal pairing between CS and US

but adding additional trials where the US appeared on its own, then

animals did not develop a conditioned response to the CS. This result

was a milestone in the development of learning theory because it implied

that it was contingency, not temporal pairing, that generated conditioned

responding. Contingency, and its associated aspects of predictive value,

information gain, and statistical association, have been at the core of

learning theory ever since. It is central in psycholinguistic theories of

language acquisition too (Ellis 2008; MacWhinney 1987; Ellis 2006, 2006;

Gries and Wul¤ 2005), with the most developed account for L2 acquisition

being that of the Competition model (MacWhinney 1987, 1997, 2001).

Ellis and Ferreira-Junior (2009) use a variety of metrics to show that

VAC acquisition is determined by their contingency of form-function

mapping. They show that the one-way dependency statistic DP (Allan

1980) that is commonly used in the associative learning literature (Shanks

1995), as well as collostructional analysis measures current in corpus

linguistics (Gries and Stefanowitsch 2004; Stefanowitsch and Gries 2003)

predict e¤ects of form-function contingency upon L2 VAC acquisition.

Other researchers use conditional probabilities to investigate contingency

e¤ects in VAC acquisition. This is still an active area of inquiry, and more

research is required before we know which statistical measures of form-

function contingency are more predictive of acquisition and processing.

Ellis and Larsen-Freeman (2009) provided computational (Emergent

connectionist) serial-recurrent network simulations of these various factors

as they play out in the emergence of constructions as generalized linguistic

schema from their frequency distributions in the input. This fundamental

claim that Zipfian distributional properties of language usage helps to

make language learnable has thus begun to be explored for these three

VACs, at least. But three VACs is a pitifully small sample of English

grammar. It remains an important research agenda to explore its generality

across the wide range of the verb constructicon.
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The primary motivation of construction grammar is that we must bring

together linguistic form, learner cognition, and usage. An important con-

sequence is that constructions cannot be defined purely on the basis of

linguistic form, or semantics, or frequency of usage alone. All three factors

are necessary in their operationalization and measurement. Psychology

theory relating to the statistical learning of categories suggests that con-

structions are robustly learnable when they are (1) Zipfian in their type-

token distributions in usage, (2) selective in their verb form occupancy,

and (3) coherent in their semantics. Our research aims to assess this for a

sample of the verbal grammar of English, analyzing the way VACs map

form and meaning, and providing an inventory of the verbs that exemplify

these constructions and their frequency.

4. Method

As a starting point, we considered several of the major theories and data-

sets of construction grammar such as FrameNet (Fillmore, Johnson, and

Petruck 2003). However, because our research aims to empirically determine

the semantic associations of particular linguistic forms, it is important that

such forms are initially defined by bottom-up means that are semantics-

free. There is no one in corpus linguistics who ‘trusts the text’ more than

Sinclair (2004) in his operationalizations of linguistic constructions on

the basis of repeated patterns of words in collocation, colligation, and

phrases. Therefore we chose the definitions of VACs presented in the

Verb Grammar Patterns (Hunston and Francis 1996) that arose out of

the COBUILD project (Sinclair 1987) for our first analyses. We focus on

a convenience sample of 23 constructions for our initial explorations here.

Most of these follow the verb – preposition – noun phrase structure, such

as V into N, V after N, V as N (Goldberg 2006), but we also include

other classic examples such as the ditransitive, and the way construction

(Jackendo¤ 1997).

4.1. Step 1 Construction Inventory: COBUILD Verb Patterns

The form-based patterns described in the COBUILD Verb Patterns

volume (Francis, Hunston, and Manning 1996) take the form of word

class and lexis combinations, such as V across N, V into N and V N N.

For each of these patterns the resource provides information as to the

structural configurations and meaning groups found around these patterns

through detailed concordance analysis of the Bank of English corpus
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during the construction of the COBUILD dictionary. For instance, the

following is provided for the V across N pattern (Francis, Hunston, and

Manning 1996):

The verb is followed by a prepositional phrase which consists of across and a
noun group.

This pattern has one structure:

* Verb with Adjunct.
I cut across the field.

Further example sentences drawn from the corpus are provided and a list

of verbs found in the pattern and that are semantically typical are given.

For the V across N pattern these are: brush, cut, fall, flicker, flit, plane,

skim, sweep. No indication is given as to how frequent each of these types

are or how comprehensive the list of types is. Further structural (syntacti-

cal) characteristics of the pattern are sometimes provided, such as the fact

that for V across N the prepositional phrase is an adjunct and that the

verb is never passive. There are over 700 patterns of varying complexity

in the Grammar Patterns volume. In subsequent work we hope to analyze

them all in the same ways we describe here for our sample of 23.

4.2. Step 2 Corpus: BNC XML Parsed Corpora

To get a representative sample of usage, the analysis of verb type-token

distribution in the kinds of construction patterns described in Step 1

should be done across corpora in the magnitude of the tens or hundreds

of millions of words. Searching for the pattern as specified requires that

the corpora be part-of-speech tagged, and some kind of partial parsing

and chunking is necessary to apply the necessary structural constraints

(see Mason and Hunston 2004 for exploratory methodology). For this

initial work, we chose to use the 100 million word BNC (2007) on account

of its size, the breadth of text types it contains and the consistent lemmati-

zation and part-of-speech tagging. Andersen et al. (2008) parsed the XML

version of the BNC using the RASP parser (Briscoe, Carroll, and Watson

2006). RASP is a statistical feature-based parser that produces a probabil-

istically ordered set of parse trees for a given sentence and additionally

a set of grammatical relations that capture ‘‘those aspects of predicate-

argument structure that the system is able to recover and is the most stable

and grammar independent representation available’’ (Briscoe, Carroll, and
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Watson 2006). For each VAC, we translate the formal specifications from

the COBUILD patterns into queries to retrieve instances of the pattern

from the parsed corpus.

4.3. Step 3 Searching Construction Patterns

Using a combination of part-of-speech, lemma and dependency constraints

we construct queries for each of the construction patterns. For example,

the V across N pattern is identified by looking for sentences that have a

verb form within 3 words of an instance of across as a preposition, where

there is an indirect object relation holding between across and the verb

and the verb does not have any other object or complement relations to

following words in the sentence. Table 1 shows our 23 constructions, the

number of verb types that occupy them, the total number of tokens found,

and the type-token ratio.

We have still to carry out a systematic precision-recall analysis, but the

strict constraints using the dependency relations provides us with a good

precision and the size of the corpus results in a reasonable number of

tokens to carry out distributional analysis. In future, we plan to use a

number of di¤erent parsers [e.g. Stanford (Klein and Manning 2003),

Pro3Gres (Schneider, Rinaldi, and Dowdall 2004), MALT (Nivre, Hall,

and Nilsson 2004), and Link (Grinberg, La¤erty, and Sleator 1995)] over

the same corpora and use a consensus-based selection method where

sentences will be counted if two or more parsers agree (according to queries

particular to their parsing output) that it is an instance of a particular con-

struction pattern. Further we will select samples of certain VAC distribu-

tions for manual evaluation.

4.4. Step 4 A Frequency Ranked Type-Token VAC Profile

The sentences extracted using this procedure outlined for each of the con-

struction patterns are stored in a document database. This database can

then be queried to produce verb type distributions such as those in Table

2 for the V across N VAC pattern. These distributions appear to be

Zipfian, exhibiting the characteristic long-tailed distribution in a plot of

rank against frequency. We have developed scripts in R (R Development

Core Team 2008) to generate logarithmic plots and linear regression to

examine the extent of this trend. Dorogovstev & Mendes (2003) outline the

use of logarithmic binning of frequency against log cumulative frequency

methods for measuring distributions of this type. Linear regression can be

applied to the resulting plots and goodness of fit (R2) and the slope (g)
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recorded. Figure 1 shows such a plot for verb type frequency of the V

across N construction pattern extracted from the BNC grouping types

into 20 logarithmic bins according to their frequency. Each point repre-

sents one bin and a verb from each group is randomly selected to label

the point with its token frequency in parentheses. For example, the type

look occurs 102 times in the V across N pattern and is placed into the

15th bin with the types go, lie and lean. Points towards the lower right of

the plot indicate high-frequency low-type groupings and those towards the

top left low-frequency high-type groupings, that is the fat- or long-tail of

the distribution.

Table 1. Type-Token data for 23 VACs drawn from COBUILD Verb Patterns
retrieved from the BNC

Construction Types Tokens TTR Lead verb type

V about N 365 3519 10.37 talk

V across N 799 4889 16.34 come

V after N 1168 7528 15.52 look

V among pl-N 417 1228 33.96 find

V around N 761 3801 20.02 look

V as adj 235 1012 23.22 know

V as N 1702 34383 4.95 know

V at N 1302 9700 13.42 look

V between pl-N 669 3572 18.73 distinguish

V for N 2779 79894 3.48 look

V in N 2671 37766 7.07 find

V into N 1873 46488 4.03 go

V like N 548 1972 27.79 look

V N N 663 9183 7.22 give

V o¤ N 299 1032 28.97 take

V of N 1222 25155 4.86 think

V over N 1312 9269 14.15 go

V through N 842 4936 17.06 go

V to N 707 7823 9.04 go

V towards N 190 732 25.96 move

V under N 1243 8514 14.6 come

V way prep 365 2896 12.6 make

V with N 1942 24932 7.79 deal
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Figure 2 shows such the same type of plot for verb type frequency of

the ditransitive V N N construction pattern extracted and binned in the

same way. Both distributions produce a good fit (R2 > 0.99) with a straight

regression line, indicating a Zipfian type-token frequency distributions

Figure 1. Verb type distribution for V across N
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for these constructions. Inspection of the construction verb types, from

most frequent down, also demonstrates that, as in prior research (Ellis

& Ferreira-Junior, 2009b; Goldberg, et al., 2004; Ninio, 1999, 2006), the

lead member is prototypical of the construction and generic in its action

semantics.

Figure 2. Verb type distribution for V N N
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If Zipf ’s law applies across language, then any sample of language will

be Zipfian-distributed, rendering such findings potentially trivial (we

elaborate on this in Step 7). But they become much more interesting if

the company of verb forms occupying a construction is selective, i.e. if

the frequencies of the particular VAC verb members cannot be predicted

from their frequencies in language as a whole. We measure the degree to

which VACs are selective like this using a variety of measures including

a chi-square goodness-of-fit test, and the statistic ‘1-tau’ where Kendall’s

tau measures the correlation between the rank verb frequencies in the

construction and in language as a whole. Higher scores on both of these

metrics indicate greater VAC selectivity. Another useful measure is Shannon

entropy for the distribution. Entropy is a measure of the uncertainty asso-

ciated with a random variable – it is a¤ected by the number of types in the

system and the distribution of the tokens of the types. If there is just one

type, then the system is far from random, and entropy is low. If there are

ten types of equal probability, the system is quite random, but if 99% of

the tokens are of just one type, it is far less random, and so on. The lower

the entropy the more coherent the VAC verb family. Construction scores

on all these measures are given later in Table 4.

4.5. Step 5 Determining the Contingency between Verbs and VACs

Some verbs are closely tied to a particular construction (for example,

give is highly indicative of the ditransitive construction, whereas leave,

although it can form a ditransitive, is more often associated with other

constructions such as the simple transitive or intransitive). As we described

above, the more reliable the contingency between a cue and an outcome,

the more readily an association between them can be learned (Shanks

1995), so constructions with more faithful verb members are more trans-

parent and thus should be more readily acquired (Ellis 2006). The measures

of contingency that we adopt here are (1) faithfulness – the proportion

of tokens of total verb usage that appear this particular construction

(e.g., the faithfulness of give to the ditransitive is approximately 0.40;

that of leave is 0.01, (2) directional one-way associations, contingency

(DP Construction!Word: give 0.314, leave 0.003) and (DP Word !
Construction: give 0.025, leave 0.001) (e.g. Ellis & Ferreira-Junior, 2009),

and (3) directional mutual information (MI Word!Construction: give

16.26, leave 11.73 and MI Construction!Word: give 12.61 leave 9.11),

an information science statistic that has been shown to predict language

processing fluency (e.g., Ellis, Simpson-Vlach, and Maynard 2008; Jurafsky
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2002). Table 2 lists some of these contingency measures for the verbs

occupying the V across N VAC pattern.

It is instructive to reorder the distribution according to these measures

and consider the top items in terms of how characteristic of the VAC

semantics they are (this is a standard option for each VAC listed on the

website we are developing to allow open-access to our analyses). For the

V across N VAC pattern, more generic movement verbs come, walk, cut,

run, spread and move top the list ordered by token frequency. But when

ordered according to verb to construction faithfulness, the items are

much more specific in their meaning, though of low frequency: scud,

skitter, sprawl, flit, emblazon and slant. The average faithfulness, MI and

DP scores across the members of the construction are also important

metrics, illustrating the degree to which VACs are selective in their

membership. We show examples later in Table 4.

Table 2. Top 20 verbs found in the V across N construction pattern in the BNC

Verb Constr.
Freq.

Corpus
Freq.

Faith. Token*
Faith

MI
word!
constr

MI
constr!
word

DP
word!
constr

DP
constr!
word

come 474 122107 0.0039 1.840 15.369 10.726 0.004 0.089

walk 203 17820 0.0114 2.313 16.922 15.056 0.011 0.040

cut 197 16200 0.0122 2.396 17.016 15.288 0.012 0.039

run 175 36163 0.0048 0.847 15.687 12.800 0.005 0.034

spread 146 5503 0.0265 3.874 18.142 17.971 0.026 0.030

move 114 34774 0.0033 0.374 15.125 12.295 0.003 0.021

look 102 93727 0.0011 0.111 13.534 9.273 0.001 0.015

go 93 175298 0.0005 0.049 12.498 7.333 0.000 0.008

lie 80 18468 0.0043 0.347 15.527 13.610 0.004 0.015

lean 75 4320 0.0174 1.302 17.530 17.708 0.017 0.015

stretch 62 4307 0.0144 0.893 17.260 17.442 0.014 0.012

fall 57 24656 0.0023 0.132 14.621 12.287 0.002 0.010

get 52 146096 0.0004 0.019 11.922 7.020 0.000 0.002

pass 42 18592 0.0023 0.095 14.588 12.661 0.002 0.007

reach 40 21645 0.0018 0.074 14.298 12.152 0.002 0.007

travel 39 8176 0.0048 0.186 15.666 14.924 0.004 0.007

fly 38 8250 0.0046 0.175 15.616 14.861 0.004 0.007

stride 38 1022 0.0372 1.413 18.629 20.887 0.037 0.008

scatter 35 1499 0.0233 0.817 17.957 19.663 0.023 0.007

sweep 34 2883 0.0118 0.401 16.972 17.734 0.011 0.007
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4.6. Step 6 Identifying the Meaning of Verb Types Occupying the

Constructions

We are investigating several ways of analyzing verb semantics. Because

our research aims to empirically determine the semantic associations of

particular linguistic forms, ideally the semantic classes we employ should

be defined in a way that is free of linguistic distributional information,

otherwise we would be building in circularity. Therefore distributional

semantic methods such as Latent Semantic Analysis (LSA, Landauer et

al. 2007) are not our first choice here. Instead, here we utilize WordNet,

a distribution-free semantic database based upon psycholinguistic theory

which has been in development since 1985 (Miller 2009). WordNet places

words into a hierarchical network. At the top level, the hierarchy of verbs

is organized into 559 distinct root synonym sets (‘synsets’ such as move1

expressing translational movement, move2 movement without displace-

ment, etc.) which then split into over 13,700 verb synsets. Verbs are linked

in the hierarchy according to relations such as hypernym [verb Y is a

hypernym of the verb X if the activity X is a (kind of ) Y (to perceive is

an hypernym of to listen], and hyponym [verb Y is a hyponym of the

verb X if the activity Y is doing X in some manner (to lisp is a hyponym

of to talk)]. Various algorithms to determine the semantic similarity between

WordNet synsets have been developed which consider the distance between

the conceptual categories of words, as well as considering the hierarchical

structure of the WordNet (Pedersen, Patwardhan, and Michelizzi 2004).

Polysemy is a significant issue of working with lexical resources such as

WordNet, particularly when analyzing verb semantics. For example, in

WordNet the lemma forms move, run and give used as verbs are found

in 16, 41 and 44 di¤erent synsets respectively. To address this we have

applied word sense disambiguation tools specifically designed to work

with WordNet (Pedersen and Kolhatkar 2009) to the sentences retrieved

at Step 3.

4.7. Step 7 Generating Distributionally-Matched, Control Ersatz

Constructions (CECs)

Miller (1965) in his preface to the MIT Press edition of Zipf ’s (1935)

Psychobiology of Language claimed that Zipfian type-token frequency dis-

tributions are essentially uninteresting artifacts of language in use rather

than important factors in acquisition. His ‘‘monkey at the typewriter’’

(1957) word generation model produces random words of arbitrary average

length as follows: With a probability s, a word separator is generated at
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each step, with probability ð1� sÞ=N, a letter from an alphabet of size N

is generated, each letter having the same probability. That the monkey at

the typewriter model produces gibberish that is Zipfian well-distributed

thence rendered Zipf ’s law uninteresting for linguistics for several decades

(see also Manning and Schütze 1999). Li (1992) reawakened the issue with

further demonstrations that random texts exhibit Zipf ’s law-like word

frequency distributions. Ferrer-i-Cancho and Solé (2002) responded by

showing that random texts lose the Zipfian shape in the frequency versus

rank plot when words are restricted to a certain length, which is not

the case in real texts. As they conclude: ‘‘By assuming that Zipf ’s law is a

trivial statistical regularity, some authors have declined to include it as

part of the features of language origin. Instead, it has been used as a given

statistical fact with no need for explanation. Our observations do not

give support to this view.’’ Nevertheless Yang (2010) claims that item/

usage-based approaches to language acquisition, which typically make

use of the notion of constructions, have failed to amass su‰cient empirical

evidence and to apply the necessary statistical analysis to support their

conclusions. He asserts that it is the Zipfian nature of language itself (‘the

sparse data problem’) that gives rise to apparent item-specific patterns. In

response to these possibilities, for every VAC we analyze, we generate a

distributionally-yoked control which is matched for type-token distribution

but otherwise randomly selected to be grammatically and semantically un-

informed. We refer to these distributions as ‘control ersatz constructions’

(CECs). We then assess, using paired-sample tests, the degree to which

VACs are more coherent than expected by chance in terms of the associa-

tion of their grammatical form and semantics. We show such comparisons

for illustration VACs and their yoked CECs later in Tables 4, 5 and 6.

The goal in generating CECs is to produce a distribution with the same

number of types and tokens as the VAC. To do this we use the following

method. For each type in a distribution derived from a VAC pattern (e.g.

walk in V across N occurs 203 times), ascertain its corpus frequency (walk

occurs 17820 times in the BNC) and randomly select a replacement type

from the list of all verb types in the corpus found within the same fre-

quency band (e.g. from learn, increase, explain, watch, stay, etc. which

occur with similar frequencies to give in the BNC). This results in a

matching number of types that reflect the same general frequency profile

as those from the VAC. Then, using this list of replacement types, sample

the same number of tokens (along with their sentence contexts) as in the

VAC distribution (e.g. 4889 for V across N ) following the probability dis-

tribution of the replacement types in the whole corpus (e.g. walk, with
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a corpus frequency of 17820, will be sampled roughly twice as often as

extend, which occurs 9290 times). The resulting distribution has an identical

number of types and tokens its matching VAC, although, if the VAC does

attract particular verbs, the lead members of the CEC distribution will

have a token frequency somewhat lower than those in the VAC.

4.8. Step 8 Evaluating Semantic Cohesion in the VAC Distributions

We have suggested that an intuitive reading of VAC type-token lists such

as in Table 2 shows that the tokens list captures the most general and

prototypical senses (come, walk, move etc. for V across N and give, make,

tell, o¤er for V N N ), while the list ordered by faithfulness highlights

some quite construction specific (and low frequency) items, such as scud,

flit and flicker for V across N. Using the structure of the verb component

of the WordNet dictionary, where each synset can be traced back to a root

or top-level synset, we are able to compare the semantic cohesion of the

top 20 verbs, using their disambiguated WordNet senses, from a given

VAC to its matching CEC. So for each verb in a VAC or CEC we query

the database for the disambiguated WordNet senses for the verb in the

instance sentences. For example, in V across N, the verb type move occurs

114 times across 5 synsets: move.v.1 (86x), move.v.2 (18x), move.v.3 (5x),

move.v.7 (1x) and move.v.8 (4x). Each of these synsets can be traced back

to a top or root level synset or may itself be that synset: move.v.1!
travel.v.1, move.v.2 ! move.v.2, move.v.3 ! move.v.3, move.v.7 !
change.v.3, move.v.8! act.v.1. Table 3 shows this for the V across N

VAC pattern, where the synsets come.v.1, walk.v.1, run.v.1, move.v.1,

go.v.1, fall.v.2, pass.v.1, travel.v.1, stride.v.1, stride.v.2 account for 744 of

the 4889 (15%) tokens, and share the top level hypernym synset travel.v.01.

In comparison, the most frequent root synset for the matching CEC, pro-

nounce.v.1, accounts for just 4% of the tokens. The VAC has a much

more compact semantic distribution, in that 5 top level synsets account

for a third of the tokens compared to the 21 required to account for the

same proportion for the CEC

We have explored two methods of evaluating the di¤erences between

the semantic sense distributions, such as the one in Table 3, for each

VAC-CEC pair. First, we can measure the amount of variation in the

distribution (i.e. its compactness) using Shannon entropy as we did in

Step 4. For these semantic distributions this can be done according to (1)

number of sense types per root (V across N VAC: 2.75 CEC: 3.37) (so

ignoring the token frequency column in Table 3) and (2) the token fre-
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Table 3. Disambiguated WordNet senses for the top 20 verbs found in the V across
N VAC and yoked CEC distributions from the BNC and the root verb
synsets to which they belong (Top 12 root synsets shown for VAC and CEC).

Actual V across N VAC distribution Random V across N CEC distribution

Root verb
synset

Specific
WordNet
senses

Freq. Cum.
%

Root verb
synset

Specific
WordNet
senses

Freq. Cum.
%

travel.v.01 come.v.1,
walk.v.1,
run.v.1,
move.v.1,
go.v.1,
fall.v.2,
pass.v.1,
travel.v.1,
stride.v.1,
stride.v.2

744 15 pronounce.v.01 say.v.6 193 04

be.v.03 come.v.9,
run.v.3,
go.v.7,
lie.v.1,
stretch.v.1,
pass.v.6,
reach.v.6,
sweep.v.5,
sweep.v.8

259 21 be.v.01 make.v.31,
go.v.10,
go.v.6,
take.v.38,
come.v.14,
look.v.2,
need.v.2,
work.v.14,
seem.v.1

183 08

be.v.01 come.v.12,
come.v.14,
cut.v.25,
run.v.12,
look.v.2,
lie.v.4,
lean.v.3,
fall.v.16,
fall.v.4,
get.v.33

233 25 travel.v.01 go.v.1,
come.v.1

154 11

move.v.02 cut.v.1,
run.v.26,
move.v.2,
lean.v.2,
fly.v.4

210 30 make.v.03 make.v.3,
make.v.5,
see.v.4,
give.v.13,
think.v.5,
work.v.11

123 13
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Actual V across N VAC distribution Random V across N CEC distribution

change.v.02 come.v.4,
cut.v.39,
run.v.38,
run.v.39,
spread.v.4,
go.v.4,
lean.v.1,
stretch.v.3,
stretch.v.9,
fall.v.26,
fall.v.3,
get.v.12,
get.v.2,
pass.v.18,
fly.v.7

198 34 think.v.03 see.v.5,
know.v.6,
give.v.10,
think.v.1,
think.v.2,
think.v.3,
try.v.2

100 15

spread.v.01 spread.v.1,
scatter.v.3

172 37 move.v.02 say.v.5,
set.v.1,
put.v.1

84 17

move.v.03 cut.v.14,
run.v.6,
spread.v.2,
move.v.3,
stretch.v.11,
reach.v.3,
sweep.v.2

106 39 transfer.v.05 give.v.17,
give.v.3

84 19

get.v.01 run.v.36,
get.v.1

41 40 understand.v.01 see.v.24,
take.v.6,
work.v.24

83 21

touch.v.01 fly.v.3 30 41 know.v.01 know.v.1 73 22

reach.v.01 reach.v.1 26 41 use.v.01 give.v.18,
use.v.1,
work.v.23,
put.v.4

73 24

guide.v.05 sweep.v.3 14 42 remove.v.01 take.v.17 72 25

happen.v.01 come.v.19,
come.v.3,
pass.v.8

14 42 change.v.02 make.v.30,
go.v.17,
go.v.30,
go.v.4,
see.v.21,
see.v.3,
know.v.5,
take.v.5,
come.v.4,
give.v.26,
find.v.12,
leave.v.8

67 26

(V9 5/4/12 14:41) WDG-LCB (155mm�230mm) TimesNRMT 1382 Rebuschat pp. 265–304 1382 Rebuschat_09_pisoni (p. 286)
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quency per root (V across N VAC: 2.08 CEC: 3.08), the lower the entropy

the more coherent the VAC verb semantics. These figures are calculated

for all 23 VACs and CECs and shown in Tables 4 and 5 as (1) Type

entropy per root synset and (2) Token entropy per root synset. Secondly,

we can develop the observation for the distribution in Table 3 that the

top three root synsets, in the VAC account for 25% (1236) of the tokens

compared to 11% (530) for the CEC. Third, we quantify the semantic

coherence or ‘clumpiness’ of the disambiguated senses for the top 20 verb

forms in the VAC and CEC distributions using measures of semantic

similarity from WordNet and Roget’s. Pedersen et al (2004) outline six

measures in their Perl WordNet::Similarity package, three ( path, lch and

wup) based on the path length between concepts in WordNet Synsets and

three (res, jcn and lin) that incorporate a measure called ‘information con-

tent’ related to concept specificity. For instance, using the res similarity

measure (Resnik 1995) the top 20 verbs in V across N VAC distribution

have a mean similarity score of 0.353 compared to 0.174 for the matching

CEC.

5. Results

Our core research questions concern the degree to which VAC form, func-

tion, and usage promote robust learning. As we explained in the theoretical

background, the psychology of learning as it relates to these psycholinguis-

tic matters suggests, in essence, that learnability will be optimized for con-

structions that are (1) Zipfian in their type-token distributions in usage, (2)

selective in their verb form occupancy, (3) coherent in their semantics.

Their values on the metrics we have described so far are illustrated for

the 23 VACs in Table 4 along with those for their yoked CECs in Table 5.

Table 6 contrasts between the VACs and the CECs on these measures

as the results of paired-sample t-tests.

The results demonstrate:

5.1. Type-token Usage Distributions

All of the VACs are Zipfian in their type-token distributions in usage

(VACs: M g ¼ �1.00, MR2 ¼ 0.98). So too are their matched CECs

(M g ¼ �1.12, M R2 ¼ 0.96). The fit is slightly better for the VACs than

the CECs because the yoked-matching algorithm tends to make the

topmost types of the CEC somewhat less extreme in frequency than is

found in the real VACs (because particular verbs are attracted to particular

1
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VACs), and so the fit line is not pulled out into so extreme a tail. Inspection

of the graphs for each of the 23 VACs shows that the highest frequency

items take the lion’s share of the distribution and, as in prior research (Ellis

& Ferreira-Junior, 2009b; Goldberg, et al., 2004; Ninio, 1999, 2006), the

lead member is prototypical of the construction and generic in its action

semantics (see the rightmost column in Table 1).

5.2. Family Membership and Type Occupancy

VACs are selective in their verb form family occupancy. There is much

less entropy in the VACs than the CECs, with fewer forms of a less

evenly-distributed nature (M distribution Entropy VAC 4.97, CEC 5.54,

p < .0001). The distribution deviation from verb frequency in the language

as a whole is much greater in the VACs than the CECs (M w2 VAC 69411,

CEC 698, p < .0001). The lack of overall correlation between VAC verb

frequency and overall verb frequency in the language is much greater in

the VACs (M 1� t VAC 0.76, CEC 0.21, p < .002).

Individual verbs select particular constructions (M MIw-c VAC 14.16,

CEC 12.80, p < .01) and particular constructions select particular words

(M DPc-w VAC 0.006, CEC 0.004, p < .0001). Overall then, there is greater

contingency between verb types and constructions.

5.3. Semantic Coherence

VACS are coherent in their semantics with lower type (M VAC 3.10, CEC

3.51, p < .0001) and token (M VAC 2.41, CEC 3.08, p < .0001) sense

entropy. Figure 3 shows distributions of the root synsets for the top 20

types of each of the VAC-CEC pairs through plots of logarithmic token

frequency against rank – in each pair, fewer senses cover more of the

VAC uses than the CEC. Figure 3 also shows the proportion of tokens

accounted for by the top three root synsets (e.g. for V across N: VAC

0.25 CEC 0.11). The proportion of the total tokens covered by their three

most frequent WordNet roots is much higher in the VACs (M VAC

0.26, CEC 0.11, p < .0001). Finally, the VAC distributions are higher on

the Pedersen semantic similarity measures (M lch VAC 0.13, CEC 0.09,

p < .0002) (M res VAC 0.24, CEC 0.22, p < .0001).

6. Discussion

Twenty-three constructions is a better sample of constructions than three,

and the 16,141,058 tokens of verb usage analyzed here is a lot more repre-

sentative than the 14, 474 analyzed in Ellis & Ferreira-Junior (2009a,b).
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Figure 3. Distribution of WordNet root verb synsets for VACs and CECs
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Nevertheless, the conclusions from those earlier studies seem to generalize.

We have shown:

– The frequency distribution for the types occupying the verb island of

each VAC are Zipfian.

– The most frequent verb for each VAC is much more frequent than the

other members, taking the lion’s share of the distribution.

– The most frequent verb in each VAC is prototypical of that construc-

tion’s functional interpretation, albeit generic in its action semantics.

– VACs are selective in their verb form family occupancy:

– Individual verbs select particular constructions.

– Particular constructions select particular verbs.

– There is greater contingency between verb types and constructions.

– VACS are coherent in their semantics.

Psychology theory relating to the statistical learning of categories sug-

gests that these are the factors which make concepts robustly learnable.

We suggest, therefore, that these are the mechanisms which make lin-

guistic constructions robustly learnable too, and that they are learned by

similar means.

7. Future Work

7.1. An Exhaustive Inventory of English VACs

This is still a small sample from which to generalize. In subsequent work

we intend to analyze the 700þ patterns of Verb Pattern Grammar volume

as found in the 100 million words of the BNC. Other theories of construc-

tion grammar start from di¤erent motivations, some more semantic [e.g.

Framenet (Fillmore, Johnson, and Petruck 2003) and VerbNet (Kipper

et al. 2008; Palmer 2010; Levin 1993)], some alternatively syntactic [e.g.

the Erlangen Valency Patternbank (Herbst and Uhrig 2010; Herbst et al.

2004)], and so present di¤erent, complementary descriptions of English verb

grammar. Given time, we hope to analyze usage patterns from these

descriptions too. We are particularly interested in whether these inven-

tories represent optimal partitioning of verb semantics, starting with basic

categories of action semantics and proceeding to greater specificity via

Zipfian mapping.

7.2. Learner Language

We are also interested in extending these approaches to learner language

to investigate whether first and L2 learners’ acquisition follows the same
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construction distributional profiles. We have done some initial pilot work

to test the viability of our methods by extracting 18 of the same VAC

patterns from American English and British English child language acqui-

sition corpora in CHILDES (MacWhinney 2000, 2000) transcripts. Child

directed speech (CDS, over 6.8 million words) was separated from the

speech of the target child (over 3.6 million words) for the UK and USA

components of the database where dependency parsing of each utterance

is available (Sagae et al. 2007). The same analysis steps described here

are equally viable with learner language. In our initial explorations

(O’Donnell and Ellis submitted) we build on the types of analysis carried

out in Goldberg, Casenhiser & Sethuraman (2004) that demonstrate how

the frequency profiles of CDS are reproduced in child language. For

example, for the V across N VAC pattern go is the most frequent type in

both CDS and child speech. Likewise, for V over N we found go and jump

as the first types in both samples. For V with N the top 4 types, play, go,

do, come, are shared, as they are for V under N: go, look, get, hide and

the top two for V like N: look and go. The nature of CDS with respect

to more general English can also be examined. Applying the various con-

tingency and semantic measures discussed above we found the 10 most

faithful types to the VAC pattern V like N were: 1) from the BNC: glitter,

behave, gleam, bulge, shape, flutter, glow, shine, sound, sway (with a wup

similarity score of 0.3559) and 2) for CDS: sound, act, shape, smell, taste,

look, yell, feel, talk, fit (wup 0.4564). This initial analysis points both

to the more frequent use of generic verbs (e.g. go and do) in CDS and

a tighter semantic coherence in the items most associated with specific

VACs. These steps need next to be done for the complete inventory of

VACs so that a comparison can be made of general usage (BNC), CDS,

and child language acquisition at di¤erent stages.

7.3. Determinants of Learning

Once we have these parallel datasets of su‰cient scale, we can undertake

a principled empirical analysis of the degree to which the psychological

factors outlined really do determine acquisition. For each VAC in the input

we will have the data relating to frequency, distributional, contingency, and

semantic factors which learning theory considers important in acquisition.

With the staged child language acquisition analyzed in the same way, we

can test out these predictions and explore how the di¤erent factors conspire

in the emergence of language.
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7.4. Modeling Acquisition

As we have argued in an upcoming review of statistical corpus linguistics

and language cognition (Ellis in press), the field as a whole needs to work

on how to combine the various corpus metrics that contribute to learnability

into a model of acquisition rather than a series of piecemeal univariate

snapshots. We have developed some connectionist methods for looking at

this and trialed them with just the three VACs VL, VOL, and VOO (Ellis

and Larsen-Freeman 2009), but that enterprise and the current one are of

hugely di¤erent scales. We need models of acquisition that relate such

VAC measures as applied to the BNC and CDS to longitudinal patterns

of child language and L2 acquisition.

8. Conclusion

This research shows some promise towards an English verb grammar

operationalized as an inventory of VACs, their verb membership and their

type-token frequency distributions, their contingency of mapping, and

their semantic motivations. Our initial analyses show that constructions

are (1) Zipfian in their type-token distributions in usage, (2) selective in

their verb form occupancy, and (3) coherent in their semantics. Psychology

theory relating to the statistical learning of categories suggests that these are

the factors which make concepts robustly learnable. We suggest therefore,

that these are the mechanisms which make linguistic constructions robustly

learnable too, and that they are learned by similar means.

9. Epilogue

Phoebe was a black and brindle collie-cross (Figure 4). She was 12 years

old when we brought her to (VOLto) the US. It was Michigan, February,

blue skies over 12 00 of snow. We collected her, dehydrated, from (VOLfrom)

DTW, left the airport, and pulled onto (VLonto) the nearest safe verge to

let her out (VOLout) of her travel-kennel. It had been a long flight and we

were somewhat concerned, but after a typically warm reunion, she looked

at (VLat) the strange whiteness, and then, like a wolf pouncing on (VLon)

a mouse, she ponked into (VLinto) the snow.
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