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Defect passivation of transition metal dichalcogenides
via a charge transfer van der Waals interface
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Integration of transition metal dichalcogenides (TMDs) into next-generation semiconductor platforms has been
limited due to a lack of effective passivation techniques for defects in TMDs. The formation of an organic-inorganic
van der Waals interface between a monolayer (ML) of titanyl phthalocyanine (TiOPc) and a ML of MoS2 is investi-
gated as a defect passivation method. A strong negative charge transfer from MoS2 to TiOPc molecules is observed
in scanning tunneling microscopy. As a result of the formation of a van der Waals interface, the ION/IOFF in back-
gated MoS2 transistors increases by more than two orders of magnitude, whereas the degradation in the photo-
luminescence signal is suppressed. Density functional theory modeling reveals a van der Waals interaction that
allows sufficient charge transfer to remove defect states in MoS2. The present organic-TMD interface is a model
system to control the surface/interface states in TMDs by using charge transfer to a van der Waals bonded complex.
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INTRODUCTION
Because silicon complementary metal-oxide semiconductor (CMOS)
technology has scaled down to a few nanometers, the performance of
CMOS transistors has faced fundamental limitations, such as short-
channel effects (1, 2). Layered transitionmetal dichalcogenides (TMDs)
have been considered as next-generation semiconductor platforms
(3–5) because their atomically thin body allows enhanced electrostatic
gate control and atomically scaled precision thickness control of the
channel (6, 7) while suppressing the formation of undesired dangling
bonds on the channel (8, 9). In addition, several TMDs exhibit a direct
band gap in amonolayer (ML), thereby broadening their applications to
potential candidates for optoelectronic devices (10, 11).

One major obstacle to using TMDs for semiconductor or opto-
electronic platforms is the existence of intrinsic defects (12–16). Because
of volatile chalcogens in the compounds, TMDs typically have a defi-
ciency of chalcogen atoms at their surfaces, resulting in trapping states
or undesirable doping (12). Moreover, surface adsorbates introduced
from fabrication processing or ambient air can perturb the electronic
or optical properties of TMDs (17). The existence of these surface de-
fectsmostly results in the degradation of the ION/IOFF ratio in field-effect
transistors (FETs) or poor luminescence quantum yields (13–15).
Therefore, effective surface passivation of TMDs is pivotal to obtaining
high-performance devices.

To passivate defect states in TMDs, the passivation method should
deactivate only the defect states without a permanent change in the in-
trinsic crystal and electronic structure of TMDs. Moreover, the ad-
sorbed molecules should be chemically and thermally stable on
TMDs; consequently, they should not decompose or desorb during the
fabrication processes nor during operation under ambient conditions.
Surface treatments using substitution of extrinsic atoms or adsorption
of molecules have been used to enhance photoluminescence (PL)
(18–21), whereas the deposition of thick organic films to form p-n junc-
tions has been used for potential photodetector applications (22). How-
ever, most of these treatments only improve the PL performance
without enhancements of electronic performance, and the deposition
of thick organic layers degrades electrical performance (20, 22).

Here, the deactivation of charged defect states is induced by the
formation of an organic-inorganic van der Waals interface between
single-layer titanyl phthalocyanine (TiOPc) and single-layer MoS2.
Metal phthalocyanines (MPcs) are known to form uniform structured
interfaces with various metal and semiconductor surfaces because
the planar structure of p-conjugated rings induces a flat-lying MPc/
substrate configuration (23–25). Moreover, most MPcs have high
thermal stability (26), and the flat-lying MPc/substrate structure ensures
that the first layer of MPcs is more tightly bound than all other layers,
enabling a simple postdeposition anneal to form a uniformML of MPcs
on TMDs. For passivation of TMDs, a single ML is used to simplify the
bonding model. Among the various MPc molecules, TiOPc is chosen in
this report to form a defect passivation layer, because it has an intrinsic
net dipole at the central O-Ti group (27); consequently, a strong non-
bonding interaction can be expected with MoS2, without the direct dis-
ruption of phase and band structures in MoS2. Strong charge transfer
from MoS2 to TiOPc is observed with scanning tunneling microscopy
(STM) and spectroscopy (STS). Density functional theory (DFT) model-
ing is consistent with a van der Waals interaction that allows sufficient
charge transfer to remove midgap states in MoS2. As a result of the
electric defect passivation at the TiOPc/MoS2 interface, the ION/IOFF in
the back-gated transistors is increased by more than two orders of mag-
nitude with the improvements of a subthreshold slope (SS), whereas the
degradation of PL is fully suppressed.
RESULTS
Sulfur vacancies can be observed on the planes of chemical vapor dep-
osition (CVD) MoS2 ML grown on highly oriented pyrolytic graphite
(HOPG) (12, 28, 29). The present STM experiments were performed in
an ultrahigh vacuum (UHV) (2 × 10−11 torr) at 100 K. As shown in
Fig. 1A, the topographic STM image displays pinholes in the terrace
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of a MLMoS2 flake; most of these defects are 1.5 Å deep and 2 nm in
diameter, as shown in the left panel of Fig. 1B. On the basis of the
present STM study and the previous published results (28, 29), these
defects could be modeled as a few missing S atoms or both missing S
and Mo atoms, as shown in the right panel of Fig. 1B. One of the
defects is imaged via both empty-state (Fig. 1C) and filled-state modes
(Fig. 1D) in an expanded STM image. Although the defects are shown
as local depressions in both filled and empty states, the hexagonal
atomic structure and the moiré pattern of the defects appear in only
filled-state images.

A large electron population can be observed near defects of MoS2,
indicating that the vacancies in MoS2 result in excess charge density
(16), consistent with broken covalent bonds in the MoS2 planes. As
shown in the STS of Fig. 1E, two different local densities of states
(LDOSs) are observed on MoS2; a black STS, recorded far away from
a defect inML, has an apparent band gap of ~2.34 eVwith a Fermi level
(0 V) shifted to a conduction band (CB). This Fermi level is closer to the
CB than to the valence band (VB) by about 0.3 V. Conversely, in the red
STS, recorded close to a defect, large states are observed in the band gap,
consistent with near metallic LDOS. The increase in band edge states
results in an additional shift of the Fermi level toward the CB.

The band edge states are investigated by spatially resolved STS, as
shown in Fig. 1F; multiple STSs were obtained adjacent to and far away
from the defects. Large band edge states at the CB (shallow level) are
observed when the tip is near a defect in MoS2 (30). However, as the
STM tip is moved away from the defects, the band edge states decrease
significantly.
Park et al., Sci. Adv. 2017;3 : e1701661 20 October 2017
This negatively charged defect can be electrically deactivated by the
adsorption of TiOPc molecules onto the MoS2 ML. A few TiOPc mol-
ecules are deposited on MoS2 MLs using molecular beam epitaxy at
300 K for 10 s, as shown in Fig. 2A. For sub-ML, the coverage of TiOPc
molecules can be controlled by the deposition duration, as displayed in
fig. S5. Each TiOPc molecule is observed as circular with a height of
0.3 nm, as shown in Fig. 2B, even though the TiOPcmolecular structure
is nearly square, as shown in the inset. It is hypothesized that single
TiOPc molecules rotate on MoS2 surfaces (31) because of the absence
of locking, which is present at higher coverage.

To elucidate the electronic effects of single TiOPc molecule adsorp-
tion on MoS2 MLs, spatially resolved STS is used, following a dashed
arrow in Fig. 2C. In Fig. 2D, when the STM tip is positioned far away
from the TiOPc molecules, the Fermi level is near the CB. However, as
the STM tip approaches a TiOPcmolecule, the Fermi level moves away
from theCB to themiddle of the band gap. Finally, positioning the STM
tip near the TiOPc molecule results in the Fermi level moving close to
the VB. From the present STS, it can be hypothesized that the excess
negative charge in MoS2 is transferred to TiOPc molecules. It is noted
that although the deactivation of defect states via the adsorption of
TiOPc molecules on MoS2 relies on a charge transfer van der Waals
interaction, as shown in fig. S7, other driving forces also might be used
to passivate defect states, such as chemisorption on MoS2. However,
strong bonding forces can induce unintentional changes in the crystal
or electric structure (32).

The TiOPcML on theMoS2ML is investigated, as shown in Fig. 2E.
With increasing deposition duration of TiOPc without postdeposition
Fig. 1. Investigation of a bare ML MoS2 surface deposited on HOPG. (A) Large-area STM image showing the ML MoS2 terrace (Vs = 2 V, It = 40 pA). (B) Line trace
analysis of the white line in (A) and the schematic model of defects in MoS2. (C and D) Zoomed-in STM images of a single defect located on the ML MoS2 in the empty
(Vs = 1 V) and filled (Vs = −1 V) states, respectively (It = 230 pA). Scale bar, 1 nm; (D) at same magnification as (C). (E) STS measured on the terrace of a ML MoS2; the
black spectra are measured far away from the defects, whereas the red spectra are measured near a defect. (F) Spatial STS near the CB edge as a function of the
distance from the defect.
2 of 6

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on S
eptem

ber 1, 2018
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

annealing, a hexagonal packed TiOPcML is obtainedwith about 1.7-nm
lateral spacing, and the center of each TiOPc molecule appears as a
bright protrusion, consistent with the upward pointing of O–Ti to the
vacuum (33). In the STS of Fig. 2E, a 1.7-eV band gap is observed with
the Fermi level positioned near the lowest unoccupiedmolecular orbital.
Once a TiOPc ML is formed on MoS2, it is thermally stable on MoS2,
consistent with the tight binding between TiOPc andMoS2, as shown in
fig. S10. Note that because TiOPc molecules have only van der Waals in-
teraction with the MoS2 surface, it is hypothesized that the deposition of
TiOPcdoes not induce thephysical reconstructionsof defects in theMoS2.

DFT calculations are used to elucidate the change of the electronic
structure in MoS2 upon adsorption of TiOPc molecules. The projected
density of states (PDOS) of a defect-free MoS2 ML with two additional
electrons is shown by a black curve in Fig. 3A; there are no observable
states in the band gap. The two electrons were added to make theMoS2
n-type consistent with the experimental data. S vacancies induce a large
band gap state near the CB (orange dashed circle), as shown by the red
curve, and reduce the band gap of 2eMoS2. This defect state near theCB
can also be observed in defective MoS2 without the two electrons (neu-
tral state), shown by an orange dashed circle in the blue curve. In both
the 2e MoS2 and the neutral MoS2 cases, the defect states can be ob-
served near the CB edges, consistent with the existence of defect states
at shallow levels (30). These band gap states near the CB can result in
unintentional doping or trapping states in transistors (12, 14–16). The
DFTmodel of TiOPc passivation consisting of two TiOPcmolecules on
top of theMoS2 with a single S vacancy is shown in Fig. 3B. As shown in
Fig. 3C, the band edge states are suppressed, and the band gap is re-
Park et al., Sci. Adv. 2017;3 : e1701661 20 October 2017
stored to the original size in the PDOS of MoS2, consistent with electric
deactivation of defect states. It is noted that a tiny state is observed at
−0.8 eV in PDOS of MoS2. This state corresponds to the highest occu-
pied molecular orbital of TiOPc (red curve) in TiOPc/MoS2, and it is
included in the PDOS of MoS2 during the projections of orbitals.

To understand the source of passivation, the charge was calculated
as shown in the Supplementary Materials. For the TiOPc passivated
S(Vac)/MoS2 systemwith a net−2 charge, each TiOPc adsorbs a charge
of 0.8 electrons, as shown in table S2. Even for an uncharged TiOPc
passivated MoS2 system, each TiOPc adsorbs a charge of 0.5 electrons.
This is consistent with previous studies showing aromatic molecules
that lower the work function in metal surfaces via charge transfer (34).

The electrical characteristics of a four-point back-gated single-
layer MoS2 FET (channel length of 10 mm and width of 3 mm) with/
without a TiOPc passivation layer are investigated at a drain bias of
1 V, as shown in Fig. 4A. The black transfer curve is the sweep of bare
MoS2 showing a threshold voltage, VTH, of about −14 V with an ION/
IOFF ratio of 104. This depletion mode VTH is undesirably shifted to
negative voltages, which is indicative of S vacancies in the channel
and extrinsic charge dopants from the substrate (35). As shown in
the red curve, the annealing of the same MoS2 FET in a UHV further
degrades the ION/IOFF ratio with a negligible shift of the VTH. Converse-
ly, after the deposition of a TiOPc ML on the same MoS2 FET, the
ION/IOFF improves to greater than 107, because of a 100× reduction of
the OFF-state leakage and a return of an ON-state drive current to the
preannealed levels. In addition, the VTH positively shifts to 10 V be-
cause the TiOPc compensates for the excess charge. The SS below
Fig. 2. Effects of the formation of the interface at TiOPc/MoS2. (A) Few TiOPc molecules deposited on a MoS2 ML at 300 K (Vs = 2 V, It = 30 pA). Inset shows the
molecular structure of TiOPc. (B) Cross-sectional line trace of an adsorbed TiOPc molecule. (C) Single TiOPc adsorption with a black background. (D) Subset of dI/dV/I/V spectra
taken along the dashed arrow in (C). (E) Formation of a full-coverage ML TiOPc on a ML MoS2 and corresponding Fourier transform (Vs = 2 V, It = 50 pA). (F) STS of ML TiOPc on
a ML MoS2.
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the VTH also are improved from 6.7 to 1.6 V/dec by the deposition of a
TiOPc ML, suggesting the deactivation of some of the channel defects.

The deposition of TiOPcML does not induce degradation of the PL
of aMLMoS2 (Fig. 4B). To track the change in PL ofMoS2 uponTiOPc
deposition, we performed measurements on the same flake after exfo-
liation, annealing of MoS2 at 597 K in a UHV, and TiOPc deposition.
Before annealing, the MoS2 ML shows low luminescence with a broad
spectrum, which can be attributed to emission from both free excitons
and charged trions, which is typically observed in exfoliatedMoS2. After
annealing, a 2× increase is observed in PL. Moreover, the overall full
width at half maximum (FWHM) decreases from 95 to 52 meV, and
the emission from the charged trion is quenched.An additional increase
of PL intensity is observed after the deposition of a ML TiOPc on the
annealedMLMoS2with no change in the FWHM. In addition, a 20-meV
Park et al., Sci. Adv. 2017;3 : e1701661 20 October 2017
red shift is observed in the emission compared to annealed MoS2, con-
sistent with a 10-meV blue shift from bare MoS2 (36). This modest im-
provement in TiOPc/MoS2 could be interpreted as an increase in the
quantum yield of excitons by the transfer of excess charge to TiOPc (37).
DISCUSSION
The electrical deactivation of defect states at the interface of TiOPc/
MoS2 has been elucidated using STM and STS. The depletion of sulfur
results in an intrinsic n-shifted electronic structure in bare MoS2,
whereas the formation of a TiOPc/MoS2 interface induces a negative
charge transfer from MoS2 to TiOPc. It is noted that although there is
no clear evidence that defect sites can provide preferable adsorption sites
for TiOPc molecules during observation in STM, it can be hypothesized
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Fig. 3. DFT of TiOPc molecules adsorbed on ML MoS2. (A) PDOS of MoS2 with no defects and a sulfur vacancy. (B) Absorption of two TiOPc molecules on MoS2 with a
sulfur vacancy. (C) PDOS of TiOPc and MoS2 in TiOPc/MoS2. HOMO, highest occupied molecular orbital.
r 1, 2018
Fig. 4. Electrical and PL characteristics of MoS2 ML, with and without ML TiOPc. (A) Back-gated transfer characteristics of a ML MoS2 FET in log (solid curves) and
linear (dashed curves) scales, before and after deposition of ML TiOPc. (B) Room temperature PL of exfoliated ML MoS2 before and after deposition of ML TiOPc.
CPS, counts per second.
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that the total amount of charge transfer from a ML MoS2 to adsorbed
TiOPc molecules can be tuned by the coverage of TiOPc molecules on
MoS2.Moreover, the van derWaals interaction at the interface of TiOPc
and MoS2, such as the direction of charge transfer or the amount of
charge transfer, might be tuned by chemical functionalization of the
MPcs, such as adding additional groups to the benzene rings or modi-
fications of central atoms. For example, bare CuPc molecules are p-type
complexes under ambient conditions, whereas F16CuPc molecules are
n-type complexes under ambient conditions (38, 39); consequently,
the charge transfer with TMDs might be modified by the ligands on
the MPcs. DFT reveals that formation of a van der Waals interface
induces suppression of defect states in MoS2. As a result, the ION/IOFF
ratio and the SS in back-gated FET are greatly improved by the selec-
tive deactivation of defect states via the deposition ofMLTiOPc, with-
out changes in the band structure of MoS2 nor degradation of the PL
intensity, as shown in STM/STS, DFT, and PL. Conversely, the previous
results for TMDs passivated chemically via an introduction of extrinsic
atoms involved a permanent transition in crystal structure and therefore
induced a change in the band gap ofTMDs (40, 41). Adsorption of other
organic molecules, such as alkanethiol or thick organic layers, also in-
duced the degradations of the ION/IOFF ratio inMoS2 FETs (20, 22). It is
noted that in the present STM/STS and theDFTdata, the defect states at
shallow energy levels (near a CB edge) can be observedwith S vacancies,
whereas defects at deep energy levels (in the middle of a band gap) can-
not be observed in STM/STS. Because the present TiOPc/MoS2 charge
transfer van derWaals interface relies on the nonbonding interaction, it
may have limitations in passivating deep-level defect states. For deep-
level defects, a strong interaction, such as chemical reaction, may be re-
quired. Therefore, the present result suggests that the defect states in
TMDs can be controlled and passivated via using van der Waals
interface with organic ML.
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MATERIALS AND METHODS

MoS2 ML was prepared via two different methods, CVD growth
and mechanical exfoliation from bulk. The details are included in
the Supplementary Materials.

The TiOPc powder (95% purity) purchased from Sigma-Aldrich
was purified by multiple sublimations with a differentially pumped
effusion cell (EberlMBE-Komponenten) attached to aUHVSTMcham-
ber. Afterward, the effusion cell was heated to 633 K with a rate of 1 K/s,
while theMoS2/HOPG samples were placed in a UHV chamber. During
the deposition of TiOPc, the sample temperature was held at 300 K, and
the coverage of TiOPc on MoS2 was controlled by the deposition dura-
tion, as shown in the below separated part.

STM and STS (Omicron VT STM) were performed in a UHV
chamber (2 × 10−11 torr) using electrochemically etched tungsten tips,
while the samples were cooled at 100 K using liquid nitrogen. Before
performing STM and STS on MoS2/HOPG or TiOPc/MoS2/HOPG,
the STM tips were calibrated on an Si (100) surface and bare HOPG
surfaces.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/10/e1701661/DC1
Supplementary Materials and Methods
fig. S1. The SEM of as-grown MoS2 on HOPG via CVD showing two different areas.
fig. S2. STS of MoS2 ML taken far away from defects with fitting in a linear scale.
fig. S3. The large-area STM image of bare MoS2 grown by CVD on HOPG.
Park et al., Sci. Adv. 2017;3 : e1701661 20 October 2017
fig. S4. Raman spectra of a MoS2 ML before and after deposition of TiOPc under a 488-nm laser
excitation.
fig. S5. The deposition of TiOPc molecules on MoS2 ML via molecular beam epitaxy at 300 K.
fig. S6. Reproduced subset of dI/dV/I/V near the TiOPc molecule on MoS2 ML.
fig. S7. Tip-induced diffusion of TiOPc molecule on MoS2.
fig. S8. STM image and STS recorded in bulk MoS2–deposited TiOPc molecules.
fig. S9. Full ML of TiOPc on bulk MoS2 and corresponding STS of a TiOPc ML.
fig. S10. Thermal stability of a TiOPc ML on an MoS2 ML.
fig. S11. DFT calculations of net charge in a TiOPc/MoS2 ML; three different locations in MoS2
ML are selected, as shown in the circles.
fig. S12. Back-gated leakage current of a single-layer MoS2 FET, with VD = 1 V before and after
deposition of a TiOPc ML.
fig. S13. Back-gated transfer characteristics of a single-layer MoS2 FET, with VD = 0.1 V before
and after deposition of a TiOPc ML.
table S1. Summary of relative net charge of TiOPc and MoS2 (neutral) from three different
locations.
table S2. Net charge of TiOPc and MoS2 (−2e).
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