Deciphering the impacts of vaccination and immunity on pertussis epidemiology in Thailand

Julie C. Blackwood, Derek A. T. Cummings, Hélène Broutin, Sopon Iamsirithaworn, and Pejman Rohani

*Department of Ecology and Evolutionary Biology and 1Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109; 2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; 3Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5290-IRD 224-UM1-U2, 34394 Montpellier Cedex 5, France; 4Division of International Epidemiology and Population Study, 5Fogarty International Center, National Institutes of Health, Bethesda, MD 20892; and 6Bureau of Epidemiology, Ministry of Public Health, Nonthaburi 11000, Thailand

Edited by Roy Curtiss III, Arizona State University, Tempe, AZ, and approved April 16, 2013 (received for review December 3, 2012)

Pertussis is a highly infectious respiratory disease that is currently responsible for nearly 300,000 annual deaths worldwide, primarily in infants in developing countries. Despite sustained high vaccine uptake, a resurgence in pertussis incidence has been reported in a number of countries. This resurgence has led to critical questions regarding the transmission impacts of vaccination and pertussis immunity. We analyzed pertussis incidence in Thailand—both age-stratified and longitudinal aggregate reports—over the past 30 y. To dissect the contributions of waning pertussis immunity and repeat infections to pertussis epidemiology in Thailand following a pronounced increase in vaccine uptake, we used likelihood-based statistical inference methods to evaluate the support for multiple competing transmission models. We found that, in contrast to other settings, there is no evidence for pertussis resurgence in Thailand, with each model examined pointing to a substantial rise in herd immunity over the past 30 y. Using a variety of empirical metrics, we verified our findings by documenting signatures of changing herd immunity over the study period. Importantly, this work leads to the conclusion that repeat infections have played little role in shaping pertussis epidemiology in Thailand. Our results are surprisingly emphatic in support of measurable impact of herd immunity given the uncertainty associated with pertussis epidemiology.

Pertussis, or whooping cough, was historically considered a serious disease of childhood. Because of the high burden of morbidity and mortality associated with pertussis (1), routine vaccination programs were implemented in many developed countries during the 1940s and 1950s that led, in some instances, to a 99% reduction in reported incidence (2, 3). The success of these vaccination programs in reducing pertussis notifications led to optimism over its potential eradication, a sentiment that has since been replaced by widespread concern following high-profile outbreaks in populations with long-standing immunization, with the United States and Australia arguably experiencing the largest impacts of these resurgences (4–7).

Recent attempts to explain contemporary pertussis epidemiology have largely attributed the resurgence to the immunological consequences of vaccination and natural infection. In turn, uncertainty surrounding the role of a number of potentially key players has been highlighted, including the duration of naturally acquired and vaccine-induced immunity (8–11), limited natural immune boosting following the introduction of vaccine programs (10, 12), loss of vaccine efficacy resulting from antigenic divergence (13, 14), and, crucially, whether vaccines prevent pertussis transmission or simply reduce the incidence of disease (15–17). To assess the population-level consequences of immunity, we confront high-resolution incidence reports in Thailand with modern techniques for statistical inference to provide a mechanistic interpretation of the transmission impact of vaccination on pertussis immunity in Thailand. Using a series of competing transmission models, we demonstrate that declines in pertussis incidence coinciding with increases in vaccine uptake between 1984 and 1989 arose following reduction in pertussis circulation. Indeed, the maximum-likelihood estimate associated with each model points to a small or negligible transmission contribution of repeat infections, with vaccination effectively generating herd immunity.

To verify our conclusions, we use several empirical metrics to demonstrate that there is a true increase in herd immunity. We document dramatic changes in patterns of pertussis epidemiology, and quantify shifts in population measures of herd immunity. We report that over the time span of this study, there was a drastic decline in reported pertussis cases from Thailand, an effect that is especially pronounced among infants. Coincident with reduced incidence, we also found a rise in the critical community size. Overall, these observations are consistent with reduced pertussis circulation in Thailand.

Our findings shed light on key hotly debated aspects of pertussis epidemiology. First, these results indicate that current pediatric immunization programs in Thailand have successfully reduced pertussis transmission. Second, there is no empirical evidence for a resurgence in Thailand, with circulation of *Bordetella pertussis* effectively controlled by current vaccines. Finally, repeat infections appear to play an insignificant role in pertussis epidemiology in Thailand.

Results

Pertussis Data in Thailand. Fig. 1 provides a summary of the data from Thailand by displaying pertussis incidence, per capita birth rate, and vaccine uptake estimates in Thailand from 1981 to 2000 (see Materials and Methods for data sources). We split the incidence data into three distinct eras, according to vaccine uptake. During the first era (1981–1983), immunization levels were in the range 26–46%. The second era (1984–1989) was a transitional period with a rapid rise in uptake from ∼40% in 1984 to 90% in 1989. Finally, during the years from 1990 to 2000 (third era), uptake levels exceeded 90%. Pertussis outbreaks in Thailand were strongly annual during the first and second eras (1981–1990; Fig. 1). By the third vaccine era, epidemics were no longer significantly annual, incidence was low (<0.12 per 100,000), and has remained substantially below 1 per 100,000 since 2001, as shown by the most recently available incidence estimates from 2009 and 2010 (18, 19).

As shown in Fig. 1, over the time span of these data, Thailand underwent a demographic transition to lower per capita birth rates (20) in addition to substantial increases in vaccine uptake. Epidemiological theory has demonstrated that each of these covariates can lead to decreased incidence by reducing the rate at which the pool of susceptibles is replenished (21–23). Indeed, a negative relationship exists between pertussis incidence in Thailand and vaccine uptake (correlation coefficient $r = -0.897$)
$P = 0.0158$, and a positive association between incidence and birth rate ($r = 0.814, P = 0.0273$). However, as shown in SI Materials and Methods, the demographic transition had a limited impact on the overall pertussis dynamics.

Model Selection. Loss of immunity is a critical and hotly debated issue in pertussis epidemiology, and has been argued to play a considerable role in pertussis with the duration of naturally acquired immunity estimated to be between 7 and 20 y and 4 and 12 y from vaccine-induced immunity (9). Therefore, statistical inference (details in Materials and Methods and SI Materials and Methods) was used to evaluate the performance of the following competing transmission models: (I) Lifelong immunity. Baseline model that assumes perfect vaccine-induced and naturally acquired immunity [susceptible/infected/recovered (SIR) model]. (II) Waning immunity with reported repeat infections. Assumes naturally acquired and vaccine-derived immunity wane, and primary and repeat infections are reported with the same probability [susceptible/infected/recovered/susceptible (SIRS) model]. (III) Waning immunity with silent repeat infections. It has been postulated that repeat infections are less severe than primary infections; consequently, repeat infections may have lower reporting probabilities. We therefore considered a third model that allows us to differentiate between primary and repeat infections (SIRScIc model) (10, 24, 25).

Finally, recent advances in the literature have identified limited natural immune boosting following widespread vaccination as a possible driver of pertussis resurgence (10, 12). Further, in models II and III we assumed that all repeat infections contribute to transmission at the same rate as primary infections. We therefore considered one final model: (IV) Reduced secondary transmission and immune boosting. Repeat infections may transmit at a rate that differs from primary infections, and immunity can be boosted through natural exposure to *Bordetella pertussis* (SIRScIc model). In this more complex model, a susceptible individual who has previously been infected or vaccinated may have their immunity boosted upon reexposure with probability ϵ. There is also an associated boosting coefficient, κ, which modulates the force of infection, potentially reflecting the extent of antigenic stimulation following exposure.

In models II–IV, we assumed loss of immunity occurs at the same rate for both vaccine- and infection-derived immunity, because although naturally acquired immunity may involve a longer time scale than vaccine-induced immunity, the limited time span of our data rules out the confident estimation of an additional parameter. Further, given the low severity of repeat infections relative to primary cases, we assumed that all repeat infections go unreported in models III and IV. A schematic representation of each of the four models is provided in Fig. 2.

We used a formal hypothesis test to compare the relative performance of models I–IV by estimating the maximum-likelihood parameters and comparing the associated Akaike’s information criterion (AIC), which allows us to correct for the number of free parameters, for each model. To evaluate the role of waning immunity in models II–IV, we constructed a likelihood profile by systematically varying the mean duration of immunity ($1/\sigma$) from 5 to 70 y and maximizing the likelihood over all other parameters. For models II and III, the maximum-likelihood estimate (MLE) corresponds to a mean duration of immunity of 69 and 70 y, respectively—approximately the mean lifespan of an individual—with the likelihood decreasing as the duration of immunity is shortened (Fig. 3). This observation was confirmed by additionally testing out-of-fit predictions (see SI Materials and Methods, for details). Further, the AIC value associated with the SIR model is substantially lower than that produced by the best-performing SIRS and SIRScIc models (Table 1). Here, we can confidently reject both models of waning immunity, with the SIR model providing a more parsimonious explanation of the data.

We performed a similar analysis of model IV, with the probability of immune boosting upon reexposure, ϵ, ranging from zero to 0.95 ($\epsilon = 1$ corresponds to a SIR model). In contrast to models II and III, the duration of immunity in this model was not identifiable due to tradeoffs with the additional parameters, κ and κ, resulting in a flat likelihood profile (Fig. 3). Importantly, across the range of immune durations considered in this likelihood
profile, repeat infections accounted for only 4–6% of transmissions resulting in a primary case.

In our inference framework, once we accounted for the number of parameters required to estimate in each model, the SIR model performed best (i.e., ΔAIC = 0; Table 1). The ΔAIC score for model IV corresponds to 17, a value much smaller than the ΔAIC scores corresponding to models II and III, indicating that model IV performs substantially better than models II and III (Table 1). However, though the SIRS2I2 provides a good fit to the data, the SIR model always outperforms the competing models.

Our quantitative findings are supplemented with a demonstration of the dynamical differences between each model. Fig. 3 displays the mean and quartiles of 1,000 stochastic simulations generated using the maximum-likelihood parameter estimates for each model. Though model III performs qualitatively better than model II, both models resulted in poor agreement with the observed pertussis incidence, vastly overpredicting incidence in the transient era (vaccine era 2) with strong annual epidemics observed throughout the majority of the time series. We note that although the duration of immunity is long-lasting in these models, the assumption of exponentially distributed rates of immunity loss implies that some individuals rapidly lose immunity; this accounts for the difference in likelihood between models II and III compared with the SIR model (discussed further in SI Materials and Methods). In contrast, models I and IV accurately capture the dynamics in all vaccine eras, and both have high associated R^2 values (0.93 and 0.92, respectively). Again, though the SIRS2I2 model is qualitatively consistent with the data as a result of the limited contribution of repeat infections to the force of infection for primary infections, SIR-type dynamics provide the most parsimonious explanation of the data.

Empirical Metrics for Quantifying Herd Immunity. All estimation results from the previous sections point to vaccine-induced herd immunity, and we verify these results by quantifying changes in herd immunity through time by exploring three distinct empirical metrics for each vaccination period: (i) Systematic trends in

![Schematic diagram of competing model structures. The baseline SIR model is denoted by light blue lines; the SIRS model additionally includes dark blue; the SIRS2I model includes green; and the SIRS2I2 model includes red lines and text. Here, λ is the force of infection, p is the fraction of infants vaccinated, σ is the rate of immunity loss, e is the probability that a susceptible individual who was previously vaccinated or infected has their immunity boosted upon exposure, and κ is the boosting coefficient.](image-url)
aggregate incidence. We explored mean annual incidence in all provinces to document shifts in cases through time. A reduction in reported cases may indicate reduced transmission or a reduction in symptomatic cases only. We investigated whether the observed reductions exceed those expected from reduction in symptomatic cases among vaccinees alone. (ii) Fadeout frequency. Extinction likelihood, or the number of months without reported cases for a given population size, is predicted to increase with vaccine uptake if there is reduced transmission (21, 26, 27). To examine this, we calculated the mean number of fadeouts per year and plotted this quantity against the population size of each province (Fig. 4). Identifying a disease fadeout, or extinction, depends on the characteristic time scale of a disease, or the mean latent plus mean infectious period. In pertussis, with a mean latent period of ∼8 d and an infectious period of ∼14–21 d, a fadeout may be defined as 1 mo with no reported cases. We scrutinized the critical community size (CCS; the population size above which extinctions are very infrequent) (26, 28) to assess the relative change in extinction profile with vaccine uptake. A substantial rise in the CCS with vaccine uptake would reflect increasing frequency of extinctions in large provinces, consistent with increased herd immunity. (iii) Age-specific incidence. Incidence within specific birth cohorts can be very informative about infection hazard. We tracked incidence in infants (<1 y), where a significant decline has been argued to be a strong indicator of reduced transmission; infants are too young to be fully immunized, and infants <6 mo of age suffer the largest burden of pertussis (5, 29). Therefore, infants are thought akin to a "canary in the coal mine" (30).

Our examination of extinction profiles in each era is presented in Fig. 4. In the first era, the frequency of fadeouts declined rapidly with population size, leading to endemcity when the number of inhabitants in a province exceeded ∼700,800. During the transitional phase, extinctions were more frequent with the estimated CCS in excess of 10^6. In the high vaccine-uptake era, extinctions occurred often, irrespective of population size. These patterns are consistent with increasing herd immunity corresponding to continued rises in immunization levels (31). To test the robustness of our conclusions, we provide an identical analysis in SI Materials and Methods that defines a fadeout as 2 mo with no case notifications, and we again find that the CCS increases with vaccine uptake.

We have investigated the spatial consistency of declining incidence at a finer geographical resolution and found that in almost all provinces, incidence was highest in the first vaccine era and declined throughout the second era, remaining at low levels since the 1990s. This finding was demonstrated by mapping the mean annual incidence in all provinces during each vaccine era (Fig. 5).

Also consistent with the generation of strong herd immunity, we found that as vaccine uptake increased, there was a substantial reduction in incidence in infants in nearly every province (Fig. 5). Between the first and third vaccine eras, incidence dropped on average by nearly 85% in infants. This decline in incidence for the recent birth cohorts indicates substantially reduced transmission to infants. Further, we explored the change in incidence for five age classes (<1 y, 1–4 y, 5–9 y, 10–14 y, and >15 y old) corresponding to a shift from low (<46%, 1981–1983) to high (>95%, 1996–2000) vaccine uptake. This finding again highlights the shift to lower incidence in infants as well as older age groups (Fig. 6).

Table 1. Fitting results for each model

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>MLE</th>
<th>AIC</th>
<th>ΔAIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>SIR</td>
<td>-1,359.8</td>
<td>2,151.6</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>SIRS</td>
<td>-1,357.2</td>
<td>2,228.4</td>
<td>1,076.8</td>
</tr>
<tr>
<td>III</td>
<td>SIRS1/2</td>
<td>-1,220.3</td>
<td>2,398.6</td>
<td>847</td>
</tr>
<tr>
<td>IV</td>
<td>SIRS1/2</td>
<td>-1,160.3</td>
<td>2,169.6</td>
<td>17</td>
</tr>
</tbody>
</table>

MLE of models II and III correspond to durations of 69 and 70 y, respectively, whereas the duration of immunity is not identifiable in model IV. The difference in ΔAIC score between models I and IV results from accounting for the additional parameters required to estimate in model IV (e.g., κ, ν).

Discussion

Pertussis remains a public health priority in part because of the associated high mortality in developing countries, but also due to the reported rise in incidence in several countries that have long-standing pediatric vaccination programs (4, 6, 32–34). Developing appropriate public health policies, especially vaccination campaigns, is critical in minimizing the mortality and morbidity associated with pertussis. Using incidence data from Thailand, we sought to investigate vital issues in pertussis epidemiology—namely, the transmission impact of immunity following vaccination.

We confronted pertussis incidence data in Thailand with statistical inference using a series of biologically plausible transmission models to assess the success of the National Expanded Program on Immunization (EPI) of Thailand in reducing incidence. The dynamics in Thailand are characterized by declining incidence corresponding to three vaccine eras with consecutive increases in vaccine uptake, and because there is not a significant spatial variance between provinces with reducing incidence, we used the aggregate data for finding the population-level consequences of immunity on pertussis dynamics in Thailand. Loss of immunity is commonly thought to be important in pertussis epidemiology, and it has been hypothesized to be a driving mechanism for the reported resurgence of pertussis in many developed countries (8, 9, 11). Under the assumption that primary and repeat infections contribute equally to transmission, the results of our hypothesis testing and maximum-likelihood approaches for model selection clearly reflect a long mean duration of immunity, consistent with a long-term longitudinal individual-level study in Senegal (35), and previous quantitative studies of pertussis incidence data (10, 25). It is important to emphasize that a central assumption in our model is that the duration of immunity is exponentially distributed. Consequently, though the mean duration

![Fig. 4. Mean number of fadeouts for each of Thailand's provinces in all vaccine eras. Exponential curves [i.e., y ∝ A exp(−bνt)] where N is the population size and A and b are the estimated parameters] are fit to each vaccine era using standard regression techniques to determine an estimate of the CCS; similar protocols have been used elsewhere (23). Bangkok is excluded from the fit as it is an outlier due to its high population size relative to other provinces (~5 × 10^6). The horizontal dashed gray line represents a mean of one fadeout per year, and the intersection of the vertical dashed red and black lines with the gray line represents the estimated CCS in the first and second vaccine eras, respectively. Below the CCS, frequent disease extinctions are expected to occur. Though some of the shift may be attributed to an increase in the age of infection, leading to more asymptomatic cases, the magnitude of the shifts strongly points to reduced transmission following vaccination (SI Materials and Methods).](https://www.pnas.org/cgi/doi/10.1073/pnas.1220908110)
The EPI of Thailand was initiated in 1977 to implement infant vaccination against pertussis. Annual national vaccine uptake data from 1981–1983, 1984–1989, and 1990–2000 were obtained from the Vaccine Coverage Survey of Thailand. The whole-cell vaccine (DTwP) was solely administered until 1998, since when it has been replaced by acellular vaccines (DTaP). Annual national vaccine uptake data from 1981–1983 and 1996–1999 were obtained from the Vaccine Coverage Survey of Thailand. Our findings were striking, demonstrating the success of pediatric immunization in Thailand in reducing pertussis transmission and pointing to vaccine-induced herd immunity with an insignificantly different impact of repeat infections. Finally, we note that some of our findings are at odds with other studies (12, 39). However, given differences in methodology—specifically, very different metrics used in model validation—and the disparate data sources, the heterogeneity in conclusions is not surprising. Here, we used likelihood-based methods of statistical inference to parameterize and assess the performance of several plausible competing models of pertussis transmission dynamics to develop a unified picture of pertussis dynamics in Thailand. Moving toward a more unified global picture will require similar systematic analyses of competing transmission models fitted to the diverse datasets of pertussis incidence.

Materials and Methods.

Data. The EPI of Thailand was initiated in 1977 to implement infant vaccination programs. The diphtheria/tetanus/pertussis (DTP) whole-cell vaccine was administered as two doses until 1982, when a third dose was added to the schedule (40). In 1987 and 1992, the fourth and fifth doses, respectively, were introduced, yielding a complete schedule comprised of DTwP at 2, 4, 6, and 18 mo and 4–6 y of age. The whole-cell vaccine (DTwP) was solely administered until 1998, since when vaccines in the public sector have remained whole cell, and vaccines in the private sector have been replaced by acellular vaccines (DTaP). Annual national vaccine uptake data from 1981–1996 and 1999 were obtained from the Vaccine Coverage Survey of Thailand.

We sought to address several important issues in pertussis epidemiology using a unique high-resolution dataset of incidence in Thailand. Our findings were striking, demonstrating the success of pediatric immunization in Thailand in reducing pertussis transmission and pointing to vaccine-induced herd immunity with an insignificantly different impact of repeat infections. Finally, we note that some of our findings are at odds with other studies (12, 39). However, given differences in methodology—specifically, very different metrics used in model validation—and the disparate data sources, the heterogeneity in conclusions is not surprising. Here, we used likelihood-based methods of statistical inference to parameterize and assess the performance of several plausible competing models of pertussis transmission dynamics to develop a unified picture of pertussis dynamics in Thailand. Moving toward a more unified global picture will require similar systematic analyses of competing transmission models fitted to the diverse datasets of pertussis incidence.

Materials and Methods.

Data. The EPI of Thailand was initiated in 1977 to implement infant vaccination programs. The diphtheria/tetanus/pertussis (DTP) whole-cell vaccine was administered as two doses until 1982, when a third dose was added to the schedule (40). In 1987 and 1992, the fourth and fifth doses, respectively, were introduced, yielding a complete schedule comprised of DTwP at 2, 4, 6, and 18 mo and 4–6 y of age. The whole-cell vaccine (DTwP) was solely administered until 1998, since when vaccines in the public sector have remained whole cell, and vaccines in the private sector have been replaced by acellular vaccines (DTaP). Annual national vaccine uptake data from 1981–1996 and 1999 were obtained from the Vaccine Coverage Survey of Thailand.

We sought to address several important issues in pertussis epidemiology using a unique high-resolution dataset of incidence in Thailand. Our findings were striking, demonstrating the success of pediatric immunization in Thailand in reducing pertussis transmission and pointing to vaccine-induced herd immunity with an insignificantly different impact of repeat infections. Finally, we note that some of our findings are at odds with other studies (12, 39). However, given differences in methodology—specifically, very different metrics used in model validation—and the disparate data sources, the heterogeneity in conclusions is not surprising. Here, we used likelihood-based methods of statistical inference to parameterize and assess the performance of several plausible competing models of pertussis transmission dynamics to develop a unified picture of pertussis dynamics in Thailand. Moving toward a more unified global picture will require similar systematic analyses of competing transmission models fitted to the diverse datasets of pertussis incidence.

Materials and Methods.

Data. The EPI of Thailand was initiated in 1977 to implement infant vaccination programs. The diphtheria/tetanus/pertussis (DTP) whole-cell vaccine was administered as two doses until 1982, when a third dose was added to the schedule (40). In 1987 and 1992, the fourth and fifth doses, respectively, were introduced, yielding a complete schedule comprised of DTwP at 2, 4, 6, and 18 mo and 4–6 y of age. The whole-cell vaccine (DTwP) was solely administered until 1998, since when vaccines in the public sector have remained whole cell, and vaccines in the private sector have been replaced by acellular vaccines (DTaP). Annual national vaccine uptake data from 1981–1996 and 1999 were obtained from the Vaccine Coverage Survey of Thailand.
Thailand, where uptake was measured as the percent of children aged 12–23 mo that had received two doses in 1981, and three doses for the remaining years..failure at the time of the interview. For missing years (1997–1998, 2000), the vaccine uptake was assigned the value of the most recently recorded year, and we assumed the administration of vaccines was uniform throughout the year (see Fig. 1 for an illustration of annual uptake through time; further details are provided in SI Materials and Methods).

Monthly case notification data from 72 provinces of Thailand between 1981 and 2000 were obtained from the Ministry of Public Health (41). These cases are identified by clinicians using the World Health Organization case definition and reported to the Ministry of Public Health in a passive surveillance system (41). These same cases were available aggregated annually into the following age groups (in years): under 1, 1–4, 5–9, 10–14, 15–24, 25–34, 35–44, 45–54, 55–64, and older than 65 from 1981 to 1984. Beginning in 1985, these data are further subdivided into 1-y age groups up to the age of 44. We assumed that vaccine coverage was uniform throughout the year (see Fig. 1 for an illustration of annual uptake). Annual birth data from 1981 to 1998 were obtained from ref. 42 and assumed to remain constant from 1998 to 2000. Births were also assumed to occur uniformly throughout the year. Population data for 1980, 1990, and 2000 were obtained from the censuses performed by the National Statistical Office of Thailand (18, 43, 44). Log-linear fits between census years were used to estimate population size for the duration of the time series.

Model Formulation and Parameterization. We developed a series of stochastic discrete time-transmission models designed to estimate epidemiological parameters and to serve as a basis for hypothesis testing, schematic representations of which are provided in Fig. 2. Each model consists of two key components: a process model that describes pertussis transmission dynamics, and an observation model that describes the reporting process. The observation model uses the case notification data to approximate the actual number of cases that are then used for parameter estimation of the process model. The maximum likelihood was estimated using sequential Monte Carlo methods, or particle filters. Likelihoods were computed using maximum likelihood via iterated filtering with the R statistical software package POMP 0.36-1 (further details can be found in refs. 45 and 46). Complete model descriptions and further methodology can be found in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank three anonymous reviewers, as well as the laboratory personnel of P.R. and Aaron King, for their helpful comments on previous drafts of this article. Funding for this work was provided by the Research and Policy for Infectious Disease Dynamics program of the Science and Technology Directorate (P.R. and D.A.T.C.), Department of Homeland Security, and the Bill and Melinda Gates Vaccine Modeling Initiative. P.R. was also supported by the Fogarty International Center, National Institutes of Health (NIH), and NIH Grant 1R01AI101155. H.B. was funded by the Intramural Research Group of Fogarty International Center, NIH. D.A.T.C. holds a Career Award at the Scientific Interface from the Burroughs Welcome Fund.