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Probing the shear viscosity of an active nematic film
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In vitro reconstituted active systems, such as the adenosine triphosphate (ATP)-driven microtubule bundle
suspension developed by the Dogic group [T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann, and Z. Dogic,
Nature (London) 491, 431 (2012)], provide a fertile testing ground for elucidating the phenomenology of active
liquid crystalline states. Controlling such novel phases of matter crucially depends on our knowledge of their
material and physical properties. In this Rapid Communication, we show that the shear viscosity of an active
nematic film can be probed by varying its hydrodynamic coupling to a bounding oil layer. Using the motion of
disclinations as intrinsic tracers of the flow field and a hydrodynamic model, we obtain an estimate for the shear
viscosity of the nematic film. Knowing this now provides us with an additional handle for robust and precision
tunable control of the emergent dynamics of active fluids.

DOI: 10.1103/PhysRevE.94.060602

Active systems are collections of self-propelling entities
that display nonequilibrium self-organization on many scales
[1,2]. Examples from the living world include animal flocks
[3], bacterial colonies [4,5], living tissues, and cytoskeletal
extracts [6–8]. Ingenious synthetic analogs composed either of
externally driven [9–11] or autonomously propelled elements
[12–14] have also been developed. The distinctive feature that
unifies these systems is that they are composed of interacting
units that convert ambient or stored energy into self-sustained
motion, from coherently organized to seemingly chaotic.

In many experimental realizations, active fluids are com-
posed of elongated units and exhibit liquid crystalline order.
While a lot of previous work has highlighted the complex
nonequilibrium dynamics of these systems and the novel
properties of topological defects that themselves become
dynamical entities capable of driving the motion [15,16], the
material properties of active gels remain largely unexplored.
A few studies have probed the shear viscosity of suspensions
of micro-organisms [17–20], with remarkable results. In
particular, it was shown that activity decreases the effective
viscosity of a suspension of E. coli, driving it to zero or even
negative values [20,21], in agreement with early theoretical
predictions [22–24]. More subtle, however, is the behavior of
active nematic liquid crystals composed of head-tail symmetric
units that exert active forces on their surroundings, but exhibit
no mean motion. Much interest in this class of active fluids has
been fuelled by the group of Dogic [8,25], who has pioneered a
remarkable model active nematic consisting of a suspension of
microtubules (MTs) in the presence of adenosine triphosphate
(ATP)-fueled kinesin motors. Bundled MTs behave as active
units that exert extensile forces on their environment and are
capable of reproducing in vitro some of the unique behavior of
living systems. When concentrated at an oil-water interface,
the suspension of MT bundles organizes into an active nematic
that exhibits self-sustained spontaneous flows with striking
resemblance to the streaming used by cells to circulate their
fluid content. At high enough activity active turbulent flows
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develop, with a proliferation of unbound disclinations, the
distinctive textures of two-dimensional films of nematic liquid
crystals. By confining the suspension of MTs to the surface
of a lipid vesicle, Keber et al. fabricated “active vesicles”
that can undergo spontaneous oscillations and remarkable
shape changes [26]. Reconstituted suspensions of cytoskeletal
filaments and associated motor proteins serve as ideal model
systems for understanding subcellular organization. Extensive
studies of the mechanics of actomyosin networks have pro-
vided great insight on the behavior of the cell cytoskeleton
[27,28]. Microtubule-kinesin suspensions provide quantitative
models of the organization and structure of the mitotic spindle
[29], but little is known about their rheology.

Here, we report experimental measurements of the shear
viscosity of active microtubule nematics. This is obtained by
combining (i) experiments on an active MT suspension at an
oil-water interface in a setup that allows us to vary the viscosity
of the bounding oil over five orders of magnitude, with (ii) a
quantitative analysis of the combined hydrodynamics of the
2d active nematic and the bounding bulk passive fluids. By
fitting the experimentally measured velocity of topological
defects in the active nematic layer to the prediction of the
hydrodynamic model that examines the flow induced by
nematic textures confined at the interface of two fluids of
different viscosity [30–32], we determine an effective bulk
shear viscosity of the active nematic and infer the viscosity
of the film. Our work yields two important results. First,
it shows that activity fluidizes the nematic gel that at the
density used in the experiments would be expected to behave
as a soft solid, with a finite shear modulus. This echoes
early observations in actomyosin gels [33] and is consistent
with the expected influence of activity on the rheology of
extensile fluids. Second, it demonstrates that the rheological
characteristics of the interface have a profound effect on the
textures and flows of the active nematic, highlighting the need
to incorporate the hydrodynamics of bounding fluids so far
largely neglected in theoretical models.

The active material we study is based on the hierarchical
self-assembly of tubulin into stabilized micron-length fluo-
rescent MTs, organized into bundles that are internally cross
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FIG. 1. Experimental setup. The liquids are contained in a
cylindrical well custom-engineered on a PDMS block that is bound
to a substrate coated with a polymer brush that prevents protein
adhesion. The aqueous active material is injected below a volume
of silicone oil. Depletion forces promote the formation of the MT
bundles, sheared by motor clusters, and lead to the condensation of
the active nematic film at the oil-water interface.

linked and sheared by clusters of kinesin motors [8]. This
leads to MT bundle elongation, bending, and buckling, which
results in extensile local stresses on the surrounding fluid. Once
depleted towards a surfactant-decorated oil-water interface, the
kinesin-tubulin gel develops the well-known active nematic
configuration, which is characterized by self-sustained flows
and orientational order of the aligned filaments. Although
the thickness of the active nematic layer is not known with
precision, we estimate it to be in the range between the
minimal bundle thickness, 0.2 μm, estimated from the typical
sizes of filaments and motor proteins, and the resolution
of fluorescence confocal micrographs, 2 μm. Our open-cell
arrangement is based on a custom polydimethylsiloxane
(PDMS) block containing a cylindrical well, and bound to
a support plate (see Fig. 1 and Ref. [34]). After filling the
well with silicone oil of the desired viscosity, the aqueous gel
is injected between the bottom plate and the oil. This results
in an aqueous layer of 100–200 μm depth underneath an oil
phase of 1–2 mm depth. Unlike the original arrangement [8],
our setup does not demand the use of a low viscosity oil,
thus allowing us to explore nearly five orders of magnitude of
viscosity contrast between the interfacing oil and the aqueous
bulk. In the experiments reported here, ATP concentration is
kept at 1.4 mM by means of an enzymatic ATP regenerator
that is incorporated in the active material, which sets a constant
activity over the time scale of the experiment.

Results. Because of their extensile nature, MT bundles bend
and form parabolic folds, bounding dark regions devoid of MTs
[Fig. 2(a)]. The orientation of the aligned filaments performs
half a turn along any closed circuit surrounding either the tip
or the tail of the fold. This result allows us to associate a defect
topological charge +1/2 to the parabolic tip of the fold, and a
charge −1/2 to the hyperbolic tail. Since the flow originates
at the tip of the folds, +1/2 defects become similar to active
or self-propelled particles, as first quantified in Ref. [35], and
can be used as intrinsic tracers for the active flow. On the
other hand, −1/2 defects often occupy flow stagnation points
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FIG. 2. Active nematic in contact with silicone oils of different
viscosity. Fluorescence confocal micrographs are 400 μm wide. The
oil viscosity, from (a) to (f), is 5 × 10−3, 5 × 10−2, 0.5, 5, 12.5,
and 300 Pa s, respectively. In (a) two streamlines for defects with
parabolic (+1/2, dashed) and hyperbolic (−1/2, solid) morphologies
are highlighted. The insets show sections at fourfold magnification.

(see the Supplemental Material [36], Fig. 2). In these nematic
films the +1/2 defects have also been observed to exhibit
long-range nematic alignment [37], although the mechanism
for such alignment is still controversial [37–39].

Our study has revealed a clear influence of the oil viscosity
ηo on the morphology and dynamics of the active nematic. In
Fig. 2, we show snapshots of the active nematic in contact
with oils of different viscosity, for the same activity (i.e.,
concentration of ATP). These patterns are characterized by
the proliferation of randomly moving defects, organizing into
the so-called active turbulent regime [35,40–44]. At higher ηo

the number of defects increases and degrades the orientational
order of the filament bundles. At the same time, the speed
of defects decreases for increasing ηo (see the Supplemental
Material [36], video S1). Textures in contact with oils of
smaller viscosity appear less fluorescent (see the Supplemental
Material [36], Fig. 3) and more tenuous, as compared to
those observed for higher ηo. This indicates that a large ηo

concentrates the MT bundles and amplifies the size of the
regions void of MTs that we identify with the cores of the
defects. Textures such as the one shown in Fig. 2(f) are rather
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FIG. 3. (a) Average speed of +1/2 defects as a function of oil
viscosity. The line is a fit according to the hydrodynamic model
described in the text. (b) Defect density (©) and area fraction covered
by defects (�) as a function of oil viscosity. The inset in (a) shows
that the combination nv1/2 is essentially independent of oil viscosity,
as discussed in the text.

disordered in the sense that the nematic order parameter would
average to a small value. The system, however, still shows a
characteristic structure that can be analyzed in terms of nematic
disclinations.

We have quantified both the number density n and the
velocity v of the +1/2 defects for the realizations shown
in Fig. 2. We observe that v decreases logarithmically with
ηo before a saturation is reached for the most viscous
oils [Fig. 3(a)]. These data are successfully fitted with the
hydrodynamic model described below, which allows us to
estimate the viscosity of the active nematic. Conversely, the
defect density grows steadily with ηo [Fig. 3(b)]. We have also
measured the average size of the defect core, defined as the
region devoid of MTs surrounding each defect. We observe that
the area fraction occupied by the defect cores is proportional
to the defect density, and the average defect core area, which is
related to the characteristic defect core size ξQ, grows with ηo

until saturation for the most viscous oils (see the Supplemental
Material [36], Fig. 4).

The measurements of v and n can be combined to reveal a
simple scaling relationship between these two quantities. The
scaling ansatz can be obtained using generic arguments already
proposed for freely suspended active nematics [45]. We
assume a simple rate equation for the defect density, dn/dt =
Rc − Ra , with Rc and Ra the rates of defect creation and
annihilation per unit area. The creation rate can be estimated as
Rc ∼ (�2

ατ )−1, where �α = √
K/|α| is the active length scale

determined by balancing active and elastic stresses, with α

an active stress scale controlled by ATP concentration and
chosen negative for extensile systems. It has been shown that
this length scale controls the spatial correlations in the active
turbulent regimes of “wet” active nematics [44,46]. The time
scale τ = γ /|α| controls the relaxation of the order parameter
distortions due active stresses, with γ the rotational viscosity
of the nematic. The annihilation rate can be estimated as
Ra ∼ σvn2, with σ an effective cross section (a length in two
dimensions) that quantifies the range of defect interactions. At
steady state, the average number density of defects remains
constant, giving the scaling prediction vn2 ∼ α2/(γ σK). For
a constant ATP concentration, α will be constant, leading
to the simplified scaling vn2 ∼ 1/(γ σK). Viscous stresses
at the interface effectively dampen the active nematic speed
[Fig. 3(a)], which results in more sporadic defect annihilation
events. Since the ATP concentration is kept constant in all
these experiments, the defect creation rate is sustained. As a
result, the number of defects increases [Fig. 3(b)] while the
product γ σK is independent of ηo [inset in Fig. 3(a)].

Hydrodynamic model. To capture the effect of viscous
stresses propagated in the nematic by the viscosity contrast
at the oil-water interface, we consider the hydrodynamics
of a thin active nematic layer confined between two bulk
fluids (oil and water) and calculate the velocity that the
director distortion due to a +1/2 disclination creates at the
core of the defect. Following Ref. [35], and consistently
with the analysis of the experiments, we identify this with
the defect velocity. We find that the presence of the bulk
fluids qualitatively changes the defect velocity as compared
to the previously considered cases of a free-standing ne-
matic layer [35,43], a finite-thickness layer of bulk nematic
[42,47], and a nematic layer with frictional damping from a
substrate [48].

To evaluate the defect velocity, we start with coupled Stokes
equations for oil, water, and nematic layer,

ηi∇2ui − ∇pi = 0, (1)

ηN∇2u‖ − ∇‖p + n̂ · (σ o − σw) + ∇‖ · σ a = 0, (2)

where ηi , ui , and pi , with i = o,w denoting oil or water, are
the 3d viscosity, flow velocity, and pressure of the oil and water
subphases, respectively; σ o − σw is the stress jump across the
interface, which is projected onto the unit interface normal n̂;
ηN , u‖, and p are the 2d viscosity, in-plane flow velocity, and
lateral pressure of the active nematic layer. Finally, σ a = α Q
is the active stress arising from the extensile force dipoles
exerted by MT bundles on their surroundings and proportional
to the nematic alignment tensor Q. We neglect elastic stresses
that are higher order in gradients in Q than active ones [45].
We compute the nematic flow field u‖ due to stationary textures
of the order parameter Q corresponding to either a +1/2 or a
−1/2 defect by solving Eqs. (1) and (2) for an incompressible
flow with vanishing of the normal velocity and continuity of
the tangential velocity at the nematic interface, located at
z = 0. Owing to the linearity of the Stokes equations, the
solution is easily written in Fourier space in term of a Green’s
function. As the depths of both the oil layer and the bulk fluid
subphases are much larger than the thickness of the active
nematic layer, we consider both bulk layers to be semi-infinite.
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In this limit, the Fourier components of the flow velocity in the
nematic layer are u‖(k) = G(k)Pf(k), where P = I − kk/k2

is a transverse projection operator, f(k) = ∫
r e−ik·r∇‖ · σ a , and

the Green’s function is given by G(k) = [ηNk2 + ηok]
−1

[32].
The length scale �η = ηN/(ηo + ηw) � ηN/ηo (for ηw 	 ηo)
controls the crossover from two-dimensional surface flows to
three-dimensional bulk dominated flows.

The scalar order parameter for a ±1/2 disclination is
roughly constant outside the defect core of size ξQ, yielding
|∇ · σ a| ∼ |α|/r for r � ξQ [48]. Focusing on the +1/2
disclinations, which are motile by virtue of self-induced active
backflows [9,35], the divergence of the active stress ∇ · σ a

for a single +1/2 disclination has only one nonvanishing
component aligned along the axis of the defect (which we
freely take to be the x axis). The velocity at the center of the
defect core, assumed to be passively advected by the flow, is
then directed along this axis and has a magnitude given by v =∫ ′

r G(r)(∇ · σ a)x , where the prime indicates that the integral
must be cutoff at small scales by ξQ (ξQ ∼ 10 μm from the
experimental micrographs), below which the hydrodynamic
model ceases to be appropriate, and at a long-wavelength cutoff
� controlling the screening of the 2d hydrodynamic flows
through the coupling to the oil-water subphases. This gives

v � |α|
ηN/�

F>

(
ηo

ηN/�
,

�

ξQ

)
∼ |α|

ηN/�
ln

(
ηN/�

ηo

)
. (3)

The exact form of F> is given in the Supplemental
Material (SM). The second approximate equality in Eq. (3)
holds for ηeff � ηo and ξQ/� 	 1, with ηeff = ηN/� a
three-dimensional viscosity. The logarithmic dependence of
v on ηo is robust in these limits and in agreement with the
experiments [Fig. 3(a)]. The fit to the data, performed by
means of the exact form for v given in the SM, provides a value
for ηeff = 13(±5) Pa s that depends very weakly on ξQ/� for
ξQ/� < 0.5 (see SM). Since α is an overall scale for the defect
velocity, this analysis gives an essentially parameter-free
estimate for ηeff. On the other hand, the value of ηN depends
on �. A natural choice for � is the thickness of the oil subphase
(d ∼ 1 mm) as described in the SM. This gives ηN ∼ 13 ×
10−3 Pa s m. Alternately, one could argue that our single-defect
calculation should be cut off at the scale of the mean defect
separation, which in turn depends on ηo [see Fig. 3(b)],
albeit changing only by a factor of 2 (50–100 μm) over

five decades of oil viscosity. Choosing � ∼ n−1/2, we obtain
ηN ∼ 6.5–13 × 10−4 Pa s m over the range of oil viscosities
considered.

Importantly, our fit yields ηeff/ηo > 1 at all but the largest
oil viscosity (ηo ∼ 102 Pa s), where v begins to saturate. We
stress that it is only in this limit that the defect velocity has a
logarithmic dependence on ηo. This physically corresponds
to the case when the flow is dominated by the properties
of the 2d active nematic layer and the bulk fluid only
comes as a logarithmic correction to the length scale in the
defect velocity. If this ratio were of order unity or smaller,
as occurs at the highest value of oil viscosities, then the
qualitative dependence of the defect velocity on ηo would
change, giving v ∼ 1/ηo instead of the strongly persistent
logarithm.

In summary, we have probed the shear viscosity of an
active nematic at an oil-water interface using a setup that
allows us to vary the viscosity of the oil by five orders of
magnitude. By combining experiments with a hydrodynamic
model we show that measurements of the defect velocity can
be used to estimate the shear viscosity of the active nematic.
An open question is the role of the oil viscosity on the effective
elasticity of the active gel. The amplification of the defect cores
with increasing oil viscosity suggests an increased effective
stiffness, but the decrease of the defect separation suggests the
opposite effect. Resolving this discrepancy is a challenging
problem that will demand further work.
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[47] G. Tóth, C. Denniston, and J. M. Yeomans, Phys. Rev. Lett. 88,

105504 (2002).
[48] L. M. Pismen, Phys. Rev. E 88, 050502 (2013).

060602-5

https://doi.org/10.1021/ja047697z
https://doi.org/10.1021/ja047697z
https://doi.org/10.1021/ja047697z
https://doi.org/10.1021/ja047697z
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1098/rsta.2013.0373
https://doi.org/10.1098/rsta.2013.0373
https://doi.org/10.1098/rsta.2013.0373
https://doi.org/10.1098/rsta.2013.0373
https://doi.org/10.1103/PhysRevLett.103.148101
https://doi.org/10.1103/PhysRevLett.103.148101
https://doi.org/10.1103/PhysRevLett.103.148101
https://doi.org/10.1103/PhysRevLett.103.148101
https://doi.org/10.1103/PhysRevLett.104.098102
https://doi.org/10.1103/PhysRevLett.104.098102
https://doi.org/10.1103/PhysRevLett.104.098102
https://doi.org/10.1103/PhysRevLett.104.098102
https://doi.org/10.1103/PhysRevLett.110.268103
https://doi.org/10.1103/PhysRevLett.110.268103
https://doi.org/10.1103/PhysRevLett.110.268103
https://doi.org/10.1103/PhysRevLett.110.268103
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1038/525037a
https://doi.org/10.1038/525037a
https://doi.org/10.1038/525037a
https://doi.org/10.1038/525037a
https://doi.org/10.1103/PhysRevLett.92.118101
https://doi.org/10.1103/PhysRevLett.92.118101
https://doi.org/10.1103/PhysRevLett.92.118101
https://doi.org/10.1103/PhysRevLett.92.118101
https://doi.org/10.1103/PhysRevLett.97.268101
https://doi.org/10.1103/PhysRevLett.97.268101
https://doi.org/10.1103/PhysRevLett.97.268101
https://doi.org/10.1103/PhysRevLett.97.268101
https://doi.org/10.1103/PhysRevE.81.051908
https://doi.org/10.1103/PhysRevE.81.051908
https://doi.org/10.1103/PhysRevE.81.051908
https://doi.org/10.1103/PhysRevE.81.051908
https://doi.org/10.1098/rsta.2014.0142
https://doi.org/10.1098/rsta.2014.0142
https://doi.org/10.1098/rsta.2014.0142
https://doi.org/10.1098/rsta.2014.0142
https://doi.org/10.1126/science.1254784
https://doi.org/10.1126/science.1254784
https://doi.org/10.1126/science.1254784
https://doi.org/10.1126/science.1254784
https://doi.org/10.1016/j.ceb.2006.12.002
https://doi.org/10.1016/j.ceb.2006.12.002
https://doi.org/10.1016/j.ceb.2006.12.002
https://doi.org/10.1016/j.ceb.2006.12.002
https://doi.org/10.1103/RevModPhys.86.995
https://doi.org/10.1103/RevModPhys.86.995
https://doi.org/10.1103/RevModPhys.86.995
https://doi.org/10.1103/RevModPhys.86.995
https://doi.org/10.1073/pnas.1409404111
https://doi.org/10.1073/pnas.1409404111
https://doi.org/10.1073/pnas.1409404111
https://doi.org/10.1073/pnas.1409404111
https://doi.org/10.1073/pnas.72.8.3111
https://doi.org/10.1073/pnas.72.8.3111
https://doi.org/10.1073/pnas.72.8.3111
https://doi.org/10.1073/pnas.72.8.3111
https://doi.org/10.1017/S0022112076001511
https://doi.org/10.1017/S0022112076001511
https://doi.org/10.1017/S0022112076001511
https://doi.org/10.1017/S0022112076001511
https://doi.org/10.1063/1.868893
https://doi.org/10.1063/1.868893
https://doi.org/10.1063/1.868893
https://doi.org/10.1063/1.868893
https://doi.org/10.1038/416413a
https://doi.org/10.1038/416413a
https://doi.org/10.1038/416413a
https://doi.org/10.1038/416413a
https://doi.org/10.1073/pnas.1600339113
https://doi.org/10.1073/pnas.1600339113
https://doi.org/10.1073/pnas.1600339113
https://doi.org/10.1073/pnas.1600339113
https://doi.org/10.1103/PhysRevLett.110.228101
https://doi.org/10.1103/PhysRevLett.110.228101
https://doi.org/10.1103/PhysRevLett.110.228101
https://doi.org/10.1103/PhysRevLett.110.228101
http://link.aps.org/supplemental/10.1103/PhysRevE.94.060602
https://doi.org/10.1038/nmat4387
https://doi.org/10.1038/nmat4387
https://doi.org/10.1038/nmat4387
https://doi.org/10.1038/nmat4387
https://doi.org/10.1088/1367-2630/18/9/093006
https://doi.org/10.1088/1367-2630/18/9/093006
https://doi.org/10.1088/1367-2630/18/9/093006
https://doi.org/10.1088/1367-2630/18/9/093006
https://doi.org/10.1038/ncomms10557
https://doi.org/10.1038/ncomms10557
https://doi.org/10.1038/ncomms10557
https://doi.org/10.1038/ncomms10557
https://doi.org/10.1038/ncomms4013
https://doi.org/10.1038/ncomms4013
https://doi.org/10.1038/ncomms4013
https://doi.org/10.1038/ncomms4013
https://doi.org/10.1103/PhysRevLett.112.168301
https://doi.org/10.1103/PhysRevLett.112.168301
https://doi.org/10.1103/PhysRevLett.112.168301
https://doi.org/10.1103/PhysRevLett.112.168301
https://doi.org/10.1098/rsta.2013.0366
https://doi.org/10.1098/rsta.2013.0366
https://doi.org/10.1098/rsta.2013.0366
https://doi.org/10.1098/rsta.2013.0366
https://doi.org/10.1098/rsta.2013.0365
https://doi.org/10.1098/rsta.2013.0365
https://doi.org/10.1098/rsta.2013.0365
https://doi.org/10.1098/rsta.2013.0365
https://doi.org/10.1103/PhysRevX.5.031003
https://doi.org/10.1103/PhysRevX.5.031003
https://doi.org/10.1103/PhysRevX.5.031003
https://doi.org/10.1103/PhysRevX.5.031003
https://doi.org/10.1103/PhysRevLett.111.118101
https://doi.org/10.1103/PhysRevLett.111.118101
https://doi.org/10.1103/PhysRevLett.111.118101
https://doi.org/10.1103/PhysRevLett.111.118101
https://doi.org/10.1039/C6SM00812G
https://doi.org/10.1039/C6SM00812G
https://doi.org/10.1039/C6SM00812G
https://doi.org/10.1039/C6SM00812G
https://doi.org/10.1103/PhysRevLett.88.105504
https://doi.org/10.1103/PhysRevLett.88.105504
https://doi.org/10.1103/PhysRevLett.88.105504
https://doi.org/10.1103/PhysRevLett.88.105504
https://doi.org/10.1103/PhysRevE.88.050502
https://doi.org/10.1103/PhysRevE.88.050502
https://doi.org/10.1103/PhysRevE.88.050502
https://doi.org/10.1103/PhysRevE.88.050502



