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We formulate the statistical dynamics of topological defects in the active nematic phase, formed in two
dimensions by a collection of self-driven particles on a substrate. An important consequence of the
nonequilibrium drive is the spontaneous motility of strength þ1=2 disclinations. Starting from the
hydrodynamic equations of active nematics, we derive an interacting particle description of defects that
includes active torques. We show that activity, within perturbation theory, lowers the defect-unbinding
transition temperature, determining a critical line in the temperature-activity plane that separates the quasi-
long-range ordered (nematic) and disordered (isotropic) phases. Below a critical activity, defects remain
bound as rotational noise decorrelates the directed dynamics ofþ1=2 defects, stabilizing the quasi-long-range
ordered nematic state. This activity threshold vanishes at low temperature, leading to a reentrant transition. At
large enough activity, active forces always exceed thermal ones and the perturbative result fails, suggesting
that in this regime activity will always disorder the system. Crucially, rotational diffusion being a two-
dimensional phenomenon, defect unbinding cannot be described by a simplified one-dimensional model.
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Liquid crystals exhibit remarkable orientationally
ordered phases, the simplest being the nematic phase in
which particles macroscopically align along a single
preferred orientation, without a head-tail distinction.
The name nematic itself comes from νημα, meaning
thread, for the linelike topological defects (disclinations)
that are inevitably produced in quenches from the high-
temperature disordered phase to the nematic phase [1–4].
In two dimensions (2D), though, disclinations are point-
like defects, and so may be thought of as localized
particles. The nematic pattern around a disclination is a
distinctive fingerprint of the spontaneous symmetry
breaking that characterizes nematic order and distin-
guishes the elementary defects from, say, integer strength
vortices in two-dimensional spin systems. The nematic
director rotates through a half-integer multiple of 2π as
one circumnavigates a defect. Thus, the lowest-energy
defects are referred to as carrying strength �1=2. In
two dimensional equilibrium nematics the entropic
unbinding of such point disclinations drives the nematic
to isotropic (NI) transition [5–8].
In recent years there has been much focus on nematics

composed of elongated units that are self-driven—hence
active nematics [9,10]. Examples include collections of
living cells [11–17], synthetic systems built of cellular
extracts [18–20], and vibrated granular rods [21]. Active
nematics exhibit complex spatiotemporal dynamics,
accompanied by spontaneous defect proliferation. Much
progress has been made in understanding the properties of
the ordered phase [9,22–26], but a complete theory of order,

fluctuations, defects and phase transitions of active nematics
still eludes us. Although the nematic itself has no net
polarity, the director pattern around a strength þ1=2 defect
has a local cometlike geometric polarity (Fig. 1). In an active
system this rendersþ1=2 defects motile [21,27] with a self-
propelling speed proportional to activity [27]. Both experi-
ments [14,18–20,28–30] and simulations [27,31–37] have
shown that motile defects play a key role in driving self-
sustained active flows.

FIG. 1. Potential VðrÞ for a neutral defect pair for the
configuration in which the direction of motility of the þ1=2
disclination points away from the −1=2 and is held fixed. This
naïve picture suggests that incipient active defect pairs have an
exponentially small, but finite, rate to overcome the barrier at low
temperature, and hence always unbind.
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In this Letter we precisely map the dynamics of active
defects onto that of a mixture of motile (þ1=2) and passive
(−1=2) particles with interaction forces and aligning
torques, putting on firm ground previous purely phenom-
enological models [19,27,38]. A key new result is the
derivation of the angular dynamics of the þ1=2 defects.
Treating activity as a small parameter, we then construct
and solve the defect Fokker-Planck equation and show that
activity weakens the logarithmic attraction between oppo-
site-charge defects. As a result, increasing activity past a
threshold drives a nonequilibrium NI phase transition to a
phase of unbound defects, much like the Berezenskii-
Kosterlitz-Thouless (BKT) transition in two-dimensional
spin systems [5–7] and passive nematics [8]. Rotational
diffusion (DR) of the þ1=2 defect is suppressed at low
noise, where self-propulsion directly drives unbinding with
a threshold that vanishes as DR goes to zero. This yields a
reentrant isotropic-nematic-isotropic sequence [39] as a
function of temperature at fixed activity. Our effective
equations for defect dynamics also provide a simple model
capable of quantifying the dynamics of interacting active
defects in confined geometries.
The proof of the existence of a low-activity quasi-long-

range ordered active nematic in 2D [22,26] is an important
result because a naïve argument suggests otherwise. In an
equilibrium nematic, two �1=2 defects at a distance r
experience an attractive interaction V0ðrÞ ¼ ðπK=2Þ
ln ðr=aÞ, with K a Frank elastic constant and a the size
of the defect core. Hence, neglecting inertia, they are
drawn towards each other according to _r ¼ −μ∂rV0,
with μ a defect mobility. One could then argue that the
dynamics of a suitably oriented �1=2 defect pair in an
active nematic is governed by relaxation in an effective
potential [27]

_r ¼ −μ∂rV; VðrÞ ¼ πK
2

ln
�
r
a

�
−
jvj
μ
r; ð1Þ

where jvj is the self-propelling speed with which theþ1=2
disclination is moving away from the −1=2 disclination
(see Fig. 1). The resulting barrier VðrcÞ ¼ ðπK=2Þ
fln ½πμK=ð2jvjaÞ� − 1g at distance rc ¼ πμK=ð2jvjÞ is
finite, which means that the defect pair is always unbound,
and active nematic order thus destroyed, at any nonzero
temperature (Fig. 1). As activity is increased, more and
more defect pairs will be liberated [18,27,31] suggesting
that nematic order would be completely destroyed by the
swarming disordered cores, much like driven vortices in
superconducting films can destroy superconductivity.
Here we show that this heuristic argument fails because
rotational noise, by disrupting the directed motion of
the þ1=2 defects, counterintuitively restores the ordered
nematic phase.
We begin with the hydrodynamics of a two-dimensional

nematic liquid crystal written in terms of the flow velocity

u and the tensor order parameter Qμν ¼ Sð2n̂μn̂ν − δμνÞ,
where S is the scalar order parameter and n̂ is the director
field. We ignore density fluctuations, although we expect
this restriction could be dropped without qualitatively
changing the results. The Q equation is as for passive
nematics [40],

γDtQ ¼ ½a2 − a4trðQ2Þ�Qþ K∇2Q; ð2Þ
whereDt ¼ ∂t þ u · ∇ − ½·;Ω� is the comoving and corota-
tional derivative with the vorticity tensor Ωμν ¼
ð∇μuν −∇νuμÞ=2. Only the relaxational part of the dynam-
ics is retained in Eq. (2), with γ a rotational viscosity, K a
Frank elastic constant and a2, a4 the parameters that set
the mean-field NI transition at a2 ¼ 0. A treatment includ-
ing various flow alignment terms is given in the
Supplemental Material [41]. At equilibrium, the homo-
geneous ordered state for a2 > 0 has S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=ð2a4Þ

p
and

an elastic coherence length ξ ¼ ffiffiffiffiffiffiffiffiffiffiffi
K=a2

p
. For an isolated

static �1=2 defect in equilibrium, the director n̂ðφÞ ¼
(cosðφ=2Þ;� sinðφ=2Þ) rotates by �π with the azimuthal
angle φ, and S vanishes at the core of the defect, assuming
its bulk value on length scales larger than the defect core
size a ∼ ξ. Activity enters in the force balance equation,
which, ignoring inertia and in-plane viscous dissipation, is
given by −Γuþ ∇ · σa ¼ 0, where Γ is the friction with
the substrate and σa ¼ αQ is the active stress tensor
that captures the internal forces generated by active
units [42,43]. We neglect elastic and Ericksen stresses as
they are higher order in gradients. The system is extensile
for α < 0 and contractile for α > 0. For a þ1=2 disclina-
tion, the active backflow at its core gives rise to a self-
propulsion speed ∼jαj=ðΓaÞ [27,38].
Theþ1=2 disclination has a local geometric polarization

ei ¼ a∇ ·Qðrþi Þ (evaluated at the core of the defect),
defined here to be dimensionless. Note that ei is not a
unit vector. Our treatment does not require the mode
expansion used in Ref. [44] to treat multidefect configu-
rations. An isolated þ1=2 defect has a nonvanishing flow
velocity at its core (uðrþi Þ ¼ vei, v ¼ αS0=Γa), while the
−1=2 defect does not, due to its threefold symmetry
(uðr−i Þ ¼ 0) [45]. We show that the resulting positional
dynamics of the defects, including both motility and
passive interactions (for a derivation, see the Supplemental
Material [41]) [46], is given by

_rþi ¼ vei − μ∇iU þ
ffiffiffiffiffiffiffiffi
2μT

p
ξiðtÞ; ð3aÞ

_r−i ¼ −μ∇iU þ
ffiffiffiffiffiffiffiffi
2μT

p
ξiðtÞ; ð3bÞ

where μ ∝ 1=γ is a defect mobility, ξiðtÞ Gaussian white
noise, and

U ¼ −2πK
X
i≠j

qiqj ln

���� ri − rj
a

���� ð4Þ
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is the Coulomb interaction between defects, with qi ¼ �1=2
the strength of the ith defect. The elastic constantK includes
corrections fromhydrodynamic flows linear in activitywhich
can destabilize the nematic state even in the absence of
topological defects [47,48]. Here we take K > 0 (permitted
in a domain of parameter space [47,48]) to guarantee an
elastically stable nematic. Note that v ∝ α can be of either
sign. The translational noise strengthT arises from thermal or
active noise in theQ equation [Eq. (2)]. Amore sophisticated
calculation (see the Supplemental Material [41]) gives
logarithmic corrections to the defect mobility μ [49–52].
The important feature of activity is that it elevates the
geometric structural polarity of the þ1=2 disclination to a
dynamical degree of freedom, one that drivesmotion. In turn,
ei also has its owndynamics,which is, in principle, contained
in the Q equation. Neglecting noise for now and using
the quasistatic approximation in a frame comoving with
the þ1=2 defect, i.e., ½∂tQ�rþi ðtÞ ¼ 0, we have _eiðtÞ ¼
a½viðtÞ · ∇�∇ ·Qðrþi ðtÞÞ, where vi¼vei−μ∇iU is the deter-
ministic part of _rþi [Eq. (3a)]. Our approximation neglects
elastic torques on ei due to smooth director distortions,
shown to be unimportant for the dynamics of neutral
pairs [53,54] (a more detailed justification and comparison
with previous work is given in the Supplemental
Material [41]). Assuming a dilute gas of slowly moving
defects, we perturbatively expand Eq. (2) about the equilib-
rium defect configuration and solve for Q. Using this
solution, we evaluate ∇∇ ·Q at the core of the defect to
obtain (for details, see the Supplemental Material [41])

_ei ¼ −
5γ

8K
½vi · ðvi − veiÞ�ei −

vγ
8K

ðvi × eiÞϵ · ei; ð5Þ

where ϵ is the two-dimensional Levi-Civita tensor. Sinceei is
not a unit vector, its deterministic dynamics has a term along
ei fixing its preferred magnitude and one transverse to it
aligning the polarization to the force.
To elucidate the nature of the torques on the polarization,

we write ei ¼ jeijðcos θi; sin θiÞ and decompose the elastic
force acting on the ith defect (Fi ¼ −∇iU) as Fi ¼
jFijðcosψ i; sinψ iÞ. For the defect orientation θi, Eq. (5)
then reduces to

∂tθi ¼ v
μγ

8K
jFijjeij sinðθi − ψ iÞ: ð6Þ

Active backflows tend to align the defect polarization with
the force acting on the defect. A similar alignment kernel
has been used previously to phenomenologically model
flocking and jamming in cellular systems [55,56], but here
it arises naturally from the active dynamics of a two-
dimensional nematic. Importantly, here the torque is con-
trolled by activity (v ∝ α). An extensile system (v ∝ α < 0)
favors alignment of the polarization with the force, while a
contractile system (v ∝ α > 0) favors antialignment of
polarization and force (Fig. 2). The equations obtained

here also predict patterns for four þ1=2 defects on a sphere
as obtained in Ref. [19].
For configurations inwhich theþ1=2 is runningaway from

the−1=2 in an isolated neutral defect pair, the active aligning
torque [Eq. (6)] stabilizes theþ1=2 defect polarization against
transverse fluctuations [see Figs. 2(a)–2(b)], irrespective of
the sign of activity. Hence activity not only renders theþ1=2
defect motile, but enhances the persistence of defect motion
through the torques, favoring the unbinding of defect pairs.
This feature breaks the symmetry between pair creation
and annihilation events for both extensile and contractile
systemsand justifies the one-dimensional cartoon inFig. 1.As
we will see below, however, the stochastic part of the defect
dynamics (neglected so far) can disrupt these configurations,
preventing unbinding. We finally remark that one can
also obtain configurations for pairs of þ1=2 disclinations
[Figs. 2(c)–2(d)] that are stable against transverse deflections
of either polarization. As shown, in the far-field of these two-
defect configurations, asterlike structures are favored in an
extensile system while vortexlike structures are favored in a
contractile one, as seen in confined fibroblasts [57].

FIG. 2. Configurations of defect pairs whose orientations, for
an imposed fixed separation, are stable to transverse fluctuations
of theþ1=2 polarization(s). The active backflow is shown in blue
and the director configuration in black. The polarization and force
on each þ1=2 defect is shown in red and in purple, respectively.
The top row shows a neutral �1=2 defect pair orientationally
stable for (a) extensile (v < 0) and (b) contractile (v > 0)
systems. Similarly, in the bottom row we have a pair of þ1=2
defects that are orientationally stable. The far field nematic
texture for these two-defect configurations has an asterlike
structure when (c) extensile (v < 0) and a vortexlike structure
when (d) contractile (v > 0).
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The stochastic part of the dynamics of ei also derives
from noise in the dynamics of Q, but a full calculation is
challenging and beyond the scope of the present work. In
the limit of low activity, we assume that the noise statistics
can be inferred from the known equilibrium joint proba-
bility distribution of r�i and ei,

P2N
eq ¼ 1

Z2N
e−U=T

YN
i¼1

�
K
2πT

e−Kjeij2=2T
�
; ð7Þ

where Z2N is the Coulomb gas partition function and
Kjeij2=2 is the simplest contribution to the defect core
energy [58]. This results in

_ei ¼
5μγ

8K
½∇iU · ðvei − μ∇iUÞ�ei þ

vμγ
8K

ð∇iU × eiÞϵ · ei
−

ffiffiffiffiffiffiffiffiffi
2DR

p
ϵ · eiηiðtÞ þ νiðtÞ; ð8Þ

where we have written vi in terms of the force −∇iU.
Smooth director phase fluctuations can be shown to
generate rotational noise [first term in the second line of
Eq. (8)] that changes the direction of ei, while keeping jeij
fixed. Here ηiðtÞ is unit white noise andDR ¼ μT=l2

R is the
rotational diffusivity of the þ1=2 defect, with lR ∼ a. The
properties of the longitudinal component νiðtÞ of the noise
are determined by requiring that the probability distribution
of the defect gas relaxes to the corresponding equilibrium
form where (for one Frank constant) defect position and
polarization are decoupled in the absence of activity (i.e.,
for v ¼ 0), with the result (see Supplemental Material [41])

hνiðtÞνjðt0Þi ¼ 1δijT
5μ2γ

4

j∇iUj2
K2

δðt − t0Þ: ð9Þ

No summation on repeated indices is implied. As written,
the noise has no stochastic ambiguity and is independent of
any thermodynamic parameters, involving only the defect
mobility μ and rotational viscosity γ, as it should.
To study defect unbinding, we now examine the dynam-

ics of an isolated �1=2 defect pair governed by coupled
Langevin equations for the pair separation r ¼ rþ − r−

[obtained from Eqs. (3a), (3b)] and theþ1=2 polarization e
[Eq. (8)]. We derive and solve the corresponding Fokker-
Planck equation for the steady state distribution, perturba-
tively in activity by using an isotropic closure for heei and
neglecting all higher order moments in e (see Supplemental
Material [41]). Integrating over the polarization, we obtain
the steady-state defect pair density at large distances to
have an equilibrium like form ρssðrÞ ∝ e−UeffðrÞ=T with an
effective pair potential UeffðrÞ ≃ ðπKeff=2Þ lnðr=aÞ where,
to leading order in activity,

KeffðvÞ ¼ K −
v2

2μDR

�
1þ μγ

3T
4K

�
þOðv4Þ: ð10Þ

Hence, for large pair separation, the defect interaction is
weakened by activity. A small activity reduces the entropic

BKT transition temperature Teq
c ¼ πK=8 to TcðvÞ ¼

πKeffðvÞ=8. Inverting this equation for small jvj, we obtain
the phase boundary below which the ordered nematic is
stable,

jvcðTÞj
v�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16T̃ð1 − T̃Þ
π½1þ ð3π=32ÞμγT̃�

s
; ð11Þ

with T̃ ¼ T=Teq
c and v� ¼ μTeq

c =lR. As shown in Fig. 3,
this implies reentrant behavior as a function of T. If the
rotational diffusivity DR has a nonthermal part Da

R, then
there is a nonzero activity threshold ∼

ffiffiffiffiffiffiffi
Da

R

p
for unbinding

as T → 0 and no reentrance at low activity. If Da
R is large

enough then reentrance is abolished altogether. For
jvj > jvcðTÞj, the effective pair potential Ueff develops a
maximum as in Fig. 1, thereby implying that incipient
defect pairs unbind for arbitrarily small temperature. The
physical picture is then quite clear. At low activity, rota-
tional diffusion randomizes the orientation of the þ1=2
disclination and makes its motion less persistent, allowing
the defect pair to remain bound. It is in this way that noise

FIG. 3. Phase boundary in the jvj − T plane [Eq. (11)] for
different values of μγ. The region enclosed by the curve jvcðTÞj
for a given μγ corresponds to the ordered nematic.

(a) (b)

FIG. 4. Steady-state statistics for a �1=2 defect pair in a
periodic box of size L ¼ 50a (T=Teq

c ¼ 0.51, all other parameters
are unity). (a) The pair separation distribution ρssðrÞ for low
(jvj ¼ 0.5, 1.2, bound phase) and high (jvj ¼ 1.5, unbound
phase) activity, suggesting that Eq. (11) which gives
jvcj ≃ 2.06, overestimates the unbinding threshold. (b) The dis-
tribution of the relative angle (Δ ¼ θ − ψ) between the polari-
zation e and the force F on the þ1=2 defect for extensile (square)
and contractile (circle) systems.
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counterintuitively stabilizes the ordered nematic phase.
At higher activity, the active torques compete with rota-
tional diffusion, but ultimately enhance the persistent
nature of defect motion. In this case rotational noise
becomes irrelevant and we recover the scenario sketched
in Fig. 1. The simple one dimensional model predicts defect
unbinding self-consistently if the persistence length of the
þ1=2 disclination (jvj=DR) is greater than the position of
the barrier in the potential [rc ¼ K=ðjvjγÞ]. Equating the
two lengths, we obtain the same threshold scaling as in
Eq. (11) at low T. We have verified this scenario by
numerically integrating Eqs. (3) and (8) for either sign of v,
as shown in Fig. 4.
In summary, starting from the equations of motion of a

two-dimensional active nematic, we have derived the
statistical dynamics of its topological defects as a noisy
mixture of motile and nonmotile particles. Through a
Fokker-Planck approach, we show perturbatively that the
rotational diffusion of þ1=2 defects allows the nematic
phase to survive defect proliferation below an activity
threshold. We identify, for small activity, the temperature-
activity locus of a BKT-like active-nematic–isotropic tran-
sition, and provide arguments suggesting that defects are
unbound at any nonzero temperature above a critical
activity, and that a reentrant disordered phase arises at
low temperature. Venturing beyond the present perturbative
approach and taking many-defect features, such as screen-
ing, into account are clearly the immediate challenges.
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[24] X.-q. Shi, H. Chaté, and Y.-q. Ma, Instabilities and chaos in
a kinetic equation for active nematics, New J. Phys. 16,
035003 (2014).

[25] S. Ngo, A. Peshkov, I. S. Aranson, E. Bertin, F. Ginelli, and
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