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Active systems on curved geometries are ubiquitous in the living world. In the presence of curvature,
orientationally ordered polar flocks are forced to be inhomogeneous, often requiring the presence of
topological defects even in the steady state because of the constraints imposed by the topology of the
underlying surface. In the presence of spontaneous flow, the system additionally supports long-wavelength
propagating sound modes that get gapped by the curvature of the underlying substrate. We analytically
compute the steady-state profile of an active polar flock on a two-sphere and a catenoid, and show that
curvature and active flow together result in symmetry-protected topological modes that get localized to
special geodesics on the surface (the equator or the neck, respectively). These modes are the analogue of
edge states in electronic quantum Hall systems and provide unidirectional channels for information
transport in the flock, robust against disorder and backscattering.

DOI: 10.1103/PhysRevX.7.031039 Subject Areas: Metamaterials, Soft Matter

I. INTRODUCTION

Flocking, defined as the self-organized ordered motion
of collections of self-propelled units [1,2], has been the
flagship of active matter for some time now [3,4]. Active
entities dissipate energy to perform work and generate
motion, leading to sustained and local breaking of detailed
balance. Examples abound in the living world, ranging
from bird flocks [5] to bacterial suspensions [6] and
migrating cells [7], and include synthetic analogues, such
as reconstituted cytoskeletal extracts [8–10], vibrated
granular media [11,12], and self-propelled colloids [13].
Active matter as a field aims to provide broad organiza-
tional principles applicable to a wide class of these non-
equilibrium systems over many scales.
Collective cellular motion on curved surfaces is ubiqui-

tous in developmental processes, such as morphogenesis
and embryonic development [14–16], or when cells migrate
in the gut [17,18] or on the surface of the growing cornea
[19], and it also affects cell division [20]. Recent in vitro
work has demonstrated a direct effect of substrate curvature
on cytoskeletal alignment and cell motility in epithelial
cells [21]. Understanding the behavior of active matter on
curved surfaces or confined by curved boundaries is
therefore timely. There has been growing recent interest
in understanding this at a fundamental level, with the focus
divided between the effect of curved confining walls on

so-called scalar (nonaligning) active matter [22–26] and on
aligning active matter systems, of either nematic [9,10,27]
or polar [28,29] symmetry. Even at the level of non-
interacting self-propelled particles, the curvature of con-
fining walls can yield surprising features, such as
inhomogeneous density and pressure profiles [22,25] and
the breakdown of an equilibrium interpretation [23,24]. In
the presence of aligning interactions that promote orienta-
tional order, curvature has an even more profound effect
since it frustrates such order, often requiring topological
defects [30] that, in active systems, become dynamical
and are capable of driving spatiotemporal patterns and
complex motion [10]. With flexible walls or membranes
present, activity can lead to spontaneous motion and
rectification [31,32].
A generic property of the ordered state of polar active

matter is spontaneous flow and thus the breaking of time-
reversal symmetry [4]. It is known that carefully engineered
lattice structures with flows induced either spontaneously
by activity [33] or through an external drive [34] can host
exotic unidirectional sound modes that are localized at the
edges of the sample and are topologically protected. The
presence of topologically protected edge states in classical
phononic [35,36] and photonic [37] systems has led to
extensive exploration of topological metamaterials, with
properties akin to electronic topological insulators and
quantum Hall states [38]. Here, we show that a polar
active fluid on a curved substrate supports similar topo-
logically protected modes, even in the absence of any
underlying periodicity or lattice structure. This should be
contrasted with many of the systems considered previously,
which required a carefully designed metamaterial struc-
tured on an artificial lattice. The phenomenon reported here
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is akin to the one recently found in geophysical flows of
oceans or the Earth’s atmosphere, where equatorially
trapped Kelvin waves were reinterpreted as topologically
protected modes [39]. In that case, the flow is imposed
externally by the Earth’s rotation. In our active fluid, in
contrast, flow occurs with no external drive, resulting in
spontaneous topologically protected modes.
The presence of these topological modes relies on three

important ingredients:
(i) the spontaneous polar order and associated flow that

breaks time-reversal symmetry;
(ii) the fact that in polar active fluids the order parameter

also plays the role of a flow velocity, resulting in
distinctly nonequilibrium self-advection not present
in equilibrium polar fluids [4];

(iii) the nonzero Gaussian curvature of the underlying
substrate.

We emphasize that the long-wavelength, topologically
protected modes discussed here are generic, in the sense
that they occur for active polar flow on any curved surface
of nonvanishing Gaussian curvature. Recent work has
considered active polar patterns on a cylinder [40]. In this
case, the Gaussian curvature vanishes, and there are
consequently no topologically protected sound modes. In
the following, we demonstrate the phenomenon explicitly
for flocking on the sphere, which has constant positive
curvature, and on the catenoid, which has negative,
spatially varying curvature.
In Sec. III, we analyze the continuum Toner-Tu model of

flocking on a sphere and analytically compute the steady-
state configuration of the polar-ordered flock. Because of
the curvature, the ordered state is forced to be inhomo-
geneous, in general. On a sphere, polar order additionally
requires topological defects or vortices (the “hairy-ball
theorem” [41]) in order to satisfy the constraints imposed
by the global topology of the surface. With a well-
motivated ansatz, we show that the covariant hydrodynamic
model is capable of predicting generic inhomogeneous
steady ordered phases that accommodate the curvature and
topology of the underlying surface in a natural fashion. The
steady flocking state on the sphere corresponds to the
rotating band seen in recent particle simulations by
Sknepnek and Henkes [29] and is a novel find in itself
as it is peculiar to the active system (a passive polar liquid
crystal on a sphere would have a very different equilibrium
profile).
Having obtained a steady ordered state, in Sec. III B, we

examine its excitations. Even though our system is over-
damped because of the presence of a substrate, the ordered
polar flock supports long-wavelength propagating sound
modes [42]. The presence of curvature introduces an
additional length scale in the problem and gaps the sound
spectrum at long wavelengths. In other words the propa-
gation rate of long-wavelength density fluctuations is finite.
This is a distinct property of active polar fluids, and it arises

because the polarization field plays the dual role of the
order parameter and flow velocity and is therefore subject
to the same lensing effect that forces flow to move along
geodesics on curved surfaces [29,39]. With a spectral gap
opened, in Sec. IV, we show that a polar-ordered flock on a
curved surface supports topologically protected sound
modes that are localized to special geodesic curves on
the surface (at which the gap in the spectrum closes). In
Sec. V, we compute the steady state of an ordered polar
flock on a catenoid and show that topological modes are
also present on this negative-curvature surface. In contrast
to the setup of Souslov et al. [33], where the lattice
structure was instrumental (along with the active flow)
in generating a gapped spectrum at intermediate frequen-
cies, here the curvature itself generates it, though now at
long wavelengths, implying that the result is quite general.

II. TONER-TU EQUATIONS ON
A CURVED SURFACE

We consider an active polar fluid on a two-dimensional
(2D) surface. To make generic predictions independent of
specific microscopic realizations, we work in the con-
tinuum limit and use the well-tested hydrodynamic descrip-
tion of a fluid of overdamped self-propelled particles
provided by the Toner-Tu equations [2,43,44], appropri-
ately modified to account for the curvature of the sphere
[28]. Mass conservation implies a continuity equation for
the density field, ρ,

∂tρþ∇μpμ ¼ 0; ð1Þ

with μ ¼ θ;φ and p ¼ ρu the polarization density of the
active fluid. Because of the presence of a substrate, momen-
tum is not conserved, and the particle’s velocity is assumed to
be alignedwith its direction of self-propulsion, leading to the
identification of u with the flow velocity of the active fluid.
Note that on a curved surface, parallel transport of vectors
requires the use of covariant derivatives [45],

∇μpν ¼ ∂μpν þ Γν
αμpα; ð2Þ

where Γν
αμ are the appropriate Christoffel symbols. The

equation for the polarization density is given by

∂tpμþλpν∇νpμ ¼ ½aðρ−ρcÞ−bgαβpαpβ�pμ

þνðΔpμþKGpμÞþν0∇μ∇νpν−v1∇μρ:

ð3Þ

Note that, here, u plays the dual role of an order
parameter field (polarization) and velocity, as discussed
in Ref. [4]. The transport coefficients ν and ν0 are the shear
and bulk viscosities (or anisotropic elastic constants),
respectively, a, b > 0 are coefficients setting the magnitude
of the mean-field polarized state for ρ > ρc (the critical

SHANKAR, BOWICK, and MARCHETTI PHYS. REV. X 7, 031039 (2017)

031039-2



density for the flocking transition), λ is a kinematic
convective parameter, and v1 > 0 is a compressional
modulus. The last term on the right-hand side of Eq. (3)
is the first term in a density expansion of the gradient of the
swim pressure [46,47] that describes the flux of propulsive
forces across a unit plane of material. There are other
nonlinear terms in the original Toner-Tu equations, but we
only retain the most important ones here. In particular, we
keep the convective nonlinearity λp ·∇p, which is respon-
sible for long-ranged order in 2D [43,48], and the leading
density dependence in the symmetry breaking (aρp) and
pressurelike terms (v1∇ρ) that lead to dynamical self-
regulation [49], phase-separation [50–52], and long-
wavelength instabilities of the ordered phase [53,54].
The absence of Galilean invariance means that λ ≠ 1=ρ.
Additional nonlinear advective terms ∼λ2p∇ · p, λ3∇jpj2
are also present, in general, but do not qualitatively change
our results below (see Appendix A for an analysis with
λ2, λ3 ≠ 0).
Curvature enters Eq. (3) in two crucial places (apart from

the covariant derivatives): (i) The cubic term setting the
magnitude of the polarization explicitly involves the metric
tensor g (jpj2 ¼ gαβpαpβ) and (ii) the Gaussian curvature
KG explicitly appears in the viscous term because the strain
rate tensor is a symmetrized derivative of the velocity and
the covariant derivatives do not commute. The presence of
KG ≠ 0 is a direct dynamical consequence of the Poincaré-
Hopf theorem [41] from which it follows that topological
defects or vortices are required to accommodate vector
order on a curved closed surface like the sphere. A
covariant hydrodynamic treatment of active fluids on a
curved surface has also been developed by Fily et al. [28].
These authors derived the continuum equations by coarse
graining a microscopic model of self-propelled particles,
which allowed an explicit computation of the transport
coefficients in terms of microscopic parameters. The form
of the continuum equations obtained in Ref. [28] is
identical to those used here, the only distinction being that
Oð∇2Þ terms are neglected in that work, including the
explicit KG term. In the following, we similarly neglect
∇2 terms.

III. POLAR FLOCK ON A SPHERE

As an example of a curved surface with constant positive
curvature, we consider an active polar flock on the surface
of a sphere of radius R. In local spherical polar coordinates
fθ;φg, the canonical metric and curvature on S2 are

g ¼ R2ðdθ ⊗ dθ þ sin2θdφ ⊗ dφÞ; KG ¼ 1

R2
: ð4Þ

The only nonvanishing Christoffel symbols are

Γθ
φφ ¼ − sin θ cos θ and Γφ

θφ ¼ cot θ: ð5Þ

A. Steady state of a polar flock on the sphere

At low mean density (ρ0 < ρc), the isotropic phase with
constant density and p ¼ 0 is stable. For ρ0 > ρc, where the
mean-field solution in flat space is a state of constant
density and finite, but uniform polarization, on the sphere
one obtains polar, spatially varying states. Since the particle
number is conserved, there can be no sinks or sources of
flow. The simplest configuration allowed by the required
conservation of topological defect charge that must sum up
to the Euler characteristic χ ¼ 2 of the sphere is then a
circulating band wrapping around an equator, with two
vortices of chargeþ1 at the two opposing poles. This yields
a density band with polarization in the azimuthal direction
and both density and polarization vanishing at the poles,
consistent with the band state reported recently in simu-
lations of polar particles on the sphere [29].
An explicit solution can be found analytically by

assuming azimuthal symmetry, with ρ ¼ ρssðθÞ, pθ ¼ 0,
and pφ ¼ pφ

ssðθÞ. The continuity equation is then satisfied
identically. To simplify the polarization equation, we
neglect the viscous terms as they are higher order in
gradients (suppressed by 1=R2) compared to the other
terms arising from self-propulsion. In the microscopic
realization of self-propelled polar particles with repulsive
short-range forces and aligning interaction studied in
Ref. [29], this approximation corresponds to the regime
where interparticle repulsion (contributing to pressure) and
active self-propulsion dominate over viscous and elastic
stresses. We then neglect the Laplacian terms entirely by
setting ν ¼ 0 (the bulk viscosity ν0 drops out with our
assumption of azimuthal symmetry). This leaves us with

λ sin θ cos θðpφ
ssÞ2 ¼ v1

R2
∂θρss; ð6Þ

pφ
ss½aðρss − ρcÞ − bR2sin2θðpφ

ssÞ2� ¼ 0: ð7Þ

Writing XðθÞ ¼ ρssðθÞ − ρc, and seeking a solution with
pφ
ss ≠ 0, we can eliminate pφ

ss from the two equations to
obtain

dX
dθ

¼
�
aλ
bv1

�
cot θX ⇒ XðθÞ ¼ Xðπ=2Þðsin θÞη; ð8Þ

where

η ¼ λa
bv1

ð9Þ

is a dimensionless parameter that controls the shape of the
solution, with η > 0 for the density profile to be a physical
solution (note that sin θ > 0 over the entire range
θ ∈ ½0; π�). By symmetry, the density will be maximum
at θ ¼ π=2 (the equator). Letting ρssðπ=2Þ ¼ ρmax, we find
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ρssðθÞ ¼ ρc þ ðρmax − ρcÞ sinη θ: ð10Þ

We stress that the dependence on R has dropped out from
Eq. (10), which therefore represents a universal density
profile for an ordered flock on any size sphere. Finally, we
express ρmax in terms of the average density ρ0 ≡ hρssi by
requiring

ρ0 ¼
R2

4πR2

Z
2π

0

dφ
Z

π

0

dθ sin θρssðθÞ ð11Þ

to obtain the final expression for the density profile as

ρssðθÞ ¼ ρc þ ðρ0 − ρcÞAη sinη θ; ð12Þ

with Aη ¼ 2Γðð3þ ηÞ=2Þ=½ ffiffiffi
π

p
Γð1þ η=2Þ�. In order for

this density profile to exist, we additionally require that
jpssj2 > 0 and obtain

jpssj2 ¼
a
b
ðρ0 − ρcÞAη sinη θ: ð13Þ

As expected, an ordered flock only exists for ρ0 > ρc, and
the magnitude of the steady-state polarization and the
density have the same inhomogeneous profile as shown
in Fig. 1(a), with the direction of polarization chosen
spontaneously.
This band solution is unrelated to the traveling bands

found in flat space [51–53], which occur close to the mean-
field transition and are absent deep in the ordered phase.
The inhomogeneous solution obtained is simply the
ordered flocking state on a sphere. The spatially inhomo-
geneous profile arises from the interplay of mass fluxes
(∼v1∇ρ) and convective fluxes (∼λp · ∇p) that cannot be
driven to zero on a curved surface. Hence, the spatial
inhomogeneity is made inevitable by curvature. The
present solution is expected to break down within a region
of angular width θm ∼ expð−aρcR2=νÞ (hence, it is expo-
nentially small on a large sphere) around the poles of the
sphere, at the core of the vortices, as the elastic stresses will
become important at short scales. Therefore, the profile
obtained is a robust and universal prediction of the
continuum theory, similar to the rotating band seen in
particle simulations of Ref. [29].
For an equilibrium polar or ferroelectric liquid crystal

(say, a compressible lyotropic smectic-C film [55]), where
the polarization is strictly an order parameter field and does
not play the role of a velocity, the important convective
nonlinearity in Eq. (3) is absent (λ ¼ 0, though λ2 and λ3
can be present [56]), and the band solution we have here is
absent (η ¼ 0, see Fig. 2). In this case, even in the ordered
phase, the density remains homogeneous, and on a large
enough sphere, we have nearly uniform polar order every-
where (jpssj≃ const), but for two isolated defects at the

poles, whose core size ξ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=aðρ0 − ρcÞ

p
is a microscopic

length scale deep into the ordered state.

B. Linearizing about the steady state

Well below the mean-field transition (ρ0 < ρc), the
isotropic disordered state (ρss ¼ ρ0 and pss ¼ 0) is linearly
stable at long wavelengths, with fluctuations in the polari-
zation relaxing quickly and density perturbations relaxing
diffusively at long times, just as in the plane [57]. The
curvature does not affect the disordered phase. It is only in
the ordered state that we find novel excitations with
nontrivial topological properties.
Here, we consider the linear dynamics of small-ampli-

tude perturbations about the steady ordered flocking state,
letting ρ ¼ ρssðθÞ þ δρ and p ¼ pssðθÞ þ δp. We focus on
the long-wavelength propagating sound modes that are
present even in the plane for an ordered flock [42], and we
continue to neglect all the viscous and elastic couplings.
These are higher order in gradients and only give rise to
damping of the sound modes. As the base state we are
linearizing about is inhomogeneous, we additionally

(a)

(b)

FIG. 1. (a) The normalized density profile of a polar flock on a
sphere given in Eq. (12), for η ¼ 0.5 (blue), 1 (orange), and 2
(green). (b) The density and polarization profiles for η ¼ 2, now
shown on the sphere. The color describes the density from the
maximum (red) at the center of the polar band to ρc (blue) at the
poles of the sphere. The polarization also vanishes at the poles.
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confine ourselves to a tangent plane linearization about a
fixed latitude away from the poles (a preferred local
coordinate system is picked out spontaneously by the polar
order, allowing for an unambiguous notion of latitude).
Setting θ ¼ θ0 þ y for a given latitude θ0, with θ0 < π=2
corresponding to the northern hemisphere and θ0 > π=2 to
the southern hemisphere, relabeling φ as x, and letting
δpθ → v and δpφ → u, we obtain

∂tδρþ ∂xuþ ∂yvþ v cot θ0 ¼ 0; ð14Þ

∂tuþ λp0∂xuþ v1
R2sin2θ0

∂xδρ

¼ p0ðaδρ − 2bR2p0sin2θ0uÞ − v
λp0ðηþ 2Þ

2
cot θ0;

ð15Þ

∂tvþ λp0∂xvþ
v1
R2

∂yδρ ¼ 2uλp0 sin2 θ0 cot θ0; ð16Þ

with p0 ¼ pφ
ssðθ0Þ the azimuthal polarization at latitude θ0,

which is finite as long as we are away from the poles,
θ0 ≠ 0, π. Note that the stability of the steady state requires
η > 0, and hence λ > 0. The only terms that can be
negative are those proportional to cot θ0, arising from
the Christoffel symbols, which change sign as one crosses
the equator at θ0 ¼ π=2.
Next, we perform a Galilean boost to a comoving frame

by letting x → x − λp0t (comoving with the longitudinal
sound and not the flock itself), and relabel λ̄ ¼ λp0,
α ¼ ap0 > 0, β ¼ 2bp2

0R
2 sin2 θ0 > 0, v̄1 ¼ v1=R2 > 0,

and

m ¼ − cot θ0: ð17Þ

The redefined parameters are summarized in Table I. Since
the flock breaks Galilean invariance, this is not a symmetry
operation, and it yields

∂tδρ − λ̄∂xδρþ ∂xuþ ∂yv ¼ mv; ð18Þ

∂tuþ v̄1
sin2 θ0

∂xδρ ¼ αδρ − βuþ λ̄ðηþ 2Þ
2

mv; ð19Þ

∂tvþ v̄1∂yδρ ¼ −2λ̄sin2θ0mu: ð20Þ

Here,m is a constant of fixed sign at any given nonequatorial
latitude and changes sign across the equator, with m < 0 in
the northern hemisphere and m > 0 in the southern half,
vanishing only at the equator where θ0 ¼ π=2. We show
below that a nonvanishing value of m leads to a band gap
[Figs. 3(b) and 3(c)] in the sound mode spectrum that
acquires the necessary structure for nontrivial band topology.
This, along with the vanishing ofm at the equator, naturally
suggests that the equator behaves as a “boundary” between
two different “bulk” media (the northern and southern
hemispheres), thereby allowing for localized topologically
protected excitations on it. To simplify the notation, we let
jδΨi≡ ðδρ; u; vÞ and recast the linearized equations that
control the linear stability of the steady state in the form
of a Schrödinger-like equation [in Fourier space, with
ΨðqÞ ¼ R

d2re−iq·rΨðrÞ], as

i∂tjδΨi ¼ HjδΨi; ð21Þ

HðqÞ ¼

0
BB@

−λ̄qx qx imþ qy

iαþ v̄1qx
sin2θ0

−iβ imλ̄ðη
2
þ 1Þ

v̄1qy −2imλ̄sin2θ0 0

1
CCA:

ð22Þ

The eigenvalues of HðqÞ directly give the sound mode
frequencies (jδΨi ∝ e−iωt). An important distinction com-
pared to the Schrödinger equation is that the matrixH is not
Hermitian, and therefore, the linearizedmode spectrum is not
purely real because of dissipative terms describing the
overdamped dynamics and the absence of Galilean invari-
ance. For m ¼ 0 (θ0 ¼ π=2), the equations reduce to those

FIG. 2. The peak (maximum) density at the equator on a sphere,
as we vary the mean density ρ0. For ρ0 < ρc, we are in the
disordered phase with ρssðπ=2Þ ¼ ρ0. For ρ0 > ρc, we have a
polar band with the density profile given in Fig. 1. The density
reaches its maximum at the center of the band and grows with ρ0,
with a slope Aη > 1. When the convective parameter λ → 0,
η → 0, resulting in Aη → 1, and we go back to the homogeneous
profile as in the flat plane.

TABLE I. A summary of the parameter redefinitions in the
model.

λ a b v1

λ̄ ¼ λp0 α ¼ ap0 β ¼ 2bp2
0R

2 sin2 θ0 v̄1 ¼ v1=R2
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of the planar case. Fluctuations in the polarizationmagnitude
(u) are controlled by a fast mode that decays on microscopic
time scales ∼β−1,

iω0ðqÞ ¼ β − i
α

β
qx þOðq2Þ: ð23Þ

The density (δρ) and the transverse Goldstone mode (v)
are the only slow modes that remain propagating at long
wavelengths (as q → 0),

ω�ðqÞ ¼
1

2β

h
ðα − βλ̄Þqx �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − βλ̄Þ2q2x þ 4v̄1β2q2y

q i
;

ð24Þ
where we have only kept terms to leading order in q.
For nonzero but small m ≠ 0 (θ0 ≠ π=2), corresponding

to the regions close to the equator in either hemisphere, the
dispersion relations can be written as

iω0ðqÞ ¼ β − i
α

β

�
qx þ

2mλ̄

β
sin2θ0qy

�
þOðq2Þ; ð25Þ

ω�ðqÞ ¼
1

2β

h
qxðα − βλ̄Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2xðα − βλ̄Þ2 þ 4βðm − iqyÞð2mαλ̄ sin2 θ0 þ iv̄1βqyÞ

q i
þOðm2; q2; mqÞ: ð26Þ

In the next section, we analyze this mode structure.

IV. TOPOLOGICAL SOUND

We immediately see that the two branches of the propa-
gating modes given by Eq. (25) have a gap at q ¼ 0 of width
Δ ¼ jωþð0Þ − ω−ð0Þj proportional to jmj, with

Δ ¼ 2jmj sin θ0
ffiffiffiffiffiffiffiffi
2αλ̄

β

s
þOðm3Þ: ð27Þ

The terms explicitly involvingm in the dispersion relations,
responsible for the opening of the gap, are obtained only in
the presence of both curvature and spontaneous active flow.
In the plane, static long-wavelength deformation of both the
density and the broken symmetry mode leave the system
unchanged. On a curved surface, in contrast, spatially uni-
form deformations of either “slow” field (δρ and v) cannot be
static and invariably lead to dynamics in the system. As a
result of curvature-induced forces, long-wavelength defor-
mations of would-be slowmodes are required to have a finite

frequency, resulting generically in theq ¼ 0gapof the sound
spectrum, in sharp contrast to the conventional behavior of
hydrodynamics in flat geometry [58].
It is useful to compare the effect at hand with one that

occurs in geophysical flows. In a frame comoving with the
flock, the finite curvature of the sphere plays a role similar
to the Coriolis force that would be present for a passive
fluid on a rotating sphere. In the case of the Earth’s
atmosphere, this has recently been shown to give a gapped
sound spectrum and equatorially confined Kelvin and
Yanai waves [59] that are topological in origin [39]. In
our active system, no external flow or rotation needs to be
imposed, and the absence of Galilean invariance allows for
independent tuning of the material parameters (such as λ) in
order to probe regimes that are not accessible to passive
fluids.
On times scales t ≫ β−1, we can slave the fast mode u to

the slow fields, u≃ αδρ=β þOð∇δρÞ [60]. Upon elimi-
nating u, we get a reduced set of dynamical equations

FIG. 3. The relevant (slow) sound modes. (a)m ¼ 0 and the gap between the two bands is closed. Panels (b) and (c) are the dispersion
bands for m ¼ 0.2 [Eq. (25)], and we directly see that a gap has opened in the real part of the spectrum, while the imaginary part of the
frequency has a single crossing line at qy ¼ 0. The variables are chosen to be θ0 ≃ 78°, α≃ 2.03, λ̄≃ 1.03, and β ¼ v̄1 ¼ 1.
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involving only δρ and v. After rescaling the wave vector
jαβ − λ̄jqx=β → qx, the linear matrix controlling the
dynamics of δρ; v fluctuations is given by

DðqÞ ¼
�

sqx qy þ im

v̄1qy − iμm 0

�
; ð28Þ

where μ ¼ 2λ̄α sin2 θ0=β > 0 (θ0 ≠ 0; π) and s ¼ sgnðα −
λ̄βÞ (s ¼ 0, if λ̄ ¼ α=β). One can easily check that the
eigenfrequencies of DðqÞ are exactly given by ω�ðqÞ
[Eq. (25)] modulo the appropriate rescaling of qx. As
DðqÞ is still non-Hermitian, we need to evaluate right and
left (adjoint) eigenvectors,

DðqÞjψ ii ¼ ωiðqÞjψ ii; ð29Þ

D†ðqÞjχii ¼ ω�
i ðqÞjχii ði ¼ �Þ; ð30Þ

with the biorthogonality relation hχijψ ji ¼ δij. It is impor-
tant to keep in mind the regime in which DðqÞ provides a
valid approximation to the complete dynamics. For

1

β
≪ t ≪

β

λ̄2ηm2
;

λ̄jmj
β

≪ 1; ð31Þ

we can neglect the fast umode and not worry about higher-
order terms in both q and m. This can be achieved deep in
the ordered phase on a large-enough sphere, in which case
β is large, allowing for a large window of time in which the
dynamics is dominated by DðqÞ. With this set of simpli-
fications, the linear dynamical matrix is always diagonaliz-
able and ωþ ≠ ω− as long as m ≠ 0 or q ≠ 0, allowing one
to adiabatically deform our model to have purely real
eigenvalues by smoothly taking μ → v̄1 (for μ ≠ 0). In the
process, the spectral gap remains open as long as m ≠ 0.
In order to establish the topological nature of the band

structure, we compute the associated Uð1Þ Berry gauge
connection and curvature [61]

A� ¼ ihχ�j∇qjψ�i; F�ðqÞ ¼ ∇q ×A�; ð32Þ

along with the Chern numbers [62] for each band,

C� ¼
Z

d2q
2π

F� ¼ � s
2
sgnðmÞ; ð33Þ

where s ¼ sgnðα − λ̄βÞ. The Chern number here is only
quantized to a half integer as we work directly in the
continuum long-wavelength approximation, and the clos-
ing of the gap (for m ¼ 0) only gives rise to one Dirac-
cone-like structure (this is the contribution to the “parity
anomaly” or Hall conductance associated with a single
Dirac cone in a Chern insulator [63]). An appropriate
regularization for large q guarantees the Chern number to
be an integer [38,64]. However, this calculation still has

worth in predicting the correct number of topologically
protected edge modes present when we stitch two of these
regions with different Chern numbers together, via the
bulk-edge correspondence. So each gap closing (change in
sign of m) leads to a single localized edge mode, which, as
we shall see, is unidirectional.
As anticipated earlier, we find that the Chern number of

the acoustic band is different in the northern (m < 0) and
southern (m > 0) hemispheres, vanishing at the equator
(m ¼ 0). Hence, going across the equator, we have one gap
closing (at q ¼ 0) with a band inversion, leading to a single
topological sound excitation localized at the equator. Note
that the Chern number also vanishes for s ¼ 0, which is
obtained either when p0 ¼ 0 or λ̄ ¼ α=β, leading to a
topologically trivial band structure. The first case corre-
sponds to the absence of spontaneous active flow and the
second to a partial restoration of Galilean invariance (in this
limit, both density and Goldstone mode excitations propa-
gate with the same longitudinal speed). Thus, the vanishing
of the Chern number and associated band triviality for
s ¼ 0 is not due to the closure of a gap but instead to a
restoration of symmetry. As β ¼ 2bR2p2

0 sin
2 θ0 depends

on the latitude at which we are located, the vanishing of s
(for λ̄ ¼ α=β) is a condition on the polar angle θ0. There is a
critical density

ρ� ¼ ρc þ
1

2Aηλ
; ð34Þ

such that for ρc < ρ0 < ρ�, s ≠ 0 on the entire sphere.
Deeper into the ordered state (ρ0 > ρ�), there are
two latitudes at angles θ� such that sinη θ� ¼
ðρ� − ρcÞ=ðρ0 − ρcÞ, at which s ¼ 0. Even though the band
topology changes as we cross the latitudes at θ� [Eq. (33)],
the spectrum remains gapped throughout, and hence we do
not have any gapless excitations localized at θ�. The
change in the Chern number across these special latitudes
is due to an accidental additional symmetry (Galilean
invariance) instead of the gap closing, thereby circum-
venting the bulk-boundary correspondence. This is a well-
known point in quantum topological insulators, only
realized here in a peculiar fashion as the protecting
“symmetry” varies spatially in a single sample.
To summarize, there are three crucial ingredients in this

system that lead to and protect the topologically nontrivial
band structure.

(i) Breaking of time-reversal symmetry by the active
polar flow. Changing the direction of spontaneous
polarization (flow) changes the sign of s (as p0 →
−p0 leads to α → −α, λ̄ → −λ̄, β → β, and μ → μ).

(ii) The presence of the convective nonlinearity λ ≠ 0.
An equilibrium passive polar liquid crystal will
therefore not exhibit these modes.

(iii) The curvature of the base surface, which opens up a
gap in the sound spectrum. Changing the Gaussian
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curvature exchanges the regions with positive and
negative “m”.

This is entirely analogous to the Haldane model [63],
where the closing of the gap at the Dirac point is protected
by time-reversal symmetry, which, when broken by the
local magnetic field, leads to a band structure with a
nontrivial topology. Though the active system is not
Hermitian with purely real frequencies, the structure of
the localized equatorial mode for varying mðyÞ is adia-
batically connected to its Hermitian analogue [65], the
Jackiw-Rebbi soliton [66],

jδΨedgei ¼ ψ0e
−η
R

y

0
mðy0Þdy0þiqxðx−stÞ

�
1

0

�
; ð35Þ

where ψ0 is a normalization constant. The edge mode
spectrum ωedgeðqxÞ ¼ sqx corresponds to a pure one-way
density wave that connects the two bulk bands (see Fig. 4).
This edge mode is valid when mðyÞ → �m0 (m0 > 0)
for y → �∞.
On the sphere, reverting back to angular coordinates

fθ;φg, mðθÞ ¼ − cot θ, which is positive in the southern
hemisphere for θ > π=2 (y > 0). This gives a chiral
equatorial density mode (v ¼ 0), which in the lab frame
looks like

δρedgeðθ;φ; tÞ ¼ sinηθ
X
n≥0

½aneinðφ−αt=βÞ þ c:c:�; ð36Þ

where an are complex constants depending on the initial
perturbation applied. A snapshot of this density mode is
shown in Fig. 6 for n ¼ 6 (and all other an vanishing).
Equation (36) defines a localization length lloc ¼ R=η set
by the curvature and material parameters of the active fluid
and essentially given by the ratio of longitudinal to trans-
verse sound speeds. Note that the result given in Eqs. (35)
and (36) applies for λ3 ¼ 0. The general case of λ2, λ3 ≠ 0
is given in Appendix A and yields a different localization
width for the equatorial mode. This topological edge mode

propagates unidirectionally in the direction of the flock and
is robust to disorder because there are no reverse channels
into which it can scatter (though it will eventually dissipate
because of viscous and elastic damping). Unlike a Galilean
invariant fluid for which η ¼ 1, here η and therefore the
localization length can be tuned by varying the system’s
parameters, although the shape of the steady-state profile
remains unchanged.

V. POLAR FLOCK ON A NEGATIVE
CURVATURE SURFACE

The presence of such topological excitations is generic in
that they will always be present when one has a polar flock
on a curved surface that looks locally like a surface of
revolution [67]. We illustrate this point on a catenoid, a
surface with nonconstant negative Gaussian curvature.
In local coordinates fy;φg (φ once again being the

periodic azimuthal direction), the metric and Gaussian
curvature on a catenoid are

g ¼ R2 cosh2 yðdy ⊗ dyþ dφ ⊗ dφÞ; ð37Þ

KGðyÞ ¼ −
1

R2
sech4y; ð38Þ

where R is the radius of curvature at the neck of the
catenoid. In contrast to the sphere, the Gaussian curvature
here is both negative and spatially varying. The only
nonvanishing Christoffel symbols are

Γφ
φy ¼ Γy

yy ¼ −Γy
φφ ¼ tanh y: ð39Þ

Taking the same approach as for the sphere, neglecting
viscous and elastic stresses, we consider an azimuthally
symmetric ansatz for the steady-state polar flock:
ρ ¼ ρssðyÞ, py ¼ 0, and pφ ¼ pφ

ssðyÞ. One can easily verify
that for ρ0 > ρc, the steady-state density profile is then

FIG. 4. The bulk and edge mode spectrum for the case when s ¼ �1 (shown for the simple case when μ ¼ v̄1) andmðyÞ varying from
−1 to þ1.
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ρssðyÞ ¼ ρc þ ðρ0 − ρcÞBη coshη y; ð40Þ

where Bη < 1 is a constant that depends on η and the height
of the catenoid (which, unlike the sphere, is not compact
and has to be taken finite). The details of the computation
are given in Appendix B. In contrast to the sphere, which
had a polar band with maximum density at the equator, the
polar flock density is lowest at the neck of the catenoid
(y ¼ 0), increasing on either side as one moves away from
it. The corresponding polarization profile is given by

jpssj2 ¼
aðρ0 − ρcÞ

b
Bη coshη y: ð41Þ

The density and polarization profiles are plotted in
Fig. 5(a). Below the mean-field transition (ρ0 < ρc), we
recover the isotropic disordered phase (ρss ¼ ρ0, pss ¼ 0).
Linearizing about this steady state, one finds that the

equations governing the propagation of sound modes on the
catenoid are essentially identical to that on the sphere
[Eqs. (14)–(16)] but with modified parameters. As a

consequence of the negative curvature, the most important
change is that m ¼ −2 tanh y is positive below the neck of
the catenoid (y < 0) and negative above (y > 0), vanishing
right at the neck (y ¼ 0). This leads to a chiral mode of
Goldstone fluctuations localized at the neck of the catenoid
(δρ ¼ 0), which, written in the lab frame, is given by

δvedgeðφ; y; tÞ ¼ sech2y
X
n≥0

½bneinðφ−λ̄tÞ þ c:c:�; ð42Þ

where, as before, λ̄ ¼ λp0 and bn is a complex coefficient
determined by the initial perturbation. A snapshot of this
mode is shown as well in Fig. 6. This mode propagates in
the same direction as the flock but with a different speed,
and it is topologically protected. The localization length
lloc ¼ 2R is controlled by the scale of the curvature in the
system and seemingly independent of the material param-
eters of the flock.

VI. CONCLUSION

The frustration associated with the interplay of curvature
and order [30,68,69] has many consequences for crystals
[70–74], tethered membranes [75,76], liquid crystalline
membranes [77–79], and jammed and glassy systems
[80,81]. The presence of activity adds an entirely new
nonequilibrium dimension to the whole story, allowing for
completely new physics arising from competing order,
curvature, and the active drive. The active polar fluid is
peculiar, as the polarization order parameter is also a
velocity that advects the fluid [4], with this dual role being
at the heart of many of the phenomena we have explored in
this article. In particular, unlike a superfluid film on a
curved substrate (where the order parameter can be parallel
transported trivially) [82], the fact that the order parameter
of the flock is a physical velocity implies that it advects
itself nontrivially in the presence of curvature. This is
nothing but a restatement of the physical fact that self-
propelled particles move persistently along geodesics (in

(a)

(b)

FIG. 5. (a) The normalized density profile of a polar flock on a
catenoid given in Eq. (40), for η ¼ 0.5 (blue line), 1 (orange line),
and 2 (green line). Note that, unlike the sphere, the density grows
near the edge of the catenoid. (b) The density and polarization
(for η ¼ 2), now shown on the catenoid. As before, blue
corresponds to low-density regions (at the neck) and red to
high-density regions.

FIG. 6. A representative snapshot of the equatorial density
mode on a sphere (Eq. (36)) and the localized Goldstone mode on
the catenoid (Eq. (42)). For clear visualization we have chosen
the perturbation a6, b6 ¼ 0.5 and all other an, bn ¼ 0 (n ≠ 6). We
have also taken both η ¼ μ=v̄1 ¼ 2 both cases.
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the absence of interactions), which get “lensed” by curva-
ture, whereas passive polar particles do not.
In order to handle these points, we generalized the

continuum Toner-Tu model for an active polar fluid to
an arbitrary curved surface and found new terms that are
absent in flat space. In general, studying ordering phenom-
ena on curved surfaces is rather complicated, even in
equilibrium. This is when symmetry is often a very useful
guiding tool, by which we explicitly computed the ordered
phase of an active polar flock on two surfaces, the sphere
and the catenoid. The continuum model affords us the
privilege of having model-independent predictions, and we
find that many of the features of the steady ordered state of
a polar flock are quite generic, with positive curvature
surfaces having density profiles with a maximum, decreas-
ing on either side of the peak, while negative curvature
surfaces have the density profiles of the opposite kind,
being minimal in the interior and increasing towards the
boundary. Finding such spatially inhomogeneous exact
solutions to the covariant Toner-Tu model is definitely a
crucial starting point to being able to understand how the
phenomenology of active matter in flat space translates to
its curved variants.
In addition to the steady state with spontaneous flow,

flocks in flat space also have dissipative sound modes with
a linear (but angle-dependent) dispersion [42]. It is here that
all three players—curvature, order, and activity—come
together with dramatic consequences. The presence of
curvature gaps the sound mode spectrum at long wave-
lengths, leading to a band structure with nontrivial topology
protected by the broken time-reversal and Galilean sym-
metry in the system. We demonstrate this by computing the
Chern number for the bands and show that this is a generic
feature of flocks on curved surfaces. The most interesting
result of the nontrivial band topology is to localize “edge”
modes of density or Goldstone mode fluctuations along
special geodesics on the surface, at which the gap in the
sound spectrum vanishes. The rather novel feature here is
that the system is not artificially engineered as a meta-
material with some underlying lattice structure [33,83], nor
does it require any external force or fields of any kind [34].
The spontaneous flow is generated by activity breaking
both time-reversal and Galilean invariance simultaneously,
while the curvature is responsible for the spectral gap in the
ordered phase.
Topological excitations of the type described here are

“protected” in the sense that they are robust against static
perturbations and heterogeneities in the medium through
which they propagate. While quantifying the limits of such
topological protection in active systems will require
numerical work and remains to be explored, our work
demonstrating that such topologically protected propagat-
ing modes are a generic consequence of active flows on
curved surfaces raises the question of whether nature may
use this mechanism to guide and direct the robust

transmission of intercellular physical forces in curved
environments. It is therefore tempting to offer some
speculation to the possible relevance of our findings to
biology. In a number of developmental phenomena, from
wound healing to morphogenesis and organ development,
living cells migrate collectively, offering an intriguing
realization of a polar active fluid. While a full under-
standing of the mechanisms that regulate collective cell
migration is still out of reach, it is now widely recognized
that the transmission of physical forces plays an important
role, alongside biochemical signaling. For instance, propa-
gating mechanical waves have been shown to mediate
cooperative force transmission among epithelial cells in
wound-healing assays [84]. In many biological processes,
cell motion takes place on curved surfaces, as in cell
renewal and repair in the highly folded intestine [85] and
the shaping of the early limb bud in developing embryos
[86]. The effect of curvature on the dynamics of epithelial
cells is beginning to be explored in vitro by examining
collective cell migration on cylindrical capillaries of vary-
ing radii [21]. While cylinders have zero Gaussian curva-
ture, which would not yield topologically protected states,
these experiments clearly demonstrate that curvature affects
cell morphology and dynamics by enhancing cell speed and
cell extrusion. A more direct application of the work
described here would be to a polar version of the active
nematic vesicles described in Ref. [10]. Here, active
vesicles were engineered by confining an active suspension
of microtubule-kinesin bundles to the surface of a lipid
vesicle. The interplay of activity and curvature yields a
number of dynamical structures, including spontaneously
oscillating defect textures and folding nematic bands and,
ultimately, activity-driven shape deformations of the
vesicle. Our work may also be relevant to the physics of
cell membranes that are activated through coupling to the
polymerizing acto-myosin cortex, as modeled in recent
work by Maitra et al. [31]. Finally, in the spirit of colloidal
crystals on curved interfaces and reconstituted active
systems, one might also envision synthetic experimental
realizations of the topological sound modes investigated
here, by depositing active Janus colloidal rods or active bio-
filament motor complexes on the surface of a droplet or a
vesicle shell.
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APPENDIX A: STEADY STATE AND
LINEARIZATION FOR λ2, λ3 ≠ 0

Including the two additional λ2p∇ · p and λ3∇jpj2
nonlinearities, the equation for the polarization order
parameter is modified to

∂tpμ þ λpν∇νpμ ¼ ½aðρ − ρcÞ − bgαβpαpβ�pμ

þ λ2pμ∇νpν þ λ3∇μðpνpνÞ − v1∇μρ:

ðA1Þ

We do not include the viscous terms ν, ν0, consistent with
our approximations in the main text. For the azimuthally
symmetric ansatz (on the sphere and the catenoid),
∇μp

μ
ss ¼ 0 identically, and hence the λ2 terms do not affect

the steady-state profile. On the contrary, the λ3∇jpj2 term
acts as an additional polarization-dependent contribution to
the scalar pressure P ∼ v1ρ − λ3jpj2, which, if large, can
lead to density and splay instabilities [49]. We disregard
this and only work in the regime where λ3 is not large
enough to destabilize the entire system. Including it, the
steady-state equations on the sphere [Eqs. (6) and (7)] get
modified to

λ sin θ cos θðpφ
ssÞ2 ¼ v1

R2
∂θρss − λ3∂θðsin2 θðpφ

ssÞ2Þ; ðA2Þ

pφ
ss½aðρss − ρcÞ − 2bR2 sin2 θðpφ

ssÞ2� ¼ 0: ðA3Þ

Once again, setting XðθÞ ¼ ρssðθÞ − ρc, we get the same
equation as before, only now with a modified coefficient
depending on λ3,

dX
dθ

¼ λa
v1b − aλ3

cot θX ⇒ XðθÞ ¼ Xðπ=2Þ sinη0 θ; ðA4Þ

with the exponent now changed to η0 ¼ λa=ðv1b − aλ3Þ.
For η0 > 0 (to have a physical density profile), we require
v1b > aλ3, which is nothing but a condition to have stable
pressure and a positive compressibility. Hence, the effect of
λ3 ≠ 0 is to only change the density profile through the η
exponent, with the functional form remaining the same.
This is true even for the catenoid, where the exponent is the
same as on the sphere and given by η0 ¼ λa=ðv1b − aλ3Þ.
Note that this inhomogeneous profile does not exist for an
equilibrium polar liquid crystal for which λ ¼ 0 (but
possibly λ2, λ3 ≠ 0, allowing for spontaneous splay
[56]), leading to η0 ¼ 0. Hence, the inhomogeneous steady
state we obtain is only possible in an active system.
Linearizing about the steady state (on the sphere), now

including the λ2 and λ3 terms, we get

∂tδρþ ∂xuþ ∂yv ¼ mv; ðA5Þ

∂tuþ ðλ̄ − λ̄2 − 2λ̄3Þ∂xuþ v̄1
sin2θ0

∂xδρ

¼ αδρ − βuþ vm
�
λ̄
η0 þ 2

2
− λ̄2

�
þ λ̄2∂yv; ðA6Þ

∂tvþ λ̄∂xuþ v̄1∂yδρ ¼ −ð2λ̄þ ð4þ η0Þλ̄3Þ sin2 θ0mu

þ 2λ̄3 sin2 θ0∂yu: ðA7Þ

We use the same notation as we used in the main text
(along with λ̄2;3 ¼ λ2;3p0). At long times (t ≫ β−1), the
polarization magnitude u is still a fast mode, and to
leading order, it gets slaved to the density fluctuations in
the same fashion as before (u≃ αδρ=β). Consistent
with the level of approximation used in the main text
[Eq. (31)], the long-time and long-wavelength dynamics
are governed only by the two slow modes δρ and v, with
a dynamical matrix DðqÞ of the same form as found in
the absence of λ2 and λ3,

DðqÞ ¼
�

sqx qy þ im

v̄01qy − iμ0m 0

�
; ðA8Þ

with s ¼ sgnðα − λ̄βÞ and the only modification being in
the coefficients v̄01 and μ0,

v̄01 ¼ v̄1 − 2λ̄3sin2θ0
α

β
¼ v1b − aλ3

bR2
; ðA9Þ

μ0 ¼ ð2λ̄þ ð4þ η0Þλ̄3Þ sin2 θ0
α

β
¼ a

½2λþ ð4þ η0Þλ3�
2bR2

:

ðA10Þ

It is easy to see now that the profile of the localized
equatorial density mode on the sphere, which was
∝ sinμ

0=v̄0
1 θ [for λ2;3 ¼ 0, μ=v̄1 ¼ η as given in

Eq. (36)] is no longer the same as the steady-state
density profile of the flock (∼ sinη

0
θ), when λ3 ≠ 0,

μ0

v̄01
¼ η0

�
1þ

�
2þ η0

2

�
λ3
λ1

�
≠ η0: ðA11Þ

A similar result also holds true for the catenoid.
Hence, we find that, even upon including additional
convective nonlinearities (which are lower order in
gradients compared to the viscous terms), all of the
qualitative properties of the steady state and the topo-
logically protected modes remain the same, with the only
modification being a more detailed dependence of the
localization length on some of the material parameters in
the system.
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APPENDIX B: POLAR FLOCK
OF THE CATENOID

For an azimuthally symmetric ordered steady state on the
catenoid, just as on the sphere, we neglect the viscous and
elastic stresses, and use the ansatz: ρ ¼ ρssðyÞ, py ¼ 0 and
pφ ¼ pφ

ssðyÞ. Plugging this into Eqs. (1) and (3), we find
that the continuity equation is satisfied identically, and
Eq. (3) reduces to (for ν ¼ 0)

λ tanh yðpφ
ssÞ2 ¼ v1

R2 cosh2 y
∂yρss; ðB1Þ

pφ
ss½aðρss − ρcÞ − bR2 cosh2 yðpφ

ssÞ2� ¼ 0: ðB2Þ

Setting XðyÞ ¼ ρssðyÞ − ρc, we solve the equations in the
same fashion as before to get ∂yX ¼ η tanh yX, where
η ¼ λa=bv1 (the same exponent as on the sphere). The
steady-state density profile is then

ρssðyÞ ¼ ρc þ ðρmin − ρcÞ coshη y; ðB3Þ

where ρmin is the minimum density of the flock attained on
the neck of the catenoid (y ¼ 0). Unlike the sphere, the
catenoid is not a compact surface, so in reality, one would
have a finite sample with boundaries. The mean density ρ0
is given by the spatial average of the steady-state profile,

ρ0 ¼ ρc þ ðρmin − ρcÞhcoshη yi; ðB4Þ

where h·i denotes a spatial average over the entire surface.
For a catenoid of height L (Euclidean height in the z
direction when embedded in R3) and radius of curvature R
at the minimal neck, we have

hcoshηyi≃
8<
:

1þ η
6
ðLRÞ2 L=R ≪ 1

21−η

2þη e
ηL=R L=R ≫ 1:

ðB5Þ

Writing Bη ¼ 1=hcoshη yi < 1, we obtain the density
profile quoted in the main text [Eq. (40)].
We expect the viscous and elastic stresses to be less

important on a weakly curved surface close to the neck, in
particular, when the characteristic scale of curvature (∼R) is
much greater than the equilibrium correlation length
[ξ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=aðρ0 − ρcÞ

p
]. Additionally, the density and polari-

zation (along with their gradients) grow larger as we go
away from the neck. So, close to the boundaries of a large
sample, one would have to account for higher-order non-
linearities along with the elastic stresses, which would then
become important.

1. Linearizing about the steady state

One can perform the same kind of analysis as we did
before for the flock on a sphere. Linearizing about the

ordered flock, ρ ¼ ρssðyÞ þ δρ and p ¼ pssðyÞ þ δpwithin
the tangent plane at a distance y0 from the y ¼ 0 neck, we
get (with x ¼ φ, u ¼ δpφ, and v ¼ δpy just as before)

∂tδρþ ∂xuþ ∂yvþ 2v tanh y0 ¼ 0; ðB6Þ

∂tuþ λp0∂xuþ v1
R2 cosh2 y0

∂xδρ

¼ p0ðaδρ − 2bR2p0 cosh2 y0uÞ − v
λp0ðηþ 2Þ

2
tanh y0;

ðB7Þ

∂tvþ λp0∂xvþ
v1

R2 cosh2 y0
∂yδρ ¼ 2uλp0 tanh y0; ðB8Þ

where p0 ¼ pφ
ssðy0Þ. Galilean boosting to a moving frame

x → x − λp0t and relabeling our parameters as before, we
obtain λ̄ ¼ λp0, α ¼ ap0 > 0, β ¼ 2bR2p2

0 cosh
2 y0 > 0,

v̄1 ¼ v1=ðR2 cosh2 y0Þ, and m ¼ −2 tanh y0. Having done
this, all the arguments used in the case of the sphere apply
here as well.
At long times (t ≫ β−1), the fast polarization magnitude

u decays and is slaved to the density field u≃ αδρ=β (to
lowest order), and the slow dynamics at long wavelengths
is dominated by

∂tδρþ ðα=β − λ̄Þ∂xδρþ ∂yv ¼ mv; ðB9Þ

∂tvþ v̄1∂yδρ ¼ −μmδρ; ðB10Þ

only now with μ ¼ αλ̄=β > 0. Hence, at the same level of
approximation used earlier for the sphere [neglecting
viscous stresses and the parameter regime given in
Eq. (31)], the long-time dynamics of sound excitations
in a polar flock on a curved surface is generically described
by equations of the form given above or, consequently, by
the linear dynamical matrix DðqÞ [Eq. (28)], possibly up to
some coordinate rescaling.
As the only modifications are in the definitions of the

parameters, many of the predictions made in the case of the
sphere apply here, too. In particular, the sound mode
spectrum is still gapped at q ¼ 0 for nonzero m, and the
bands have a nontrivial topology givenby theChernnumbers
C� [see Eq. (33)]. As m ¼ 0 at the neck of the catenoid
(y ¼ 0), changing sign on either side, we have one topo-
logically protected mode localized at the neck. A conse-
quence of the negative curvature of the surface is that, in
contrast to the sphere, m < 0 for y > 0. Therefore, the edge
mode takes on a different form (in the comoving frame),

jδΨedgei ¼ ψ0e
R

y

0
mðy0Þdy0þiqxx

�
0

1

�
: ðB11Þ

Now, the edge mode is a localized mode of transverse
Goldstone fluctuations, with density fluctuations completely
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absent. Additionally, the edgemode spectrum isωedge ¼ 0 to
lowest order in qx, implying that the edge mode is stationary
in the comoving (with speed∼λp0) frame. This also connects
the two bulk bands and is topologically protected. Using
mðyÞ ¼ −2 tanh y for the catenoid, this gives the profile of
the localized mode, the lab frame version of which is quoted
in the main text [Eq. (42)].
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