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Topological defects play a prominent role in the physics of two-dimensional materials. When driven
out of equilibrium in active nematics, disclinations can acquire spontaneous self-propulsion and drive self-
sustained flows upon proliferation. Here, we construct a general hydrodynamic theory for a two-
dimensional active nematic interrupted by a large number of such defects. Our equations describe the flows
and spatiotemporal defect chaos characterizing active turbulence, even close to the defect-unbinding
transition. At high activity, nonequilibrium torques combined with many-body screening cause the active
disclinations to spontaneously break rotational symmetry, forming a collectively moving defect-ordered
polar liquid. By recognizing defects as the relevant quasiparticle excitations, we construct a comprehensive
phase diagram for two-dimensional active nematics. Using our hydrodynamic approach, we additionally
show that activity gradients can act like “electric fields,” driving the sorting of topological charge. This
result demonstrates the versatility of our continuum model and its relevance for quantifying the use of
spatially inhomogeneous activity for controlling active flows and for the fabrication of active devices with
targeted transport capabilities.
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I. INTRODUCTION

In recent years, the framework of active fluids has had
significant success in describing the emergent collective
motion of bacterial and cellular assemblies [1–5]. Such
spontaneous self-organization into complex patterns on
large scales is a characteristic feature of active matter,
whose constituent units are individually self-driven [6,7].
Much interest has recently focused on active nematics
[8,9]—collections of head-tail-symmetric elongated units
that exert active forces on their surroundings and organize
in states with apolar orientational order. A rapidly growing
list of experimental realizations of active nematics ranges
from suspensions of cytoskeletal filaments and associated
motor proteins [10–13] to vibrated granular rods [14] and
colonies of living cells [2–5,15–17]. In all these systems,
the interplay of orientational order and self-sustained active
flows yields a rich collection of dynamical states, including
spontaneous laminar flows [18,19] and spatiotemporal
chaos or “active turbulence” with the proliferation of
topological defects [20–22].

While a great deal of understanding has been gained
from extensive numerical work [20,21,23–28] and experi-
ments [29–31], the theoretical analysis of low Reynolds
number turbulence in active nematics, beyond deterministic
linear instabilities, remains an open problem. A notable
exception is Ref. [26], where a phenomenological mean-
field theory is proposed to describe active nematic turbu-
lence on short scales by using the fact that topological
defects actively drive flow. In contrast to equilibrium
nematic liquid crystals, disclinations of strength �1=2
(Fig. 1) are spontaneously generated in pairs by activity.
Importantly, the comet-shaped þ1=2 defect acquires self-
propulsion [21], which allows for an activity-driven defect-
unbinding transition to a turbulent state of spatiotemporal
chaos [22]. Studies of active suspensions of microtubule
bundles also report a remarkable state where þ1=2 defects
may themselves orientationally order in a nematic fashion
on length and timescales much larger than the mean free
path or lifetime of an individual defect [32]. This obser-
vation remains the subject of debate in the literature, as
numerical simulations of continuum nematodynamic equa-
tions and of particle-based models predominantly report
only polar defect ordering [32–35] or defect lattices [36],
whereas nematic defect order is found to be generally
transient and short lived [34,37]. The absence of a clear
physical picture for the mechanism of defect ordering
has hindered a resolution of this debate. Finally, recent
experiments suggest that topological defects may serve a
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biological function as centers of cell extrusion or accumu-
lation in epithelia [2,3] and seed mound formation in
bacteria [38] or control the morphology of the interface
of growing cell colonies [39]. The nature and dynamics
of active defects have therefore been the subject of intense
research efforts in recent times.
In this paper, we focus on topological defects and

formulate a theory of two-dimensional (2D) active nematics
on a substrate in terms of the large-scale dynamics of an
interacting gas of unbound disclinations. Our work yields a
complete analytical phase diagram that includes both the
defect-mediated melting of the active nematic and the
defect-ordering phase transition as a function of activity
and noise. We additionally demonstrate that the defect
hydrodynamic equations derived here provide a versatile
framework for quantifying the behavior of systems with
spatially varying activity.
In the remainder of the introduction, we motivate our

approach and summarize the main results of our work.

A. Dynamics of active nematics

A now well-accepted continuum description of active
nematics builds on the established hydrodynamics of
passive liquid crystals, augmented by nonequilibrium
active stresses. This approach typically involves hydro-
dynamic equations for the fluid flow velocity u and the
nematic order parameter Q, a rank-2 symmetric traceless
tensor in 2D, whose independent components are conven-
iently written in terms of a complex field

ΨðrÞ ¼ SðrÞe2iθðrÞ; ð1Þ

with Qxx ¼ −Qyy ¼ S cos 2θ and Qxy ¼ Qyx ¼ S sin 2θ.
Here, S is the scalar order parameter, and θ is the angle
of the nematic director n̂ ¼ ðcos θ; sin θÞ. Numerous
numerical studies [27,33,34] show that this continuum
model is capable of reproducing the phenomenology of
2D active nematics on a substrate, including the prolifer-
ation of topological defects, as both Q and u remain well
defined even in the presence of defects. On the other hand,
the order parameter field and flow velocity evolve in highly
complex and nonlinear ways for large activity, impeding
any analytical progress. As a consequence, a theory
addressing both defect chaos and defect ordering has so
far proved difficult.
An alternative and fruitful strategy is to focus on the

topological defects, which both in and out of equilibrium
constitute elementary, yet nontrivial, excitations of the
homogeneous ordered state. This approach explicitly rec-
ognizes defects as the relevant excitations driving complex
active flows and aims at developing an effective description
of defects as particles, akin to the well-established mapping
of pointlike topological defects in 2D equilibrium systems
onto a Coulomb gas [40]. In 2D nematic liquid crystals, the
lowest-energy topological defects are strength �1=2 point

disclinations (Fig. 1), corresponding to a distortion of the
orientation where the angle θ becomes multivalued, acquir-
ing a �π jump as one encircles the respective defect, while
the magnitude S ¼ 1 almost everywhere, vanishing only at
the defect core.
The additional challenge in 2D active nematics is that the

þ1=2 disclination becomes motile, with the local geometric
polarity of the defect, defined as ei ¼ a∇ ·Qðrþi Þ [22] (see
Fig. 1), dictating its polarization. Here, a is the defect core
size. The −1=2 disclination is not self-propelled by virtue
of its threefold symmetry. As a result, an effective particle
model for defects must incorporate the angular dynamics of
the þ1=2 defect polarization. Although the geometric
polarity of the þ1=2 disclination is obviously present even
in passive nematics, there it remains a fast mode, rapidly
relaxing on a short timescale. In contrast, when active, the
dynamical nature of the polarity allows it to be a slow mode
with qualitatively new physics.
Recently, working perturbatively in activity, we and

collaborators mapped the dynamics of active defects onto
that of a mixture of motile (þ1=2) and passive (−1=2)
particles with Coulomb-like interaction forces and aligning
torques [22], putting on firm ground previous purely
phenomenological models [11,21,41]. Using this effective
model, we were able to determine the critical activity
separating the quasiordered two-dimensional nematic from
the turbulentlike state of unbound defects. This previous
work demonstrates that, like in 2D equilibrium systems,
treating defects as quasiparticles affords a new description
of 2D ordered active media dual to the more conventional
one based on order parameter fields. Far from equilibrium,
where analytical progress is often limited, such techniques
are very valuable and can provide insight into complex
phenomena that may be hard to rationalize otherwise. In the
present paper, we adopt this viewpoint to build a unified
theory for the dynamical states of 2D active nematics by
considering topological defects as the relevant degrees of
freedom that drive large-scale flows in the system.

FIG. 1. þ1=2 (red) and −1=2 (green) disclinations in a 2D
active nematic with the black lines following the local nematic
order. Theþ1=2 defect has a local geometric polarity ei shown as
a red arrow. Here, a is the defect core size, and the divergence is
evaluated at the position rþi of the defect core.
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B. Results and outline

A key new result of our work is the derivation of a
hydrodynamic theory for active defects that describes
defect dynamics on length scales larger than the mean
defect separation or the nematic correlation length ξ. Such a
theory is obtained by systematically coarse-graining the
effective particle model for the defects derived in Ref. [22].
We then show that our hydrodynamic model provides a
complete theoretical description of defect organization in
active nematics.

1. Defect hydrodynamics

The defect hydrodynamic equations are constructed in
the spirit of previous classic approaches used to study the
dynamic response of superfluid films [42], planar magnets
and rotating helium [43], flux liquids [44], and the melting
of 2D crystals [45]. They are formulated in terms of
continuum fields, given by the number and current den-
sities of the þ1=2 and −1=2 defects defined as

n�ðr; tÞ ¼
DX

i

δ½r − r�i ðtÞ�
E
; ð2Þ

j�ðr; tÞ ¼
DX

i

_r�i δ½r − r�i ðtÞ�
E
; ð3Þ

where r�i and _r�i are the position and velocity of the ith
�1=2 defect, respectively, and the phase gradient or
“superfluid velocity” [46]

vn ¼
1

2jΨj2 ImðΨ�∇ΨÞ ¼ ∇θ: ð4Þ

Note that, unlike in superfluid He films, where the analog
of vn genuinely represents the flow velocity of the con-
densate, here, vn is simply the gradient of the angle of the
director. In this sense, it captures the distortion of the
nematic and is perhaps closer in spirit to the phase gradient
defined in other liquid-crystalline phases, such as the
hexatic [45], relevant to the study of 2D melting at
equilibrium.
Now, in the presence of defects, the phase θ of the order

parameter field Ψ is multivalued, while vn remains smooth
and single valued everywhere away from the defect cores,
and provides a useful description of director deformations.
Defects are continuously created and annihilated; hence,
the total number density of defects n ¼ ðnþ þ n−Þ=2 is not
conserved. On the other hand, since defects are created and
annihilated only in pairs, the topological charge density
ρ ¼ ðnþ − n−Þ=2 is always conserved and related to vn
through the important topological constraint

ẑ · ð∇ × vnÞ ¼ 2πρ; ð5Þ
that allows an analogy with superfluid hydrodynamics [42]
and electrostatics, through Gauss’ law [47]. An important
distinguishing property of the 2D active nematic is that the

geometric polarization of the þ1=2 disclination provides a
new dynamically relevant internal degree of freedom. This
feature requires the addition of a new hydrodynamic field,
the defect polarization density, defined as

pðr; tÞ ¼
DX

i

eiðtÞδ½r − rþi ðtÞ�
E
: ð6Þ

The polarization directs the self-propulsion of the þ1=2
disclinations through self-induced active backflows. In
addition, it experiences active torques that reorient the
defect in response to the elastic forces from other defects.
Both these properties underlie much of the phenomena
explored here.
The defect hydrodynamic equations are presented in

Sec. II, and their derivation is shown in Appendix A.

2. Isotropic defect chaos

Upon analyzing the steady states of the defect hydro-
dynamic equations and their stability (Secs. III and IV), we
find two stable states with a finite number of unbound
defects. The first is the spatiotemporally chaotic state
referred to as active turbulence in the literature [9]. In this
state, the þ1=2 defects, although motile, have no preferred
direction of polarization. We refer to this state as “isotropic
defect chaos,” where “isotropic” refers to the fact that the
gas of þ1=2 defects has zero mean polarization (hpi ¼ 0).
Our equations validate previous phenomenological scaling
hypotheses and provide a well-founded theoretical descrip-
tion of defect chaos in the active turbulent regime by
extending the mean-field approach of Ref. [26] to large
scales. Many-body screening crucially impacts the decay of
the conserved defect charge density due to the presence of
the topological constraint given by Eq. (5), unique to defect
hydrodynamics. As the decay rate is governed by the
density n of free disclinations, we find that the dominant
length scale of correlations in nematic order or velocity are
all controlled mainly by the mean defect spacing ξ ∼ 1=

ffiffiffi
n

p
,

in agreement with previous numerical results [26,27].

3. Polar defect order

For higher activity, our equations predict a second stable
state, where the motileþ1=2 defects themselves order. This
state appears via a continuous transition in which the active
þ1=2 disclinations collectively align and condense into a
liquid with long-range polar order. At the same time, the
underlying nematic develops a periodic modulation of kink
walls, as shown in the sketch in Fig. 2. This state, which we
refer to as “polar defect order,” has no giant fluctuations in
either the defect charge or number density and provides an
intriguing realization of a “Malthusian defect flock.”While
polar defect order has been reported before in numerical
models of active nematics [32–35], themechanism driving it
has remained unexplained.Ourwork identifies amechanism
for polar order as arising from both active self-aligning
torques (derived perturbatively in activity in Ref. [22]) and
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many-body screening. Overall, our result is a complete
analytical description of 2D active nematics that includes
both the defect-mediated melting of the active nematic and
the defect-ordering phase transition as a function of activity
and noise. The various states and transitions are summarized
in the phase diagram shown in Fig. 3 in terms of parameters
of the coarse-grained theory. To make contact with possible
experiments, we also reformulate the phase diagram in Fig. 6
in terms of activity and the liquid-crystal stiffness, quantities
that are both directly accessible and tunable in experiments.
We note here that nematic order of defects as reported in the
experiments of Ref. [32] cannot appear in our model via a
transition from the isotropic defect chaos state. The reasons
for this are discussed in Sec. III B (see also Fig. 4) and further
elaborated in Appendix B using an analogy with electro-
statics. In Sec. VI, we expand on future directions and
current challenges, including the theoretical possibilities (or
lack thereof) for the existence of apolar defect order.

4. Spatially varying activity and defect trapping

Finally, in Sec. V, we demonstrate the versatility of our
hydrodynamic approach by employing it to describe defect
dynamics in systems with spatially inhomogeneous activ-
ity. A simple motif we study is an active-passive interface.
Because of the self-propelled nature of the þ1=2 discli-
nations, they are found to accumulate on the passive (low-
activity) side of the interface. The consequent charge
segregation and local polarization at the interface indicates
that an activity gradient can be thought of as a local
“electric field” driving charge sorting. An extension of
the same phenomenon is also realized at an extensile-
contractile interface across which activity changes sign.
Such basic principles can be combined with more com-
plicated activity patterns to position and move defects in a
programable fashion. The use of activity gradients to

control and guide defect dynamics is an important tech-
nique to develop active microfluidic devices with targeted
transport capabilities. The spatiotemporal modulation of
activity with light [48,49] is a very promising approach in
functionalizing active matter to engineer new metamate-
rials. We expect our theoretical results and the proposed
hydrodynamic framework to be useful tools in predicting
the collective behavior of active defects in both such
inhomogeneous backgrounds and complex geometries.

II. ACTIVE DEFECT HYDRODYNAMICS

We consider a 2D active nematic on a substrate with a
finite concentration of unbound disclinations. Defects are
unbound in pairs to maintain charge neutrality; hence,
the system contains an equal number of þ1=2 and −1=2
defects. In Ref. [22], the full nematodynamic equations for
an active nematic on a substrate are recast into an effective
model for defects as interacting quasiparticles. While the
particle model is explicitly derived only perturbatively for
small activity, its general structure is expected to survive
for large activity as well. Different models for active defect
dynamics of varying complexity have been proposed by
others as well [50,51], but the basic qualitative features
remain the same. As the defect equations of motion
presented in Ref. [22] are the easiest to interpret and most
amenable to direct coarse-graining, we proceed with them
to compute the required transport coefficients. The details
of the calculation are given in Appendix A. We directly
present the final equations directly here.
The number of þ1=2 or −1=2 defects can change

through pair creation or annihilation events; hence, the
individual number densities n� evolve according to

∂tn� þ ∇ · j� ¼ Wc −Wa; ð7Þ

where Wc and Wa are the rates of defect creation and
annihilation, respectively. Both Wc and Wa depend on
activity and n�; we refrain from specifying their explicit
form, which serves only as an input to the hydrodynamic
theory. The constitutive relation for the defect currents j� is
(see Appendix A 2 for a derivation)

jþ ¼ vpþ νκ nþϵ · vn −D0∇nþ; ð8Þ

j− ¼ −νκ n−ϵ · vn −D0∇n−; ð9Þ

where ϵ is the 2D Levi-Civita tensor, ν ¼ πμγ is a
dimensionless number involving the defect mobility μ
and the rotational viscosity γ, and D0 ¼ μT is the bare
defect diffusion constant (T is the corresponding effective
temperature). Liquid-crystal elasticity controls the nematic
diffusion constant κ ¼ K=γ, where K is a Frank elastic
constant. Activity is encoded in the self-propulsion speed
jvj of the þ1=2 defect. Note that v can be of either sign,
depending on the nature of active stresses in the medium.

FIG. 2. Structure of the polar defect-ordered state for extensile
activity (v < 0). The spontaneous polar ordering of the þ1=2
defects combined with their active self-propulsion leads to a
spontaneously flowing defect liquid. The nonvanishing average
defect polarization (hpi ≠ 0) simultaneously forces a nonvanish-
ing phase gradient (hvni ≠ 0) to condense in the orthogonal
direction, which leads to a periodic array of kink walls (also
called π or Néel walls) in the underlying nematic, with each kink
wall (blue lines) terminating at the þ1=2 (red) and −1=2 (green)
defects.
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Extensile systems have v < 0, and contractile systems have
v > 0. Even in the passive limit (v ¼ 0), defects move
transverse to the local phase gradient vn. This response is
akin to the Magnus force on vortices [52] or the Peach-
Koehler force on dislocations [53].
Defect hydrodynamics crucially differs from conven-

tional long-wavelength hydrodynamics due to the presence
of a topological constraint. For an arbitrary closed curve Γ
enclosing N unbound disclinations carrying charges
qi ¼ �1=2 located at positions r�i , the net accumulated
director phase is given by the line integralI

Γ
dθ≡

I
Γ
ds · vn ¼ 2π

XN
i¼1

qi: ð10Þ

Using Stokes’ theorem and Eq. (2), this integral gives the
topological constraint given in Eq. (5). Using Eqs. (7)–(9),
we obtain equations for the charge and number densities ρ
and n as

∂tρþ ∇ · jρ ¼ 0; ð11Þ

∂tnþ ∇ · jn ¼ Wc −Wa; ð12Þ

jρ ¼
ðjþ − j−Þ

2
¼ v

2
pþ νκ nϵ · vn −D0∇ρ; ð13Þ

jn ¼
ðjþ þ j−Þ

2
¼ v

2
pþ νκ ρϵ · vn −D0∇n: ð14Þ

Finally, the dynamics of the phase gradient vn and of the
defect polarization p is derived by coarse-graining (see
Appendices A 1 and A 3) to give

∂tvn ¼ 2π ϵ · jρ þ κ∇ð∇ · vnÞ; ð15Þ
∂tp − νκ ẑ · ðvn × ∇Þp

¼ −½DR þ 2πνκ ρþ βjvnj2�p − v2nþϵ · vn

−
v1
2
∇nþ − 2κð∇ · vnÞϵ · pþD0∇2p: ð16Þ

In Eq. (15), the defect charge current jρ explicitly breaks
the “conservation” of the phase gradient vn. This, as we see
later, also causes the charge density ρ to relax on a finite
timescale notwithstanding the local conservation of topo-
logical charge [Eq. (11)]. The second term on the right-hand
side of Eq. (15) describes the relaxation of smooth director
deformations due to liquid-crystal elasticity. For the polari-
zation dynamics [Eq. (16)], we adopt a simple isotropic
closure for the second moment while neglecting all higher-
order correlations (seeAppendixA 3),which is sufficient for
our purposes of demonstrating defect ordering. The relax-
ation rate of the polarization is set by the rotational diffusion
DR of the þ1=2 defect, and it receives nonlinear passive
corrections proportional to ρ and jvnj2 with β ¼ 5ν2κ=8, as
described by the last two terms in square brackets. Note that,

although the defect charge density ρ can be locally negative,
this does not lead to an instability in the polarization
equation at equilibrium, because hρi ¼ 0 in a charge neutral
system and deviations from this mean value relax on a finite
timescale. The convectivelike term ẑ · ðvn × ∇Þp accounts
for the change in the polarization due to the passive motion
ofþ1=2 defects, and the penultimate term on the right-hand
side of Eq. (16) is a passive elastic torque that rotates the
defect polarization in response to elastic distortions (see also
Appendix A 3). Activity enters in two places: in the
pressurelike term ∼ðv1=2Þ∇nþ and as an active torque
∼v2nþϵ · vn that builds up local polar order due to transverse
director deformations. The active coefficients v1 and v2 are
defined, respectively, as

v1 ¼ v
2T
K

fðζÞ; v2 ¼ v
3νT
4K

fðζÞ; ð17Þ

ζ ¼ v2γT
DRK2

; ð18Þ

where ζ is a nondimensional activity. The positive dimen-
sionless function fðζÞ ¼ 1þ 4ζ þOðζ2Þ captures the non-
linear dependence of the torque on activity and can be
computed from the moment hierarchy (see Appendix A 3).
Below, we analyze the steady states of these equations and
their stability.

III. HOMOGENEOUS STATES AND PHASE
TRANSITIONS

We consider a state with a homogeneous density of
unbound disclinations. By charge neutrality in the plane
and the topological constraint [Eq. (5)], we have ρ ¼ 0 and,
hence, nþ ¼ n− ¼ n. Setting all the gradient terms to zero,
we obtain

∂tn ¼ Wc −Wa; ð19Þ
∂tvn ¼ πv ϵ · p − 2πνκ nvn; ð20Þ

∂tp ¼ −½DR þ βjvnj2�p − v2nϵ · vn: ð21Þ

At the steady state, we set n ¼ n0 such that Wc ¼ Wa,
vn ¼ v0n, and p ¼ p0. From Eq. (20), we have
v0n ¼ ðv=2νκn0Þϵ · p0, which corresponds to a vanishing
charge current (jρ ¼ 0). Eliminating v0n from Eq. (21) and
after some algebraic manipulations, we get

DR½a2 − a4jp0j2�p0 ¼ 0; ð22Þ
where

a2 ¼
3

8
ζfðζÞ − 1; a4 ¼ ζ

5K
32Tn20

: ð23Þ

Note that a2 can change sign at high activity (ζ ∼ v2) and
a4 > 0. For small activity, a2 < 0, and the only solution is
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p0 ¼ 0 and v0n ¼ 0. At large activity a2 > 0, and we obtain
a solution with jp0j ≠ 0 and, therefore, jv0nj ≠ 0, corre-
sponding to a uniformly polarized defect-ordered state. The
change in the sign of a2 occurs at a critical value of activity
set by

ζcfðζcÞ ¼
8

3
⇒ ζc ≈ 0.701; ð24Þ

where we use the leading-order expansion of fðζÞ ¼
1þ 4ζ þOðζ2Þ. Including higher-order terms in the
expansion of fðζÞ changes the numerical value of ζc,
which, however, remains finite. Altogether, we have three
distinct homogeneous steady states:

(i) homogeneous nematic order with no unbound dis-
clinations (n0 ¼ 0, v0n ¼ p0 ¼ 0),

(ii) isotropic defect chaos (n0 > 0, v0n ¼ p0 ¼ 0), and
(iii) a defect polar ordered state (n0 > 0, v0n;p0 ≠ 0).

The three phases along with the intervening phase boun-
daries discussed below are shown in the phase diagram in
Fig. 3, as a function of v, T, and DR, keeping ν fixed.
Changing ν does not change the global topology of the
phase diagram but affects the phase boundaries only in a
quantitative way.

A. Defect-unbinding transition

The nematic order-disorder transition is mediated by an
activity-driven unbinding of defect pairs [22]. The resulting
defect-ridden state is isotropic and disordered (p0 ¼ 0)
with a finite nematic correlation length ξ ∼ 1=

ffiffiffiffiffi
n0

p
. Given

the disordered motion of the þ1=2 disclinations, we
identify this state with the spatiotemporally chaotic dynam-
ics of active turbulence. The activity threshold for defect
unbinding is obtained in Ref. [22] to be

jvc1 j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2νκDRð1 − T̃Þ
π½1þ 3νT̃=32�

s
; ð25Þ

where T̃ ¼ T=Teq
c is a normalized effective temperature

with Teq
c ¼ πK=8 the equilibrium Kosterlitz-Thouless tran-

sition temperature [54,55]. This transition line is marked in
blue in Fig. 3.
The location of the defect-unbinding transition can

be understood by a simple argument first given in
Ref. [22] and repeated here for completeness. In a naïve
one-dimensional picture, where the two defects of a neutral
pair (�1=2) unbind by moving away from each other along
a straight line, the self-propulsion of the þ1=2 defect can
always overcome the passive Coulomb attraction, resulting
in defect unbinding at any activity. On the other hand,
rotational diffusion (DR) can spoil this process by endow-
ing the þ1=2 defect with a finite persistence length
lp ¼ jvj=DR. When lp < rc, with rc ∼ μK=jvj being the
pair separation where the propulsive force jvj=μ and the
attractive Coulomb forces K=r balance, rotational noise
disrupts the straight path of the þ1=2 defect before it can
overcome the energy barrier required for unbinding,
allowing defect pairs to remain bound. The condition for
unbinding due to activity can then be estimated as lp ∼ rc,
which coincides with Eq. (25) for small T.

B. Defect-ordering transition

For ζ > ζc as given by Eq. (24), the isotropic gas
of defects spontaneously breaks rotational symmetry
by ordering into a polar, collectively moving liquid.
Expressing the transition point in terms of the original
model parameters, we find that the defect-ordering tran-
sition occurs at

jvc2 j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζc

DRK2

γT

s
≃ 0.84

ffiffiffiffiffiffiffiffiffiffiffiffi
DRK2

γT

s
; ð26Þ

which is shown as a red line in Fig. 3.
A simple yet physical way to understand this thres-

hold for defect ordering is as follows. Disregarding the

(a) (b) (c)

FIG. 3. Full phase diagram as a function of the activity (jvj), effective temperature (T), and rotational diffusion (DR). For the more
experimentally accessible phase diagram, with activity (jvj) versus liquid-crystal elasticity (K), see Fig. 6. We fix ν ¼ π and Teq

c ¼ 1 in
all the plots. (a) jvj − T plane for fixed DR, (b) jvj − T plane for DR ∝ T showing reentrant melting as a function of T, and (c) jvj −DR

plane for fixed T below the equilibrium melting temperature (Teq
c ). Two phase-transition boundaries are marked in all three phase

diagrams. The defect-mediated melting transition (blue line) separates homogeneous nematic order from isotropic defect chaos. The
defect-ordering transition (red line) separates isotropic defect chaos (active turbulence) from the polar defect-ordered state consisting of
a þ1=2 defect flock. A cartoon of the structure of the polar defect flock is sketched in Fig. 2.
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numerical constant ζc, the condition for defect ordering
(jvj > jvc2 j) can be written as

�
T
K

�
γl2

p

K
≳D−1

R : ð27Þ

The factor T=K accounts for the relative strength of
fluctuations ∼T to the defect core energy ∼K [40], and
it corresponds to the cost to nucleate a defect pair. Once
created, theþ1=2 disclination self-propels itself away from
the −1=2 disclination, quasideterministically on timescales
shorter than the rotational diffusion time D−1

R . In doing so,
it distorts the underlying nematic in its wake, on the scale of
a defect persistence length lp. As γl2

p=K is the time it takes
the underlying nematic to relax distortions on a length scale
of lp, the threshold for defect ordering is a simple balance
of timescales.
When the nematic rapidly heals the distortion created by

the swarming þ1=2 disclination, faster than the defect
reorientation time (γl2

p=K ≪ D−1
R ), we obtain an isotropic

disordered state of defect chaos. In the opposite limit, the
underlying nematic responds too slowly and is unable to
relax the distortion left by the active defects, which leads to
the formation of a long-lived kink wall (also called a π or
Néel wall) that terminates at the defect pair. This locally
frozen-in distortion feeds back into the defect motion,
leading to a buildup of polar order through a combination
of many-body screening and active torques. Eventually, for

strong enough activity, the underlying nematic cannot catch
up with the persistent dynamics of the defects, which then
condense into a spontaneously flowing defect-polarized
liquid, i.e., a þ1=2 defect flock. The active self-aligning
torques derived in Ref. [22] are a crucial ingredient to this
mechanism of defect ordering. Reminding ourselves of the
physics of the active torque, we note that it arises from the
active backflow-induced defect motion advecting the defect
polarization itself. This results in an effective torque which
tries to align the defect orientation to its velocity, with a
magnitude controlled directly by activity. While similar
torques with short-ranged interaction forces have been used
to model flocking in both cells [56,57] and vibrated polar
grains [58,59], it is only in the presence of many-body
screening that the active torques can cause collective
motion of defects in active nematics.
Close to the defect-ordering transition, for ζ > ζc we

have

jp0j ≃ n0

ffiffiffiffi
T
K

r �
ζ − ζc
ζc

�
1=2

; ð28Þ

with the usual mean-field exponent, although fluctuations
are expected to decrease it. As the phase gradient vn ¼ ∇θ
is slaved to the polar order, we also have

v0n ¼
v

2νκn0
ϵ · p0 ∝

�
ζ − ζc
ζc

�
1=2

; ð29Þ

with p0 · v0n ¼ 0. The appearance of polar defect order also
spontaneously breaks translational symmetry of the under-
lying nematic in the direction orthogonal to that of defect
order, with θðrÞ ≃ θ0 þ v0n · r. While the defect liquid itself
has no translational order, the underlying nematic under-
goes a concomitant modulational instability and develops a
smectic array of splay-bend kink walls, similar to that seen
in numerical simulations [32–35]. A cartoon of the defect
and kink wall structure in the defect-ordered state is
sketched in Fig. 2.
Finally, in light of the apolar nature of an active nematic,

the appearance of a directed polar current might seem
surprising. The polarization density is an emergent property
of nonlinear topological excitations in the system which
then permits spontaneous flow due to the absence of
detailed balance. On the other hand, experiments in
microtubule suspensions have reported apolar (i.e., nem-
atic) ordering of þ1=2 disclinations [32] that may seem a
more natural possibility. Nematic defect order is not
possible in our model due to the nature of defect inter-
actions, particularly the active torques. To see this, consider
a test þ1=2 disclination placed in the vicinity of a neutral
defect pair. The �1=2 defect pair instantaneously creates a
background phase gradient vn orthogonal to the line joining
the two defect cores as shown in Fig. 4. When a test þ1=2
disclination is placed in this background distortion, one

FIG. 4. The orientational stability of a test þ1=2 disclination
placed in the vicinity of a neutral �1=2 defect pair, shown here
for extensile activity (v < 0). The �1=2 defect pair creates a
background phase gradient vn (blue arrows) as a result of the
nematic distortion. The test disclination experiences an active
torque due to the presence of a background phase gradient vn that
picks out a stable orientation as shown in (a). The torque-
stabilized orientation is one in which the test defect is aligned
parallel to the defect pair. All other orientations of the test defect,
including being antiparallel to the defect pair as in (b), are
unstable due to the active torque.
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immediately sees that the active torque preferentially
stabilizes its orientation to be aligned with the þ1=2 defect
in the neutral pair. This alignment is illustrated in Fig. 4 for
the case of extensile activity (v < 0) and is discussed in
more detail in Appendix B. The contractile case works
analogously. Passive elastic torques ∼κ∇ · vn cannot
change this result, as they vanish for spatially homo-
geneous phase gradients, unlike the active torques.
Hence, active torques always induce an effective polar
alignment between þ1=2 defects, thereby structurally
preventing the appearance of nematic defect order. This
should be contrasted with other examples of defect order in
equilibrium—the Abrikosov vortex lattice in type-II super-
conducting films [60] and the twist-grain boundary phase
in smectics [61], both of which result from the local
breakdown of Meissner-like effects, leading to the pen-
etration of either the magnetic field or twist, respectively.

IV. FLUCTUATIONS AND LINEAR STABILITY

We now examine the linear stability of the homogeneous
steady states to small spatial fluctuations. In both the
isotropic and defect-ordered states, fluctuations in the
average defect number density (n) relax on a short time-
scale set by the balance of defect pair creation and
annihilation and are henceforth neglected. In the presence
of unbound defects, the nematic order parameter has a finite
correlation length ξ which sets the mean separation
between defects. Fixing n ¼ n0, we define

ξ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πνn0

p : ð30Þ

The numerical factor of 2πν is introduced to simplify the
notation below.

A. Isotropic defect chaos

Linearizing for small fluctuations about the isotropic
steady state, we have ρ ¼ 0þ δρ, vn ¼ 0þ δvn, and
p ¼ 0þ δp. Upon Fourier transforming in space [Φq;ω ¼R
d2r

R
dt eiωt−iq·rΦðr; tÞ], we define the longitudinal and

transverse components of δp as δpL ¼ q̂ · δpq and
δpT ¼ ẑ · ðq̂ × δpqÞ, respectively. A similar decomposition
is performed for δvn as well. The resulting linearized
equations are

∂tδpL ¼ −DRð1þ q2l2ÞδpL − v2n0

�
1 −

4

3
q2ξ2

�
δvTn ;

ð31Þ

∂tδvTn ¼ −
1

τ

�
1þD0

κ
q2ξ2

�
δvTn − πvδpL; ð32Þ

∂tδpT ¼ −DRð1þ q2l2ÞδpT þ v2n0δvLn ; ð33Þ

∂tδvLn ¼ −
1

τ
ð1þ q2ξ2ÞδvLn þ πvδpT: ð34Þ

Note that the four fields are coupled only in pairs:
ðδpL; δvTnÞ and ðδpT; δvLn Þ. Here, we use the topological
constraint ẑ · ð∇ × δvnÞ ¼ 2πδρ and introduce τ ¼
ð2πνκn0Þ−1 ¼ ξ2=κ as the finite relaxation time of the
phase gradient. The thermal diffusion length scale l2 ¼
D0=DR is typically microscopic and expected to be of the
order of the defect core size (l ∼ a). Although the charge
density ρ is locally conserved [Eq. (11)], its fluctuations are
slaved entirely to δvTn , which decays on a finite timescale τ,
due to complete screening of the long-ranged Coulomb
(passive) interaction between the defects.
Both pairs of coupled modes have the same dispersion

relation at Oðq0Þ, given by

iω� ¼ 1

2

"
1

τ
þDR �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
DR −

1

τ

�
2

þ 3DR

2τ
ζfðζÞ

s #
; ð35Þ

differing from Oðq2Þ terms onward. While iωþ > 0
always, iω− can go negative for large enough activity
(ζ) triggering an instability of the isotropic state. This
instability coincides with the defect-ordering transition at
ζ ¼ ζc [obtained in Eq. (24)]. One can check that
q-dependent terms do not change this result, and no further
instabilities arise.
As we approach the defect-unbinding transition from

above, within the defect chaos state, the nematic correlation
length diverges (ξ → ∞) and the density of free defects
vanishes (n0 → 0). Polarization fluctuations relax with a
finite rate due to rotational diffusion, even at the unbinding
transition (iωþ ≃DR), while the phase gradient exhibits
critical slowing down with iω− ∝ ξ−2 → 0. Of course, the
region of hydrodynamic validity qξ ≪ 1 shrinks rapidly as
we approach the defect-unbinding transition.
Reinstating the lowest-order additive noise as computed

from coarse-graining [2π
ffiffiffiffiffiffiffiffiffiffiffi
D0n0

p
Λ1 in Eq. (15) andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2TDRn0fðζÞ=K
p

Λ2 in Eq. (16), with both Λ1 and Λ2

uncorrelated unit white Gaussian noise], we compute the
fluctuation spectra in the isotropic defect gas. Using
q ¼ jqj, the equal time correlator of the polarization at
the steady state is given by

hjδpqðtÞj2i≈n0
2T
K

fðζÞþ n0D0ðv2=νκÞ2
2DRð1þq2ξ2Þ½1þτDRþq2ξ2�:

ð36Þ

As we are far from the defect-ordering threshold (ζ ≪ ζc),
we retain only the most dominant terms involving δpT
and neglect l ≪ ξ for simplicity. In this limit, δpL has
correlations only on scales much smaller than ξ and
primarily contributes an additive constant in Eq. (36).
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Note the dependence on n0 that arises from the variance of
the noise in the polarization dynamics. The polarization
inherits its dominant spatial correlations from vn, which
survives on the scale of ξ, though unaccompanied by a
growing relaxation time, which instead remains finite
(∼D−1

R ). As a result, polarization fluctuations exhibit a
breakdown of dynamic scaling close to the defect-unbind-
ing transition. The charge density fluctuations for q → 0
are similarly given by

hjδρqðtÞj2i ≈
q2

4πνκ

�
D0 þ

�
τDR

1þ τDR

�
κζfðζÞ

�
; ð37Þ

upon assuming ζ ≪ ζc, well below the defect-ordering
threshold. Charge density fluctuations vanish on large
scales as a consequence of the unbound defect gas
behaving as a screened conducting plasma, albeit with
an activity-enhanced effective “dielectric constant” via a
sum rule [62]. While such a dielectric constant relates
to an effective elastic constant or stiffness in 2D equilib-
rium superfluids or XY magnets, the equivalent correspon-
dence in the active case requires care and is addressed
elsewhere [63].
A common feature of defect chaos is the characteristic

decay of the flow velocity correlator and the kinetic energy
spectrum. We assume that the defects serve as faithful
tracers of the average flow field and write

u ¼ jn
n
≈

v
2n0

δp; ð38Þ

where the last approximate equality is obtained by linear-
izing jn for small δp and δvn and neglecting higher-order
gradient terms. This approximation, of course, breaks down
close to the defect-unbinding transition when n0 → 0.
Two distinguishing properties are generally associated

with active turbulence. The first is that the typical length
scale of the flow depends on the magnitude of activity jαj
through the mean defect spacing ξ, with ξ ∼ jαj−1=2
[10,20,26,27,30]. The second is the scaling of the kinetic
energy spectrum EðqÞ ¼ hjuqj2i=2, with Eðq → 0Þ ∝ jαj.
In our work, jvj ∼ jαj (see Appendix A) and ξ ∼ n−1=20 away
from the defect-unbinding threshold. Deep in the regime
of defect chaos, the mean density of defects is known
to scale with the magnitude of activity [26,27]; hence,
ξ ∼ jvj−1=2 ∼ jαj−1=2. To derive this scaling from semi-
microscopic considerations requires a full theory of melt-
ing, far beyond the scope of this paper, and is presented
elsewhere [63]. As can be seen directly from Eqs. (36) and
(38), in our model, the characteristic length scale of both
flow and defect polarization indeed scales as ξ far from the
defect-unbinding threshold. For the second point, we can
obtain the scaling of the kinetic energy using Eqs. (36) and
(38), with the result Eðq → 0Þ ∝ jvj½1þOðjvjÞ�. The
leading jvj scaling of the average kinetic energy crucially
relies on the fact that the polarization fluctuations ∝ n0

[Eq. (36)], a consequence of the central limit theorem.
Both these scalings no longer hold near the defect-
unbinding transition. It is worth emphasizing that our
calculation based on a systematic derivation of the defect
dynamics is consistent with the phenomenological mean-
field picture of Ref. [26]. The two approaches are com-
plementary, with the mean-field construction working best
on short scales where correlations are neglected, while our
approach works best on large scales where hydrodynamic
treatments are applicable.

B. Defect polar order

Deep in the defect-ordered state, both vn and ρ are
fast modes and rapidly relax to their steady-state values
(v0n and 0, respectively) on the now short timescale τ. It is
instructive (although not essential) to slave both these fields
to the polarization. In doing so, we set vn ¼ πvτ ϵ · pþ
Oð∇2Þ and ρ ¼ −ðvτ=2Þ∇ · pþOð∇2Þ to obtain an effec-
tive Toner-Tu–like equation for the defect polarization:

∂tpþ λ1p · ∇pþ λ2p∇ · pþ λ3∇jpj2
¼ DR½a2 − a4p2�pþD0∇2pþD1∇∇ · p: ð39Þ

The resulting hydrodynamic coefficients are

λ1 ¼ −
v

2νn0
ð2þ νÞ; λ2 ¼ −

v
2n0

�
1−

vv2τ
4νκ

�
; ð40Þ

λ3 ¼
v

2νn0
; D1 ¼

vv1τ
4

; ð41Þ

with a2 and a4 given in Eq. (23). Note that, to leading order
as n0 ∝ jvj (jvj ∼ jαj), we find that λ1;2;3 ∼ sgnðvÞ is
nonanalytic in activity, and the effective splay elastic
constantD1 ∼ jvj=K is controlled by the well-known active
length scale [9]. As noted earlier in Sec. III B, for
ζ > ζc ≃ 0.701, a2 > 0 and the isotropic defect gas spon-
taneously orders into a polarized liquid. The finite relax-
ation time for the defect charge density ρ implies that the
defect-ordered liquid behaves as a Malthusian flock [64].
From Eq. (39), we also see that the important convective
nonlinearity λ1p · ∇p naturally appears in our framework,
and it allows the existence of long-ranged polar order of the
þ1=2 disclinations. The spontaneous breaking of rotational
symmetry is accompanied by a simultaneous breaking of
translational symmetry in the underlying nematic, charac-
terized by the appearance of periodic kink walls with a
nonzero-average phase gradient hvni ¼ v0n. In Fig. 2, we
see that the þ1=2 defects preferentially move along the
kink walls, suggesting a structure akin to the “active
smectic-P” state recently reported in Ref. [65]. This
superficial similarity goes no further, as neither the defect
number nor the charge density reflect the necessary
periodic modulation. This distinction is important, since
the periodic arrangement of kink walls and associated long-
ranged smectic order (unlike all other 2D active smectics
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[65–67]) is not an independent broken symmetry but rather
the result of the long-range order of the polarization. The
latter, in turn, arises as in all Toner-Tu models from the
convective nonlinearity in Eq. (39).
Linearizing for small fluctuations about the defect-

ordered steady state, we have only p ¼ p0 þ δp, as
fluctuations in both vn and ρ have already been enslaved.
Decomposing δp along (δpjj) and transverse (δp⊥) to the
polar order, we obtain two coupled modes whose long-
wavelength dispersion relation is of the form

iωjj;⊥ðqÞ ¼ icjj;⊥qjj þ Γjj;⊥ðqÞ; ð42Þ

where qjj ¼ q · p̂0. Both amplitude (δpjj) and orientational
(δp⊥) fluctuations propagate along the direction of polar
order, though with different speeds:

cjj ¼ ðλ1 þ λ2 þ 2λ3Þp0; c⊥ ¼ λ1p0; ð43Þ

having used the magnitude of polarization jp0j ¼ p0.
Depending on the activity (v), these drift speeds can be
of either sign [see Eqs. (40) and (41)]. The relaxation rates
for the two modes up to Oðq2Þ are given as

ΓjjðqÞ ¼ 2a4DRp2
0 þ

�
D0 þD1cos2φ −

λ2λ3
a4DR

sin2φ

�
q2;

ð44Þ

Γ⊥ðqÞ ¼
�
D0 þ

�
D1 þ

λ2λ3
a4DR

�
sin2φ

�
q2; ð45Þ

where φ is the angle made by the wave vector q with the
direction of polar order (q̂ · p̂0 ¼ cosφ). As expected, in
the defect-ordered state, the amplitude mode decays with a
finite relaxation rate even as q → 0, while orientational
fluctuations remain soft. Being a broken symmetry varia-
ble, it is the only true hydrodynamic mode here. From our
derivation of transport coefficients [Eqs. (40) and (41)], we
note that λ2λ3 < 0 for small v, changing sign for larger
activity. This is true for both extensile and contractile
systems. Hence, while the amplitude mode is always
stable [ΓjjðqÞ > 0] [68], the orientational mode δp⊥ can
develop a long-wavelength splay instability (at φ ¼ π=2) if
Γ⊥ðqÞ < 0. Rewriting this condition in terms of our
original control parameters, it corresponds to

D0 þ
ζfðζÞDR

4πνn0

�
1þ 3

5ν

�
−
8κ

5ν
< 0; ð46Þ

for a splay instability to occur. The detailed dependence of
n0 on system parameters is sensitive to microscopic details,
so this instability threshold is model dependent. As ζ ∝ v2

and n0 ∝ jvj along with fðζÞ monotonic and positive, for
large enough activity, we expect the above condition to not

be satisfied and, thereby, allow a stable polar-ordered phase
of defects. In this paper, we consider only the stable
situation and do not discuss the splay instability further.
Putting back noise as before, we can compute the

correlation function of the polarization fluctuations. The
convective term is a relevant nonlinearity in 2D that
dramatically modifies the scaling of the autocorrelation
and is well known for being responsible in stabilizing long-
ranged polar order. Using the exact exponents calculated in
Ref. [64], we have at the steady state

hδp⊥ðr; tÞδp⊥ð0; 0Þi ¼ r−2=5⊥ G

�
rjj − c⊥t
r3=5⊥

;
t

r6=5⊥

�
: ð47Þ

As before, we use rjj ¼ p̂0 · r and r⊥ ¼ ẑ · ðp̂0 × rÞ, and
Gðx; yÞ is a scaling function that depends on model
parameters in a complicated way. Both the defect charge
and number density exhibit normal Poissonian fluctuations,
as expected of aMalthusian flock. The defect-ordered liquid
continually turns over due to spontaneous pair creation and
annihilation of defects, with polar order persisting for
infinitely longer than the finite lifetime of individual dis-
clinations. The conspicuous absence of both giant number
fluctuations [7,8,14] and motility-induced phase separation
phenomenology [69–71] for defects is at first glance
surprising. The local conservation of topological charge,
along with the self-propulsion ofþ1=2 disclinations, might
lead one to naïvely expect large fluctuations in the charge
density upon defect ordering. In addition, the repulsive
interaction between motile þ1=2 disclinations might also
raise the question of the possibility of phase separation of a
defect liquid. None of these scenarios are realized. The
fundamental reason is the nature of the screened Coulomb
interaction between defects mediated by Frank elasticity,
which renders the charge density a nonhydrodynamic field
with a finite relaxation time.
This concludes the analysis of the phase diagram

predicted by our model of defect hydrodynamics. Until
now, all the phases considered had no charge separation,
and the average defect charge current always vanished
(hjρi ¼ 0). In 2D passive systems such as superfluid films,
a charge current can be generated by the application of an
external electric field. While applying a similar external
field in active nematics might be tricky, we show below that
spatially varying activity can locally act as an “electric
field” causing a local sorting of defects based on their
topological charge.

V. INHOMOGENEOUS ACTIVITY

We now demonstrate that our hydrodynamic model
provides a useful framework for describing situations with
spatially inhomogeneous profiles of activity. Activity
gradients provide additional nonequilibrium driving forces
that can be used to generate and control spatial patterns at
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will. Recent advances in engineering optical control of
biomolecular or catalytic activity have emerged as a
venerable platform for dynamically creating large-scale
reconfigurable patterns and structures in diverse systems
ranging from gels of biofilament-motor complexes [48,49]
to suspensions of self-propelled colloids [72] and bacteria
[73,74]. Such techniques, when used in active nematics,
can control the chaotic dynamics and provide novel ways to
precisely sculpt flow and tune material properties through
the spatial organization and positioning of topological
defects. This prerequisite is important for developing
programable active metamaterials whose local organization
dictates its global response and transport.
To include spatially inhomogeneous activity in our

defect hydrodynamics, we make use of the fact that activity
enters through the defect self-propulsion v and simply
replace v → vðrÞ (including it under gradients when
appropriate). While modulating the microscopic active
processes, in general, also affects the elasticity and vis-
cosity of the nematic, we do not consider such modifica-
tions for simplicity. There are two distinct phenomena that
result when activity is spatially varying in an active
nematic. First, activity controls the motility of þ1=2

disclinations, which behave as active particles that are
known to aggregate where they move slowly [69,71,75].
This well-understood phenomenon survives even in the
presence of interactions and is used to design self-
assembled rectification devices [76] and particle traps
[77–79]. The second phenomenon is a distinct property
of active nematics, which is that higher activity generates
more defect pairs. Hence, low activity leads to low defect
motility and a consequent accumulation of þ1=2 defects,
but it also decreases the total defect density. As the two
competing effects do not act symmetrically on both charge
defects, we have the possibility of sorting defects by charge
in the presence of an activity gradient.
Working for simplicity in a one-dimensional (1D) set-

ting, we consider activity to vary only in the x direction
[vðxÞ]. We take the maximum value of activity to corre-
spond to states deep in the regime of defect chaos and to
never exceed the defect-ordering threshold. As in Sec. IVA,
we assume that the average defect density relaxes to
its steady-state value on a short timescale [80], and all
other fields are small with weak gradients, permitting a
linearized analysis. This is done simply for analytical
progress—alternatively, the equations could be solved

FIG. 5. The defect charge and number density along with the polarization in a 2D nematic with active-passive interfaces. The activity
profile is simply chosen to be vðxÞ ¼ ðv=2Þ½1þ tanhð2x=wÞ� for a passive (x < 0) to active (x > 0) interface, v being the maximum
activity and w the width of the interface. As can be seen, the interface develops a steady-state charge polarization, with excess þ1=2
disclinations near the passive side and a compensating number of −1=2 disclinations near the active side. Within the bulk active region
with isotropic defect chaos, the polarization vanishes, but at the interface, theþ1=2 disclinations locally order to orientationally polarize
the interface as well. The direction of interfacial polarization is shown in the cartoon for the extensile case (v < 0), with the defects just
marked by the sign of their topological charges.
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numerically. The dependence ofWc andWa on vðxÞ causes
the average defect number density to also have a spatial
profile n ¼ n0ðxÞ ∝ jvðxÞj. Because of the 1D setup, only
p ¼ pðxÞx̂ and vn ¼ vnðxÞŷ are nonvanishing, and at the
steady state, once again jρ ¼ 0. The linearized steady-state
equations to leading order in gradients are

vðxÞ
2

pðxÞ þ νκn0ðxÞvnðxÞ ¼ 0; ð48Þ
1

2
∂x½v1ðxÞn0ðxÞ� ¼ −DRpðxÞ − v2ðxÞn0ðxÞvnðxÞ: ð49Þ

Note that v1ðxÞ and v2ðxÞ vary in space through their
dependence on vðxÞ [see Eq. (17)]. Eliminating pðxÞ, we
obtain a finite vnðxÞ controlled by an activity gradient. The
topological constraint gives ρðxÞ ¼ ∂xvnðxÞ=ð2πÞ, which
in analogy with Gauss’ law demonstrates that a transverse
phase gradient, here set up by a gradient in activity, acts as a
local electric field. So we have

pðxÞ ¼ −
νκ

2DR

∂x½v1ðxÞn0ðxÞ�h
νκ − vðxÞv2ðxÞ

2DR

i ; ð50Þ

ρðxÞ ¼ 1

8πDR
∂x

8<
: vðxÞ∂x½v1ðxÞn0ðxÞ�
n0ðxÞ

h
νκ − vðxÞv2ðxÞ

2DR

i
9=
;: ð51Þ

One can check that ρðxÞ does not depend on the sign of
vðxÞ whereas pðxÞ does, as expected. The denominators in
the expressions above do not vanish, as we are below the
defect-ordering transition. The defect charge and number
density for two different activity profiles are plotted in
Fig. 5, along with a schematic showing the polarization of
defects at the active-passive interface. Hence, an active-
passive interface is both charge and orientationally polar-
ized. As seen in Fig. 5, there is an excess of þ1=2
disclinations on the passive side of such an interface and
a charge-balanced excess of −1=2 disclinations on the
active side. This result can be understood by recalling that
the þ1=2 defects, being motile, tend to accumulate where
they move slowly. Similarly, an active region flanked by
passive regions on either side develops a net negative
topological charge concentrated near the interfaces [81].
While the overall scale of ρðxÞ involves the defect persist-
ence length and nematic elasticity, the length scale over
which charges separate is directly governed by the width of
the interface. One can similarly analyze the defect charge
distribution setup by a spatial activity pattern that switches
from extensile (v < 0) to contractile (v > 0). At the inter-
face, the activity is forced to vanish, leading to an
accumulation of þ1=2 defects bordered on either side by
a compensating layer of −1=2 defects. The charge and
polarization distribution continue to be given by Eqs. (51)
and (50), respectively, independent of any spatial variations
in the sign of activity.

VI. DISCUSSION

Topological defects play a foundational role in
characterizing ordered media, being fingerprints of broken
symmetry. In active nematics, they acquire additional
dynamical character due to the breakdown of detailed
balance. By emphasizing the dominant role of defects as
the drivers of flow, we develop a detailed hydrodynamic
theory of active defects to capture the various dynamical
states of a noisy 2D active nematic on a substrate. This
approach allows us to analytically treat both active turbu-
lence and defect ordering at higher activity. Our results on
spatiotemporal defect chaos in the active turbulent regime
are consistent with previous numerical work [26,27] and
provide a tractable starting point to address the large-scale
flow signatures of a strongly interacting defect gas. At high
enough activity, torques acting on the þ1=2 disclinations
become strong enough to collectively align the moving
defects into a spontaneously flowing liquid. Our analysis
identifies a definite physical mechanism that drives the
defect-ordering transition and explains the underlying
reason for polar defect order. Finally, extending our treat-
ment to handle spatially inhomogeneous activity, we
demonstrate that activity gradients can act as electric fields
(see also Appendix B) that can be used to corral defects and
segregate them. Understanding situations where activity
can be spatially or temporally manipulated is the first step
to controlling and patterning structure, along with facili-
tating targeted transport in active matter.
The phase transitions demarcating the different states of

defect organization are depicted in Fig. 3 through a phase
diagram constructed in terms of the parameters of our
theoretical model. To make contact with possible exper-
imental realizations of our predictions, it is useful to cast
the phase boundaries in terms of variables that are easier to
control in experiments. Both translational noise as captured
by our effective temperature T and rotational noise captured
by DR are dominantly of nonthermal origin and a priori
unknown. Furthermore, they are generally controlled by
active processes, which renders them dependent on the
system’s activity. To construct a phase diagram in terms of
two independent and, in principle, experimentally acces-
sible axes, we assume a generic dependence of the effective
temperature and the rotational diffusion on activity as
T ¼ T0 þ T1v2 and DR ¼ D0

R þD1
Rv

2, with T0 and D0
R

as passive contributions, and construct a phase diagram in
terms of the nematic stiffness K and activity jvj. The
resulting phase diagram is shown in Fig. 6. In biofilament-
motor complex suspensions [10,13], the passive elasticity
of the nematic is primarily controlled by the filament length
and density, whereas activity can be tuned by changing
ATP and possibly motor concentration. Of course, activity
also affects the nematic elasticity [13], but this dependence
can be considered a higher order effect. A different
realization of an active nematic involves perfusing a
biocompatible molecular liquid crystal with bacteria
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[15]. Here, the elasticity of the liquid-crystal medium is
known and well controlled, while the activity can be tuned
by regulating the bacterial concentration. We look forward
to experiments that will direct tests of our results.
Our work opens up several important future directions

and leaves open challenges to be resolved. Arguably the
most obvious one is the lack of nematic defect order in our
model. As discussed in Sec. III B and sketched in Fig. 4, the
absence of nematic defect order is not the result of the
coarse-graining scheme or closure approximations used. It
instead is a basic feature of the structure of the dynamics of
defect as quasiparticles that we use as our starting point.
These equations are derived perturbatively in Ref. [22], and
the resulting active torques favor only an effective polar
alignment of þ1=2 disclinations in an unbound defect gas.
One may then ask whether a torque that favors nematic
alignment of the þ1=2 defects may be obtained at higher
order in activity. We believe the following arguments
demonstrate that this is not possible in the context of a
dry nematic. To understand this, we first stress that the
mechanism for defect ordering described here relies on two
ingredients: the balance of elastic forces and propulsive
fluxes to ensure jρ ≈ 0 and prevent charge segregation, and
the active torques that favor a local buildup of polar order in
the presence of an elastic distortion. Any active torque with
nematic symmetry that were to arise in a nonperturbative
treatment has to involve an alignment interaction between
the þ1=2 defect polarization and the local phase gradient
(vn), as these are the only vector fields in the problem. Such
a torque cannot, however, support pure nematic defect
order on large scales, because many-body screening forces
vn to decay to zero, making it impossible to balance a finite
elastic distortion against an active charge current involving

the nematic order parameter of defects. This argument seems
to exclude the possibility of purely nematic defect ordering
in an active nematic on a substrate. One possible way out is
to include hydrodynamic interactions and momentum-
conserving flow. Genuine fluid flow can provide nonlocal
alignment interactions in addition to new terms controlling
charge transport. Solvent flow is expected to be important, at
least partly, in experiments involving microtubule-kinesin
suspensions, where nematic ordering of defects has been
previously reported [32], and is also known to stabilize
defect lattices in simulations [36]. Extending our framework
to include viscous flow and account for nematic defect
ordering is a significant challenge for the future.
Another direction for future research is to use our

framework to quantify design principles for engineering
active microfluidic devices. Controlling flows and defect
organization through confinement [11,12,29,83] invites
future investigations into the nontrivial role of boundaries
and curvature in active matter. Our work on defect
segregation through activity gradients poses new avenues
for exploration in the context of spatiotemporal control of
activity. Furthermore, in the spirit of metamaterial design,
controlling flow and patterning structures in active matter is
essential to use active devices for applications. In this
regard, marrying optimal transport with active fluid hydro-
dynamics is the next step toward achieving this goal.
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APPENDIX A: DERIVATION OF ACTIVE
DEFECT HYDRODYNAMICS

We briefly recapitulate the order-parameter-based
description of active nematics to both make contact with
conventional modeling strategies and also remind ourselves
of the various parameters in the model. The continuum
nematodynamic equations are just as for the order param-
eter Q of a passive 2D liquid crystal [84], given by

∂tQþ u · ∇Qþ ½Ω;Q� ¼ λð∇uÞST þ
1

γ
H; ðA1Þ

with u the flow velocity, 2Ωμν ¼ ∇μuν −∇νuμ the vorticity
tensor, and γ the rotational viscosity. The flow alignment
term involves the coupling λ and the deviatoric strain rate

FIG. 6. Phase diagram as a function of activity (jvj) and nematic
elasticity (K). Here, we fix ν ¼ π and γ ¼ 1 and take
T ¼ T0 þ T1v2, and DR ¼ D0

R þD1
Rv

2, with T0=T1 ¼ 10−2

and D0
R=D

1
R ¼ 10 in units where v20 ¼ D0

RT0=γ ¼ 0.1 sets the
scale of jvj2. The overall topology of this phase diagram does not
change for other values of parameters, with the sole exception of
T0 ¼ 0, T1 ≠ 0, in which case the homogeneous nematic phase
extends all the way down to K ¼ 0.
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tensor ð∇μuνÞST ¼ ∇μuν þ∇νuμ − δμνð∇ · uÞ. The mole-
cular field H ¼ bð1 − S2ÞQþ K∇2Q with b > 0 controls
the mean-field isotropic-to-nematic transition at equilib-
rium, and K is the Frank elastic constant.
In the presence of a frictional substrate and activity, we

supplement this equation with a force balance equation for
the flow velocity, involving active stresses, −Γuþ ∇·
σa ¼ 0. We assume that friction with the substrate Γ
screens the flow on large scales and retain only the
dominant active stress σa ¼ αQ, neglecting all passive
elastic contributions. The activity α corresponds to the
average force dipole exerted by the microscopic apolar
active units on the surrounding fluid [6,7], with α > 0 for
contractile systems and α < 0 for extensile systems. For an
isolated þ1=2 disclination positioned at rþi , the active flow
generated at the core of the defect is uðrþi Þ ¼ vei, where
v ¼ α=ðaΓÞ relates the defect motility to the activity and
ei ¼ a∇ ·Qðrþi Þ is the defect orientation as mentioned in
the main text. Below, we derive the hydrodynamic descrip-
tion of active defects.

1. Phase gradient dynamics

The topological constraint [Eq. (5)] relates the phase
gradient vn to the defect charge density through
ẑ · ð∇ × vnÞ ¼ 2πρ. As defects are created or annihilated
only in pairs, the charge density ρ is locally conserved, and
we have a continuity equation for the dynamics of ρ, as
noted in Eq. (11):

∂tρþ ∇ · jρ ¼ 0: ðA2Þ
Note that this expression is valid at the fluctuating level in
the Stratanovich convention. As the phase gradient vn is
single valued, we can commute derivatives on it. Writing
2πρ ¼ ẑ · ð∇ × vnÞ and commuting the time and space
derivatives, Eq. (A2) gives

∇ × ð∂tvn − 2π ϵ · jρÞ ¼ 0

⇒ ∂tvn − 2π ϵ · jρ ¼ ∇Π; ðA3Þ
where ϵ is the 2D Levi-Civita tensor and Π is a smooth
scalar function free of singularities. Away from defects
jρ ¼ 0, and a smooth director fluctuation then obeys

∂tθ ¼ K
γ
∇2θ þ

ffiffiffiffiffiffi
2T
γ

s
fθ; ðA4Þ

on large scales, where fθ is unit white Gaussian noise
and T is the noise strength that functions as an effective
temperature. All nonlinearities affecting the smooth phase
fluctuations in the ordered 2D active nematic are known
to be perturbatively irrelevant on large enough length
scales [85,86]. Comparing Eqs. (A3) and (A4), we set
Π ¼ ðK=γÞ∇ · vn þ

ffiffiffiffiffiffiffiffiffiffiffi
2T=γ

p
fθ. Putting it all together, we

then have

∂tvn ¼ 2π ϵ · jρ þ
K
γ
∇ð∇ · vnÞ þ

ffiffiffiffiffiffi
2T
γ

s
∇fθ: ðA5Þ

Upon setting κ ¼ K=γ and neglecting the noise in a mean-
field description, we obtain Eq. (15) in the main text.

2. Current constitutive equation

The motion of a�1=2 disclination in an active nematic is
derived in Ref. [22] to be

_rþi ¼ vei þ πμKϵ · vn þ
ffiffiffiffiffiffiffiffi
2μT

p
ξiðtÞ; ðA6aÞ

_r−i ¼ −πμKϵ · vn þ
ffiffiffiffiffiffiffiffi
2μT

p
ξiðtÞ; ðA6bÞ

where μ ∝ γ−1 is the defect mobility and ξiðtÞ is unit white
noise. We emphasize that v ∝ α can be of either sign, with
extensile and contractile systems propelling the þ1=2
defect in opposite directions [21], while the −1=2 defect
remains diffusive and nonmotile. The particular form of
the Magnus-like force in Eq. (A6) is chosen to recover the
passive Coulomb interaction between bound defects. In the
absence of free unbound defects, the phase gradient at any
point due to bound defect pairs with charge qi ¼ �1=2 is

vnðrÞ ¼ −ϵ · ∇
X
i

qi ln

���� r − ri
a

����; ðA7Þ

where ri is the position of the ith defect and a is the defect
core size that provides a microscopic cutoff. Using Eq. (A7)
in Eq. (A6), one can check that the correct form of the
passive elastic force is obtained when considering just
bound defect pairs. In the presence of unbound defects,
Eq. (A7) is no longer applicable, and we instead have to use
Eq. (A5) to obtain the phase gradient.
Using the defect equations of motion [Eq. (A6)] in the

definition of the fluctuating current [j�¼
P

i _r
�
i δðr−r�i Þ],

we obtain

jþ ¼ vpþ πμK nþϵ · vn − μT∇nþ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μTnþ

p
ξþ; ðA8Þ

j− ¼ −πμK n−ϵ · vn − μT∇n− þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μTn−

p
ξ−; ðA9Þ

where ξ�ðr; tÞ are unit space-time white noises. For
spatially varying n�, the multiplicative noise must be
interpreted in Ito style. Writing D0 ¼ μT, replacing πμK
by νκ, and neglecting noise at the mean-field level, we
obtain Eqs. (8) and (9). The corresponding fluctuating
expressions for jρ and jn can then be trivially obtained.

3. Polarization dynamics

The orientational dynamics of ei including active torques
is derived in Ref. [22] to be
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_ei ¼ −
5πμγ

8
½πμKjvnj2 þ vẑ · ðei × vnÞ�ei

− v
πμγ

8
ðei · vnÞϵ · ei −

2K
γ

ð∇ · vnÞϵ · ei
−

ffiffiffiffiffiffiffiffiffi
2DR

p
ϵ · eiηiðtÞ þ νiðtÞ: ðA10Þ

This equation is written here in a form that is appropriate
for treating unbound defects. Unpackaging the various
terms, the top line in Eq. (A10) involves both passive and
active terms that relax or enhance jeij, which is a measure
of local nematic distortion. The second line in Eq. (A10)
includes orientational torques that leave jeij fixed. The first
of these is the important active torque that causes the þ1=2
defect orientation to self-align with the local phase gra-
dient. The second is a passive elastic torque that causes the
þ1=2 defect to reorient in a splayed phase gradient. This
result can be easily obtained by noting that, away from
defects, an external phase gradient causes the nematic
director to precess at a rate given by κ∇ · vn [from
Eq. (A4)]. Following the analysis in Ref. [22], this director

rotation generates the required elastic torque in Eq. (A10).
As can be seen, this elastic torque is subdominant to the
active one, as it arises only for ∇ · vn ≠ 0. Similar elastic
torques have been obtained by different means previously
as well [11,87,88]. The final two terms in the last line in
Eq. (A10) are noise, with DR as the rotational diffusion
constant and ηiðtÞ as unit white Gaussian noise, and the
longitudinal noise νiðtÞ is Gaussian with zero mean and
correlations

hνiðtÞνjðt0Þi ¼ T
5π2

4
μ2γjvnj21δijδðt − t0Þ: ðA11Þ

The form of the noise correlator is obtained by using
essentially a fluctuation-dissipation-like relation in the limit
v ¼ 0. For simplicity, we use the same effective noise
strength ∼T here, as other choices do not change the results
in any qualitative way (also see Ref. [22]). Coarse-graining
Eq. (A10), we obtain a fluctuating hydrodynamic equation
for the defect polarization density p:

∂tpα þ v∂βMαβ þ πμK∂β½ϵβγvnγpα� ¼ −
�
DR þ 5π2μ2γK

8
jvnj2

�
pα − v

πμγ

2
Mαβϵβγvnγ

− v
πμγ

8
ðϵαβvnβÞtrðMÞ þ μT∇2pα −

2K
γ

ϵαβpβð∇ · vnÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DRtrðMÞ

p
Λα: ðA12Þ

This equation is not closed, as it involves the second-order
tensorial momentMðr; tÞ ¼ P

i eiðtÞeiðtÞδ½r − rþi ðtÞ�. The
Gaussian noise Λ is spatiotemporally unit white. We also
neglect subdominant terms in the noise involving nþjvnj2
and the traceless part of M, along with Oð∇2Þ contribu-
tions. These do not affect the results presented.
To close the moment hierarchy, we use a Ginzburg-

Landau ansatz taking both p and vn to be equally small
and slowly varying. In addition, we set M ¼ ðm=2Þ1 and
disregard all higher anisotropic moments of the orientation
that decay on short timescales ∼D−1

R , neglecting any
nematic ordering of the þ1=2 defects for now. As the
active torques generate alignment only between p and vn,
within our model it is impossible to obtain nematic order of
defects directly from the isotropic state. The last thing left
to do is then determine trðMÞ ¼ m in terms of the variables
retained. At lowest order, without noise, we find

m ¼ 2T
K

fðζÞnþ þOðv2n;∇2Þ; ðA13Þ

ζ ¼ v2γT
DRK2

; ðA14Þ

where ζ is a nondimensional activity. The positive
dimensionless function fðζÞ ¼ 1þ 4ζ þOðζ2Þ involves

the leading ζ correction arising from eliminating the
third-order moment [hPi eijeij2δðr − rþi Þi ≃ −vπμγð8T2=
DRK2Þnþϵ · vn]. This completes the derivation of defect
hydrodynamics.

APPENDIX B: DEFECT ALIGNMENT AND
ELECTRIC FIELD ANALOGY

In this Appendix, we provide further details on the
alignment torques acting on theþ1=2 disclinations, with an
intuitive interpretation in terms of an electrostatic analogy.
The full equation for the angular dynamics of the þ1=2
defect orientation is given in Appendix A 3. To develop the
electrostatic analogy, we consider only the angular dynam-
ics of the þ1=2 defect and neglect noise and passive elastic
torques. Writing ei ¼ jeijðcosψ i; sinψ iÞ for an individual
defect polarization, in the presence of a finite phase dis-
tortion vn, the active torques generate an angular velocity
given by

_ψ i ¼ v
ν

8
ðei · vnÞ ¼ −

ν

8
∂ψ i

H: ðB1Þ

For the last equality, we recast the active alignment
torque as deriving from an effective alignment “energy”
H ¼ v

P
i ẑ · ðei × vnÞ, which is simply a formal rewriting

of the dynamical torque with no real energetic
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underpinning. Now, from the topological charge constraint
ẑ · ð∇ × vnÞ ¼ 2πρ [Eq. (5)], we identify an electric field
E ¼ ϵ · vn. This allows us to rewrite the charge constraint
in the form of Gauss’ law:

∇ ·E ¼ 2πρ: ðB2Þ

This identification is the same as in the Maxwell analogy
for superfluid dynamics [42]. As discussed in Sec. V, an
activity gradient can enforce a locally nonvanishing vn,
which in turn acts as an electric field through the above
identification.
We can then rewrite the effective alignment interactionH

in terms of the electric field E as

H ¼ v
X
i

ei ·E: ðB3Þ

It is then evident that the active alignment of a neutral
defect pair takes exactly the form of the alignment of an
electric dipole with dipole moment −vei in an electric field
E. This result allows us to easily and intuitively interpret
the consequences of the active torque. As shown in the
schematic in Fig. 4 and in more detail in Fig. 7, a neutral
pair of defects generates an elastic distortion or phase
gradient vn plotted as blue lines in Fig. 7(a). Conversely,
one can reinterpret the same picture in terms ofE, as shown
in Fig. 7(b). Here, the electric field lines are shown in
purple and are orthogonal to the local phase gradient. As
stated in Eq. (B3), the active torque can effectively be seen
as akin to a dipole alignment interaction. In the extensile
case (v < 0), the effective dipole moment is jvjei and it

preferentially aligns with the local electric field. A similar
argument works for the contractile case as well with
the signs flipped. In both cases, the effective alignment
between the þ1=2 defects is polar. In short, Fig. 7 provides
a different interpretation of the alignment induced by active
torques (as sketched in Fig. 4) in terms of an electrostatic
analogy.
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ã4 ¼ 2a4DRp2
0 and Λ ¼ λ2λ3=a4DR. For either sign of Λ,

ReðiωjjÞ > 0 for all q, confirming that the only possible
instability is the orientational one obtained in Eq. (46).

[69] J. Tailleur and M. E. Cates, Statistical Mechanics of Inter-
acting Run-and-Tumble Bacteria, Phys. Rev. Lett. 100,
218103 (2008).

[70] Y. Fily and M. C. Marchetti, Athermal Phase Separation of
Self-Propelled Particles with No Alignment, Phys. Rev. Lett.
108, 235702 (2012).

[71] M. E. Cates and J. Tailleur, Motility-Induced Phase Sepa-
ration, Annu. Rev. Condens. Matter Phys. 6, 219 (2015).

[72] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M.
Chaikin, Living Crystals of Light-Activated Colloidal Surf-
ers, Science 339, 936 (2013).

[73] J. Arlt, V. A. Martinez, A. Dawson, T. Pilizota, and W. C. K.
Poon, Painting with Light-Powered Bacteria, Nat. Com-
mun. 9, 768 (2018).

[74] G. Frangipane, D. Dell’Arciprete, S. Petracchini, C. Maggi,
F. Saglimbeni, S. Bianchi, G. Vizsnyiczai, M. L. Bernardini,
and R. Di Leonardo, Dynamic Density Shaping of Photo-
kinetic E. coli, eLife 7, e36608 (2018).

[75] M. J. Schnitzer, Theory of Continuum Random Walks
and Application to Chemotaxis, Phys. Rev. E 48, 2553
(1993).

[76] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and M. E.
Cates, Light-Induced Self-Assembly of Active Rectification
Devices, Sci. Adv. 2, e1501850 (2016).

[77] M. P. Magiera and L. Brendel, Trapping of Interacting
Propelled Colloidal Particles in Inhomogeneous Media,
Phys. Rev. E 92, 012304 (2015).

[78] A. Sharma and J. M. Brader, Brownian Systems with
Spatially Inhomogeneous Activity, Phys. Rev. E 96,
032604 (2017).

[79] J. Grauer, H. Löwen, and L. M. C. Janssen, Spontaneous
Membrane Formation and Self-Encapsulation of Active
Rods in an Inhomogeneous Motility Field, Phys. Rev. E
97, 022608 (2018).

[80] This assumption neglects changes in n due to a defect flux
∇ · jn, but it can be accounted for easily.

[81] A related phenomenon is the spontaneous charging of
isotropic tactoids in an active nematic [82].

[82] M.M. Genkin, A. Sokolov, and I. S. Aranson, Spontaneous
Topological Charging of Tactoids in a Living Nematic, New
J. Phys. 20, 043027 (2018).

[83] A. Opathalage, M. M. Norton, M. P. N. Juniper, B.
Langeslay, S. A. Aghvami, S. Fraden, and Z. Dogic, Self-
Organized Dynamics and the Transition to Turbulence of
Confined Active Nematics, Proc. Natl. Acad. Sci. U.S.A.
116, 4788 (2019).

[84] A. N. Beris and B. J. Edwards, Thermodynamics of Flowing
Systems: With Internal Microstructure, No. 36 (Oxford
University, New York, 1994).

[85] S. Mishra, R. A. Simha, and S. Ramaswamy, A Dynamic
Renormalization Group Study of Active Nematics, J. Stat.
Mech. (2010) P02003.

[86] S. Shankar, S. Ramaswamy, and M. C. Marchetti, Low-
Noise Phase of a Two-Dimensional Active Nematic System,
Phys. Rev. E 97, 012707 (2018).

[87] A. J. Vromans and L. Giomi, Orientational Properties
of Nematic Disclinations, Soft Matter 12, 6490 (2016).

[88] X. Tang and J. V. Selinger, Orientation of Topological
Defects in 2D Nematic Liquid Crystals, Soft Matter 13,
5481 (2017).

SURAJ SHANKAR and M. CRISTINA MARCHETTI PHYS. REV. X 9, 041047 (2019)

041047-18

https://doi.org/10.1103/PhysRevE.84.040301
https://doi.org/10.1103/PhysRevE.84.040301
https://doi.org/10.1103/PhysRevLett.110.208001
https://doi.org/10.1088/1367-2630/17/11/113056
https://doi.org/10.1103/PhysRevA.38.2132
https://doi.org/10.1103/RevModPhys.60.1075
https://doi.org/10.1103/RevModPhys.60.1075
https://doi.org/10.1103/PhysRevLett.108.088102
https://doi.org/10.1088/1367-2630/18/6/063015
https://doi.org/10.1103/PhysRevLett.110.118102
https://doi.org/10.1103/PhysRevLett.111.088701
https://doi.org/10.1103/PhysRevLett.111.088701
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1126/science.1230020
https://doi.org/10.1038/s41467-018-03161-8
https://doi.org/10.1038/s41467-018-03161-8
https://doi.org/10.7554/eLife.36608
https://doi.org/10.1103/PhysRevE.48.2553
https://doi.org/10.1103/PhysRevE.48.2553
https://doi.org/10.1126/sciadv.1501850
https://doi.org/10.1103/PhysRevE.92.012304
https://doi.org/10.1103/PhysRevE.96.032604
https://doi.org/10.1103/PhysRevE.96.032604
https://doi.org/10.1103/PhysRevE.97.022608
https://doi.org/10.1103/PhysRevE.97.022608
https://doi.org/10.1088/1367-2630/aab1a3
https://doi.org/10.1088/1367-2630/aab1a3
https://doi.org/10.1073/pnas.1816733116
https://doi.org/10.1073/pnas.1816733116
https://doi.org/10.1088/1742-5468/2010/02/P02003
https://doi.org/10.1088/1742-5468/2010/02/P02003
https://doi.org/10.1103/PhysRevE.97.012707
https://doi.org/10.1039/C6SM01146B
https://doi.org/10.1039/C7SM01195D
https://doi.org/10.1039/C7SM01195D

