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We study a model with a durable good subject to periodic obsolescence and analytically 
characterize the optimal purchasing policy. The key result is that consumers optimally 
synchronize new purchases with the innovation cycle. The model simultaneously explains 
coordinated adoption without invoking network effects and provides a theoretical under-
pinning for a diffusion curve that features a temporary adoption slowdown.
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1. Introduction

The arrival of better products at the same price is the major reason for depreciation in markets with technological 
innovation. Since much of this innovation is incorporated in new durables, modeling obsolescence of durable goods is vital 
for our understanding of technology adoption. Our goal is to characterize the aggregate demand for durables in a dynamic 
model of consumer choice that captures the essential distinctions between obsolescence and physical depreciation.

Obsolescence of a durable occurs with mere passage of time, typically because superior substitutes become available 
at the same price. By contrast, physical depreciation depends on utilization intensity (or the good’s decay with physical 
age) specific to an individual unit. Thus, obsolescence and utilization are two distinct depreciation channels. Their aggregate 
effects are distinct, as well: while physical depreciation is idiosyncratic and its aggregate effects are likely smooth, obso-
lescence caused by innovation affects all durables within a market. Moreover, technological events that cause obsolescence 
may be predictable: major innovation episodes can be anticipated, especially when the introduction of new products is 
periodic. For some goods, such as automobiles, redesigned models do appear periodically, every 4 or 5 years. Even when 
obsolescence is not deterministic, obsolescence episodes are typically not independent events either. Innovation processes 
naturally have hazard rates that are negligible immediately after an innovation; after all, no one expects a new generation 
of products to appear immediately after the introduction of a new model. Therefore, we think that an innovation process 
with predictable, discrete jumps captures the main features of obsolescence that are distinct from physical depreciation.1

E-mail addresses: ennio@nyu.edu (E. Stacchetti), stolyar@umich.edu (D. Stolyarov).
1 In reality, obsolescence patterns have both discrete and continuous elements, but markets in which discrete obsolescence is likely to be important are 

commonplace. The literature typically associates periodic obsolescence with a monopolistic producer whose timing of product introduction is a strategic 
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Our analysis builds on the basic idea that consumer expectations about the timing of future innovations affect current 
purchasing behavior.2 Suppose that individual units are expected to depreciate abruptly at some future date. Consumers 
who purchase their durables just before this date will enjoy a lower service flow than those who buy soon after. Hence, 
consumers have an incentive to buy a durable only when the design is sufficiently new and is not about to change soon. 
Thus, demand for new durables should drop some time prior to the dates when the new models become available. These 
anticipatory drops in demand have been noted for DVD players (Dranove and Gandal, 2003) and large-screen TVs (Shapiro 
and Varian, 1999, p. 15). In automobiles, regular timing of model year changes induces strong seasonal fluctuations in auto 
sales (Cooper and Haltiwanger, 1993a, 1993b).

We study an economy with a durable and a non-durable good and a large number of heterogeneous consumers. The 
durable good in our model represents a fairly narrow consumption category; hence, the assumption that innovation is 
periodic seems appropriate. Then, the non-durable category encompasses all options of deriving utility from expenditure 
outside of the durable market. The main feature that makes our framework distinct from a standard (s, S) model of durable 
replacement is the periodic (rather than continuous) arrival of better models of the durable. The periodic nature of model 
changes introduces a mixture of discrete (e.g., whether to buy the current model or wait for the next one) and continuous 
(e.g., when to buy the current model) choice variables and makes the replacement problem difficult to analyze. Nevertheless, 
we develop a special solution methodology that does not rely on marginal conditions and are able to solve analytically for 
the optimal consumption paths of individuals.

Our basic model features periodic innovation dates that are perfectly anticipated. One key property of the optimal solu-
tion is the no-delay result (Theorem 2): all consumers who purchase a particular model of the durable find it optimal to 
do so simultaneously, at the time when this model is first introduced. The timing of purchases depends on the interest rate 
and the (endogenous) marginal utility of wealth. If a consumer is buying the current model of the durable, and the interest 
rate is zero, then she is clearly better off buying without delay and getting the highest possible service flow from the new 
model. However, as the interest rate increases, consumers may prefer to buy in the middle of the design cycle, despite 
the loss of service flow. We show that purchasing a durable in the middle of the design cycle is never optimal because 
any consumer can be made better off by either buying the current model without delay or by buying some future model 
without delay.

Two unique implications derive from the no-delay result. First, it gives rise to a new mechanism for demand coordination 
that is not dependent on network effects, externalities or strategic complementarities. Previous literature that sought to 
understand simultaneous technology adoption stresses a different coordination mechanism based on positive externalities, 
such as information spillovers (Bannerjee, 1992), learning by doing (Jovanovic and Lach, 1989) and consumption externalities 
(Farrell and Saloner, 1985). The policy implications of the two mechanisms are distinct: adoption timing in our model is 
efficient, whereas in a setting with externalities, it is inefficiently slow.3

Second, the coordination mechanism that we identify in the basic model allows a more detailed understanding of em-
pirical technology diffusion curves. The basic argument can be generalized to a setting in which model arrival dates are 
random, but the innovation hazard rate is negligible immediately after a new model introduction. When the hazard rate is 
initially negligible, consumers who purchase the durable early enjoy a longer time without obsolescence. Consumers then 
optimally separate themselves into two groups: early adopters, who act (almost) immediately, and late adopters, who choose 
to purchase the good with a long delay. Early adopters purchase the good at a higher price but are less exposed to the risk 
of obsolescence. By contrast, late adopters, who face a higher risk of obsolescence, find it optimal to wait until the price of 
the good falls. Since all consumers decide to act either early or late, no one purchases the good in the middle of its design 
cycle, and its diffusion curve reaches a temporary “plateau”.4

Recent empirical results on diffusion curves are generally consistent with diffusion slowdown after the initial burst in de-
mand. For example, Comin et al. (2006) outline the general characteristics of technology adoption patterns and conclude that 
“once the intensive margin is measured, technologies do not diffuse in a logistic way.” In particular, for many technologies, a 
slowdown in the rate of diffusion follows the initial burst of adoption activity (see also Comin and Hobijn, 2010, Figs. 2, 3). 

variable (e.g., Swan, 1972; Rust, 1986; Fishman and Rob, 2000). Our focus is on a different set of markets, where major innovations affect all the producers, 
but they are infrequent due to technological constraints rather than strategic reasons. These markets include several (overlapping) categories. (1) Markets in 
which new products have a different format or standard. Format switching is typical for data recording or storage devices, such as disk drives, camcorders 
and digital cameras. (2) Goods that depend on a “bottleneck” (lagging) technology. For example, power supply has been a constraining factor in adding new 
features to many portable electronic devices. (3) Markets in which technological constraints are imposed by periodically changing government regulation, 
such as cellular communications.

2 The idea of expectations-driven demand is similar in spirit to frameworks featuring deterministic output cycles: Shleifer (1986) and Francois and 
Lloyd-Ellis (2003) demonstrate how coordination of innovation dates across producers can arise from agents’ rational expectations about the timing of 
economic booms and give rise to aggregate deterministic output cycles.

3 As a specific example of a technology adoption subsidy, the Senate Commerce Committee approved a Digital TV bill that provided a $ 1.5 billion subsidy 
to consumers to facilitate the switch to HDTV (Source: US Senate Committee on Commerce, Science and Transportation Press release, Dec. 21, 2005). Our 
model suggests that some consumers were optimally waiting for the future generations of digital TV models, and the subsidy was not needed to incentivize 
them.

4 Balcer and Lippman (1984) analyze the technology adoption problem under uncertainty with time-varying innovation arrival rate. They find that 
expected arrival of a better technology limits the total number of adopters, but makes them act fast. While our work shares a similar basic idea, we solve 
a more general (and a more challenging) problem with a budget constraint and highlight the features of the diffusion curve that are due to an uneven rate 
of obsolescence.
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This is the opposite of the S-shaped, or logistic, diffusion pattern, where the adoption rate is highest in the middle of the 
diffusion process.

Predictable obsolescence patterns have dramatic effects on purchase timing: the no-delay property, for instance, restricts 
the relevant choices of durable purchase dates to be discrete. This gives rise to a non-standard consumption smoothing 
mechanism: some consumers prefer a fixed (discrete) replacement frequency, while others alternate between two discrete 
holding periods from time to time. For the latter group, optimality requires that the marginal utility of wealth (as well as the 
non-durable consumption) be independent of purchase timing choices or the wealth level. Interestingly, if such consumers 
receive an unexpected windfall, they will not change their non-durable consumption but will, instead, spend the entire 
amount of additional wealth on future durable purchases. The last result is reminiscent of what Leahy and Zeira (2005)
term “insulation effect”: the windfall is entirely absorbed by changes in durable purchase timing, and the non-durable 
consumption is, thus, insulated from the wealth shock. The insulation effect is not universal in our model, however. The 
other group of consumers, who optimally use a fixed holding frequency, will spend the entire windfall on non-durable 
consumption and not change their durable purchase timing.

Our work complements two strands of macroeconomic literature that study obsolescence and integrates their previously 
separate sets of assumptions about the innovation process. One such strand of the literature (see Boucekkine et al., 2011 for 
a comprehensive literature review) is macroeconomic models that derive from Solow’s (1960) vintage capital framework. The 
key assumption shared with our model is innovation embodied in durable goods. Another strand uses Schumpeterian models 
of creative destruction, particularly frameworks that follow the seminal quality ladder model (Grossman and Helpman, 
1991). The shared feature with our model is the sector-level production technology subject to repeated, abrupt obsolescence. 
There is no embodiment in the quality ladder framework, however: capital is general rather than technology-specific. The 
distinct implications in our model are due largely to the combination of the previously separate embodiment and creative 
destruction assumptions. Our analysis provides a detailed description of the consumer side of the economy in the presence 
of lumpy durable goods, and, as such, it is complementary to the macroeconomic models of obsolescence that focus on the 
production side.

The remainder of the paper is organized as follows. Section 2 describes the model. Section 3 separately solves the 
special case of the optimal consumption problem for durables and non-durables. Section 4 characterizes the general case 
solution. Section 5 discusses the aggregate implications of our main results in the context of innovation driven by general 
purpose technologies. In Section 6, we analyze the model with stochastic innovation and derive the diffusion curve. Section 7
concludes.

2. Model

We consider a dynamic economy with two goods, a durable and a non-durable good, and a continuum of agents that 
differ in their permanent income y ∈

[
y, ȳ

]
. Incomes are given exogenously and stay constant over time.

Goods, technology and preferences: The durable good is indivisible and is produced with a constant returns-to-scale tech-
nology that uses p0 units of the non-durable good for each unit of the durable good. New durables (new models) are 
introduced regularly into the market at times τ ∈ N = {0, 1, . . .}. Without loss of generality, we have normalized to 1 the 
length of a design cycle. We refer to the durable introduced at time τ as “model τ .” Obsolescence is the only form of 
depreciation in our model.5 Suppose that a model τ ≥ 0 provides a constant service flow zτ = egτ for the duration of its 
useful life in the interval [τ , τ + T ), where T is a positive integer. In other words, the durable becomes useless when it 
falls T or more models behind the state-of-the-art good. A useless durable provides service flow equal to 1. Notice that 
τ + T acts as an “expiration date” for any durable of model τ , regardless of whether it was produced at date τ or some 
later date t > τ .

The expiration date assumption has both technical and substantive content. Technically, our solution methodology re-
quires an upper bound on the holding time for the durable good, and the expiration date is a simple way to impose such a 
bound (see, in particular, Theorem 1). Substantively, the assumption derives from the Schumpeterian concept of innovation 
and states that recurring arrivals of superior models eventually cause creative destruction (here, every T generations of 
products). This assumption captures the fact that the useful life of many durables is limited not by the extent of physical 
wear and tear, but by eventual arrival of far superior models.6 For example, a sundial can stay physically functional indef-
initely, but it might fall into disuse when consumers gain access to a quartz watch. In this example, the arrival date of a 
quartz watch acts as the expiration date for the sundial.

Consumers: Consumers are infinitely-lived and have a (common) discount rate ρ and a (common) separable flow utility 
function f (τ , c) = ln zτ + u(c), where τ is the durable-good model and c is the consumption flow for the non-durable (note 
that a useless durable provides utility of zero). Durable goods are perfect substitutes, and each agent consumes, at most, 

5 Adding deterministic physical depreciation will not affect our results. See the discussion following Theorem 2.
6 In a richer model, using the durable might involve a rising fixed cost (e.g., labor cost of maintenance), and T would arise endogenously as the age 

when the fixed cost of maintaining the good exceeds its utility. For example, Johansen (1959) proposed a vintage capital model with fixed labor costs that 
features an endogenous range of active vintages.
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one unit (additional units provide no utility). We think of the non-durable good as money for the consumption of other 
goods, and of u as an indirect utility function. We assume that u′ > 0, u′′ < 0, u′(0) = ∞.

The consumers can borrow and lend, but there are no secondary markets for used durables (the latter assumption is 
relaxed in Section 4.2).

Prices: Since the production technology has constant returns to scale, the price ratio of the durable good to the non-durable 
good is equal to a constant p0 at all times. We will assume that the interest rate is fixed and equal to the discount rate: 
r(t) = ρ for all t ≥ 0. Therefore, we perform a partial-equilibrium analysis. We think of the market for durables as being 
a small part of the aggregate economy and, hence, ignore the effect of durable demand on the interest rate. Our choice 
of interest rate is consistent with stationary equilibria. In a general equilibrium model in which income (resource) flow 
and production technology are constant over time, a stationary equilibrium would imply a constant interest rate equal to 
the discount rate. If q(t) and p(t) denote, respectively, the prices of the non-durable and durable goods at time t , our 
assumption of a constant interest rate implies that q(t) = e−ρt and p(t) = p0q(t) for all t ≥ 0, where we have normalized so 
that q(0) = 1. Define the total discount rate for one period as β = e−ρ .
Equivalent utility function: The model features a time trend in durable quality, and it is convenient to formulate an 
equivalent problem in detrended variables. Let α = {0, . . . , T } denote the technological age of a durable good – i.e., the 
number of new models introduced since it was produced. Because all useless goods are the same, we make no distinction 
between durables whose technological age exceeds T , so all of them have α = T . At time t , the state-of-the-art model is �t�, 
where �t� is the largest integer less than or equal to t . Model �t� delivers flow utility g�t�, and a model of age α provides 
utility g (�t� − α). The utility differential between model age α and the state-of-the-art model depends only on α (and not 
on t) and equals −gα. Accordingly, we can define a normalized7 utility differential

xα = g(T − α) for α = 0, . . . , T , (1)

so that xα = x0 − gα. Proposition 1 below states that a consumer’s ranking of different consumption paths depends only on 
the utility of her durable compared to the state-of the-art model.

Proposition 1. Let α (t) and c (t) be two measurable functions representing the consumption trajectory of a consumer (where α(t) is 
the technological age of the durable being consumed at time t). Then, the discounted lifetime utility for this trajectory is

U (α, c) =
∞∫

0

e−ρt f (�t� − α(t), c(t))dt = K +
∞∫

0

e−ρt f̂ (α(t), c(t))dt,

where K is a constant and

f̂ (α(t), c(t)) = xα(t) + u(c(t)). (2)

Proof. See Appendix A. �
For the rest of the paper, we will use the equivalent utility function in (2) and refer to f̂ and xα simply as “utility.”8

It is easy to see that any delay in purchasing the current model reduces its discounted utility. Suppose that a new 
model τ is purchased at date τ + d, d periods after it first appears. Let R be the holding time for the durable, and let 
Xd,R+d denote the total discounted utility of a model held from age d until age R + d:

Xd,R+d =
min{T ,R+d}∫

d

e−ρ(t−d)xα(t)dt. (3)

The utility of the durable xα drops at pre-determined dates {τ + 1, τ + 2, . . . , τ + T } independent of d; hence any de-
lay reduces utility: Xd,R+d < X0,R , all d > 0. In other words, technological aging occurs with the mere passage of time, so 
the model purchased with a delay experiences some depreciation even before it is used. This property is specific to ob-
solescence: if depreciation were, instead, a result of physical wear alone, there would be no depreciation before use, and 
consumers could enjoy the full utility X0,R from any new model regardless of its purchase date.

Consumer problem: Given her initial state (α0, w), where α0 ∈ {1, . . . , T } is the age of her endowed durable and w is her 
total wealth, a consumer chooses a sequence of durable purchase dates and a non-durable consumption path to maximize 
her discounted lifetime utility, U (α, c), subject to a lifetime budget constraint. An agent’s current wealth, w , is equal to her 
initial assets plus the present discounted value of future earnings y/ρ .

7 It is convenient to choose a normalization where the useless good has xT = 0, which is why we add a constant gT to the utility differential in (1).
8 The main results in this paper do not depend on xα being linear in α. The analysis of the model is unchanged if the consumer’s utility function is of 

the form (2) and {xα} is any decreasing sequence with xT = 0.
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Since the agent’s utility is additively separable, the optimal consumption problem can be solved in two stages. First, 
choose how to divide the wealth into budgets w − b and b that will be used in nondurable and durable consumption. 
Second, given budgets w − b and b, select optimal consumption schedules for the non-durable and durable goods.

When r(t) ≡ ρ , the optimal non-durable consumption is constant over time. Indeed, the (necessary and sufficient) first-
order condition for non-durable consumption is, in this case, e−ρt u′(c(t)) = λe−ρt for all t , where λ > 0 is the Lagrange 
multiplier on the budget constraint. This implies that c(t) = c(0) for all t > 0.9

Let û(c) be the discounted non-durable consumption utility over one period (of length 1) in which a consumer spends 
optimally a budget c for the period. Budget c affords the constant instantaneous consumption flow κc, where κ = ρ/(1 −β). 
Accordingly,

û(c) =
1∫

0

e−ρt u (κc)dt = u(κc)/κ.

Given a total budget w −b for non-durables, the consumer optimally spends c = (w − b) (1 −β) per period on non-durables
and gets a total discounted utility of û(c)/(1 − β). Note that b = w − c/(1 − β).

Let Vα(b) denote the optimal durable consumption utility of a consumer that is endowed with a good of age α and 
spends a total budget b on durables. Then, the budget allocation problem of an agent with initial state (α, w) is

Uα(w) = max
b∈[0,w]

û((1 − β)(w − b))

1 − β
+ Vα(b). (4)

In Section 4, we explicitly construct the functions Vα , α ∈ {1, . . . , T } and obtain the full solution for problem (4).
Solution methodology: Given a budget b, solving for the optimal durable consumption path α (t) requires finding a 

sequence of dates {tk} when the durable is replaced. This is difficult because the utility of the durable, xα(t) , jumps discon-
tinuously every time the durable is replaced or a new model arrives. Thus, the optimal {tk} is not characterized by standard 
marginal conditions. To tackle this non-standard problem, we first restrict attention to a class of feasible durable purchasing 
rules (that we call no-delay policies) by which the consumer buys new durables only at dates tk ∈ N when new models 
appear. We are able to characterize the best no-delay policy analytically, as a solution to an integer programming problem 
(see Theorem 1). We then show that the best no-delay policy is also optimal for the problem where the consumer can make 
durable purchases at any time tk ∈ R+ (see Theorem 2). The next section illustrates the steps involved in constructing the 
best no-delay policy for the special case T = 1. Section 4 then goes on to describe our main results for the general case 
T > 1.

3. Special case T = 1

We start with an example that illustrates why the optimal policy might belong to the no-delay class. Next, we show how 
to construct the best no-delay policy (which, in the end, will coincide with the optimal policy) for T = 1, and we point out 
the features that the optimal policy has in common with the general case solution derived in Section 4.

Assume that β ∈ (1/2,1) and T = 1. Hence, a new model provides a constant utility x0 > 0 during its first period 
and, subsequently, a utility of 0. Consider a consumer that has a budget b for durable consumption and a good of age 
α0 = 1. If the consumer replaces the durable every period as soon as the new models arrive, including period 0, she spends 
p0/(1 − β) and gets a constant flow utility of x0 and a lifetime discounted utility of x0/ρ . If she skips model τ = 0, instead, 
and purchases every subsequent model, she spends βp0/(1 − β) and obtains a total utility of βx0/ρ . Now, compare two 
different ways of spending a budget b in the intermediate range b ∈ (βp0/(1 − β), p0/(1 − β)).

With a budget b, the consumer cannot replace the durable every period but can afford the following two durable pur-
chasing policies. Policy A is to make the initial purchase of the durable with a delay d ∈ (0,1) in period 0 and then to 
replace the good every period as soon as new models arrive. The delay is exactly such that policy A spends budget b:

b = p0e−ρd + βp0

1 − β
= p0

1 − β
− p0

(
1 − e−ρd

)
.

For d ∈ [0,1], policy A allows consumers to spend a subset of intermediate budgets b ∈
[

p0
1−β

− p0 (1 − β) ,
p0

1−β

]
. In contrast, 

policy B purchases a new model in period 0 without delay and then skips a (possibly infinite) sequence of future models 
{τk} such that

∞∑
k=1

βτk = 1 − e−ρd.

9 When ρ > r, the optimal c (t) is falling in t . In this case, a consumer optimally front-loads her consumption and finances it by borrowing against her 
future income early in life. Similarly, she will replace durables more frequently early on. The opposite would occur when ρ < r: consumers will choose to 
postpone consumption and accumulate savings to finance it.
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Fig. 1. Optimal value function V 1 (b) and optimal decision rules δ∗
1 (b) and c∗

1 (b), special case T = 1.

That is, the total budget savings from skipping future models amount to p0
(
1 − e−ρd

)
. Therefore, policy A and policy B 

spend exactly the same budget b. However, policy B has higher total utility:

v B = x0

ρ
−

∞∑
k=1

βτk X0,1 = x0

ρ
−
(

1 − e−ρd
)

X0,1

>
x0

ρ
− 1 − e−ρd

1 − β
X0,1 = v A .

The total utility of policy B is higher because any delay in purchasing the current model reduces its lifetime service flow 
without generating a corresponding savings in budget. Indeed, a consumer who buys model τ without delay spends p0β

τ

and obtains the present value of βτ x0
ρ (1 −β). Her utility per dollar spent on durables is, therefore, x0

p0

1−β
ρ , independent of τ . 

When the consumer buys the same model with a delay d, she spends e−ρd p0β
τ and obtains a present value of βτ x0

e−ρd−β
ρ . 

In this case, her utility per dollar is x0
p0

1−βeρd

ρ <
x0
p0

1−β
ρ . In the extreme case, in which the consumer buys model τ one 

instant before the next model is introduced (so d = 1), the utility per dollar is 0. The example suggests that policies with 
delays can be dominated by no-delay policies spending the same budget. We formalize and generalize this argument in 
Theorem 2.

Now, construct the best no-delay policy for any b. Let {τk} be a sequence of models purchased with no delays. The value 
and budget of any such no-delay policy can be represented as

v =
∞∑

k=1

βτk X0,1, b =
∞∑

k=1

βτk p0.

Combining the above expressions and noting that the maximum attainable durable utility is x0
ρ ,

v = V 1 (b) =
⎧⎨
⎩

X0,1
p0

b, b ∈
[

0,
p0

1−β

]
,

x0
ρ , b ≥ p0

1−β
.

(5)

The optimal decision rule δ∗
1 (b) ∈ {0,1} specifies whether to replace (δ = 1) the α = 1 good or keep it (δ = 0) for one more 

period. The decision rule δ∗
1 (b) can be obtained as a solution to the Bellman equation

V 1 (b) = max

{
X0,1 + βV 1

(
b − p0

β

)
, βV 1

(
b

β

)}
. (6)

Equation (6) describes a discrete choice: replace or keep a good α = 1. If the consumer replaces (δ = 1), she collects utility 
X0,1 in the current period and enters the next period with a good of age α = 1 and a durable budget 1

β
(b − p0). If the 

consumer keeps α = 1 good for another period, she gets zero utility in the current period and enters the next period with 
a durable budget b

β
. Fig. 1 (left panel) depicts the two functions in the right-hand side of the Bellman equation (6) and the 

corresponding optimal decision rule for the case β ≥ 1
2 . When b < p0, it is not feasible to replace the good, so δ = 0. When 

b ∈
[

p0,
βp0
1−β

]
, the consumer is indifferent between keeping and replacing: δ = {0,1}.10 This means that there is more than 

10 Assumption β ≥ 1/2 is essential for the value function V 1 (b) in (5) to solve (6). When β < 1/2, it is no longer possible to spend every budget 
b ∈ [0, p0/ (1 − β)] following a 1-flexible rule. Intuitively, when β is low, the wealth accumulation rate per period is high. Some consumers who start off 
with a 1-flexible rule eventually become wealthy enough to switch to a 1-fixed rule. The discussion after Theorem 1 provides more detail.
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one policy {τk} that can spend a budget b in the indifference range, but all such policies have the same value A1b. When 
b > βp0

1−β
, the optimal decision is to replace (δ = 1). Theorem 1 formally proves that the value function (5) solves (6) and 

generalizes the argument for T > 1.
To summarize, consumers who can afford to replace the good every period (b ≥ p0

1−β
) optimally do so. We say that 

they are following a 1-fixed rule. This terminology means that they maintain a fixed holding cycle of 1 period. By contrast, 
consumers with b < p0

1−β
follow what we call a 1-flexible rule. They hold each durable for at least one period and can 

skip one or more models between subsequent replacements. The durable replacement frequency is, therefore, irregular. To 
illustrate, suppose that the starting budget is 0 < b < p0, so it is optimal to skip the first model. Each period that the new 
model is skipped, the budget grows by a factor 1

β
. Eventually, the budget grows enough to exceed p0 and make it (weakly) 

optimal to purchase the first new model

τ1 = min
n

{
n :
(

b

β

)n

> p0

}
.

The new purchase reduces the budget to b−p0
β

next period, and the skipping phase starts again. Notice that each time the 
flexible-rule consumer revisits the state α = 1, the current b is different (as it depends on her past replacement history). 
Consequently, the intervals between replacements are irregular, and the demand for new goods by flexible-rule consumers 
follows a seemingly erratic, rather than periodic, pattern.

The optimal value function obtained in (6) makes it easy to solve the budget allocation problem (4) for the special case 
T = 1:

U1(w) = max
b∈[0,w]

û((1 − β)(w − b))

1 − β
+ V 1(b). (7)

Consumers following the 1-flexible rule choose a budget b ∈
(

0,
p0

1−β

)
, and, for them, problem (7) has an interior solution 

c∗
1 (w) obeying the first-order condition

û′ (c∗
1 (w)

)= X0,1

p0
.

Hence, every 1-flexible-rule consumer has the same non-durable consumption level

c∗
1 (w) = c1 = [

û′]−1
(

X0,1

p0

)
irrespective of their w . Consumers whose wealth is not enough to afford c1 choose a corner solution with b = 0. At the 
other end of the wealth interval, consumers who can afford a durable budget p0

1−β
and a non-durable consumption level of 

at least c1 choose the other corner solution, b = p0
1−β

. Summarizing, optimal non-durable consumption is a piecewise linear 
function

c∗
1 (w) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − β) w, w < c1
1−β

c1, w ∈
[

c1
1−β

,
c1+p0
1−β

]
(1 − β) (w − p0) , w >

c1+p0
1−β

.

depicted in Fig. 1 (right panel).
The analysis of the special case informs the solution methodology for the general case, as the no-delay replacement 

policies and the associated fixed and flexible rules also arise when T > 1.

4. General case

We solve problem (4) in the general case T > 1 using a guess-and-verify strategy. Based on the analysis in Section 3, we 
guess that the optimal durable purchasing policy belongs to a class of no-delay policies with τk ∈ N for any k. Theorem 1
derives the optimal value function within the restricted class of no-delay policies. Theorem 2 verifies that the unrestricted 
optimal policy, indeed, belongs to the no-delay class. In other words, it turns out that Theorem 1 fully characterizes the 
solution to the durable replacement problem.

No-delay optimal policy: We now construct the optimal value function Vα (b) for the general case T > 1. The main 
difference from the special case is that consumers can replace their goods before they reach age T . We will show that the 
optimal solution features T distinct fixed rules with holding periods R ∈ {1, . . . , T } and T distinct flexible rules by which 
consumers episodically switch between holding periods R and R + 1.

A no-delay durable purchasing policy is a sequence of decisions δ = {δt}t≥0, where δt = 1 if the consumer buys a new 
unit in period t and δt = 0 if she keeps the old unit. To make notation more compact, define i ⊕ j = min{i + j, T } and 
i � j = max{i − j, 0} for any i, j ∈ N. Given an initial durable of age α, a purchasing policy determines the age of the 
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Fig. 2. Optimal value function, general case.

durable consumed in every period t ≥ 0 recursively, as follows: αt = 0 if δt = 1 and αt = αt−1 ⊕ 1 if δt = 0, where we define 
α−1 ≡ α − 1 (and allow for α−1 = −1 if α = 0.)

The total discounted utility from the consumption of a durable of age α over one period is x̂α ≡ xα/κ . Hence, the 
optimization problem of an agent that initially has a good of age α and durable budget b is

Vα(b) = max
∞∑

t=0

βt x̂αt

s.t. δt ∈ {0,1} and αt =
{

0, δt = 1,

αt−1 ⊕ 1, δt = 0,
t ≥ 0

b = p0

∑
t≥0

βtδt .

After introducing some additional notation, we are able to solve the integer programming problem above using a direct 
geometric argument.

Definition. For each R = 1, . . . , T , a policy δ that replaces the durable every time it reaches age R is called an R-fixed rule. 
That is, δ is an R-fixed rule if for all t , δt = 1 if and only if αt−1 ≥ R −1. A (T +1)-fixed rule is to never replace the durable: 
δt = 0 for all t .

The total utility derived from an R-fixed rule depends on the initial age α of the durable that the consumer is endowed 
with. Let Xα,R denote the total discounted utility from holding a durable from age α until age R:

Xα,R =
{∑R−1

t=α βt−α x̂α α < R

0 α ≥ R.

For R ≤ T , the value of following the R-fixed rule starting with α = T equals v T ,R = X0,R/(1 − βR), and its corresponding 
budget is bT ,R = p0/(1 − βR). The value and budget of the (T + 1)-fixed rule are both zero.

Construct a piecewise linear function by joining the adjacent points (bT ,R+1, v T ,R+1) and (bT ,R , v T ,R) (1 ≤ R ≤ T ) with 
straight lines. Theorem 1 below states that this piecewise linear function is V T . Moreover, V T is concave (see the left frame 
of Fig. 2).

We first set α = T and, for an arbitrary purchasing policy δ, group purchases by their “replacement age.” That is, for 
each R = 1, . . . , T , let LR be the purchase dates of all durables that are replaced at age R . Compute the weight λR =
(1 − βR) 

∑
t∈LR

βt and let λT +1 = 1 −∑T
R=1 λR . Roughly, the weight λR corresponds to the fraction of purchased durables 

that are later replaced at age R . For example, if the policy is an R-fixed rule with R < T +1, then LR contains all the periods 
t where δt = 1, so that λR = 1 and λk = 0 for all k 
= R . Let (b, v) denote the budget and value of policy δ. It turns out that:[

b
v

]
=

T +1∑
R=1

λR

[
bT ,R

v T ,R

]
.

Since the weights λR are nonnegative and add up to 1, the right-hand side is a convex combination of the two-dimensional 
vectors {(v T ,R , bT ,R)}T +1

R=1. That is, the point (b, v) must be in the convex hull of {(v T ,R , bT ,R)}T +1
R=1, as depicted in Fig. 2. Note 

that the upper frontier of this set coincides with the graph of the posited optimal value function V T . Hence, v ≤ V T (b). As 
we argue next, the upper bound V T (b) is attained by a particular type of flexible rule.

Suppose that R is such that b ∈ [bT ,R+1, bT ,R ], and let δ∗ be a policy that replaces durables at age R or R + 1 only. Such 
a policy is called an R-flexible rule. Its corresponding weights satisfy λ∗ = 0 for all k /∈ {R, R + 1}. By appropriately choosing 
k
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the periods in which durables of age R or age R + 1 are replaced, we can also ensure that b = λ∗
RbT ,R + λ∗

R+1bT ,R+1 (as we 
explain later, this is always possible provided that β is sufficiently large). Then, the value of δ∗ is λ∗

R v T ,R + λ∗
R+1 v T ,R+1 =

V T (b). That is, δ∗ is optimal for the budget b.
For an arbitrary α now, let bα,R and vα,R denote the cost and the value of following the R-fixed rule when the endowed 

durable is of age α. Then,[
bα,R

vα,R

]
=
[

0

Xα,R

]
+ βR�α

1 − βR

[
p0

X0,R

]
for all R ≤ T ,

and (bα,T +1, vα,T +1) = (0, Xα,T ). It is also convenient to define bT +1,T +1 = p0 and b0,1 = βp0/(1 − β). Rules that replace 
goods more frequently require bigger budgets and have higher values. Hence, bα,R > bα,R+1 and vα,R > vα,R+1. Similar to 
V T , the graph of the optimal value function Vα is obtained by joining the adjacent points (bα,R+1, vα,R+1) and (bα,R , vα,R)

(1 ≤ R ≤ T ) with straight lines (see Theorem 1 below). Fig. 2 (right frame) simultaneously presents the optimal value 
functions V 1, V 2 and V 3 for the case when T = 3.

Definition. Let 1 ≤ R ≤ T − 1 and b ≥ 0. A policy δ is an (R, b)-flexible rule if it replaces durables only when they are 
of age R or age R + 1 and spends the budget b exactly. If δ is an (R, b)-flexible rule, then for all t , δt = 1 implies that 
αt−1 ∈ {R − 1, R}.

Since an (R, b)-flexible rule sometimes replaces goods at age R , and sometimes at age R + 1, it costs more than an 
(R + 1)-fixed rule but less than an R-fixed rule. Hence, when the endowed good is of age α, b must be in the interval 
[bα,R+1, bα,R ]. The R-fixed and the (R + 1)-fixed rules are both special cases of the (R, b)-flexible rule for b = bT ,R and 
b = bT ,R+1, respectively.

For 1 ≤ α, R ≤ T , let AR be the slope of Vα in the interval (bα,R+1, bα,R):

AR = vα,R − vα,R+1

bα,R − bα,R+1
= 1

p0

[
X0,R − x̂R

[
1 − βR

1 − β

]]
.

Note that AR is independent of α, and it is easy to check that AT > AT −1 > · · · > A1 > 0; therefore, Vα is indeed a concave 
function.

Theorem 1. Assume that

β ≥ β (T ) , (8)

where β = 1/2 for T = 1 and β is a (unique) positive root of βT + βT −1 = 1 for T > 1. For each α = 1, . . . , T , the optimal value 
function Vα is

Vα(b) = vα,R+1 + AR(b − bα,R+1), b ∈ [bα,R+1,bα,R ], R = T , . . . ,1, (9)

and for any budget b ≥ 0, the corresponding optimal purchasing policy is an (R, b)-flexible rule, where R is such that b ∈ [bα,R+1, bα,R ]
(when b = bα,R , this policy coincides with the R-fixed rule). More precisely, the optimal purchasing policy is given by

δ∗
α(b) =

⎧⎨
⎩

0 for b < bα+1,α+1

{0,1} for bα+1,α+1 ≤ b ≤ bα−1,α

1 for b > bα−1,α.

(10)

Proof. See Appendix A. �
Assumption (8) plays the same role as β ≥ 1

2 in Section 3. This assumption guarantees that it is feasible to spend any 
budget b ∈ [bα,R+1, bα,R ] by following an (R, b)-flexible rule, and this property is essential for (9) to represent the optimal 
value function. To understand why, consider an R-flexible consumer in state α = R when she is about to replace the durable. 
Focus, in particular, on the budget b in the indifference region for δ∗

R(b) in (10),

b ∈ [bR+1,R+1,bR−1,R
]=

[
p0

1 − βR+1
,

βp0

1 − βR

]
.

When the budget falls in the indifference region, the optimal decision rule δ∗
R (b) allows the consumer to either keep or 

replace the durable. If she keeps the good α = R now, she would replace it for sure at age R + 1 and will, therefore, 
revisit the state α = R in the next R + 1 periods with a durable budget b′ = 1

βR+1 (b − βp0). Similarly, if the consumer 

replaces the good now (at age R), she will revisit the state α = R in the next R periods with a budget b′′ = 1
βR (b − p0). 

Assumption (8) guarantees that for any b ∈ [bR,R+1,bR,R
]
, the subsequent budgets b′, b′′ will continue to fall into the same 
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R-flexible rule budget range 
[
bR,R+1,bR,R

]
. Hence, it is feasible to follow the R-flexible rule from any initial state (α,b), 

with b ∈ [bα,R+1, bα,R ].
Now, suppose that assumption (8) does not hold. Then, bR−1,R < bR+1,R+1, at least for R = T − 1 and maybe for some 

R < T − 1, as well. We take a budget b̃ ∈ [bR−1,R ,bR+1,R+1
]⊂ [

bR,R+1,bR,R
]

and calculate the future budgets b′ , b′′ at the 
next revisit point α = R . Simple algebra shows that

b′ = 1

βR+1

(
b̃ − βp0

)
> bR,R , b′′ = 1

βR

(
b̃ − p0

)
< bR,R+1.

We can see that the consumer with budget b̃ cannot follow the prescribed R-flexible rule in the future, because both δR = 0
and δR = 1 decisions take her outside of the R-flexible rule budget set the very next time she revisits the state α = R . In 
other words, when (8) is violated, there is no R-flexible rule that can spend a budget such as b̃, and the optimal value 
function is no longer given by (9).

Assumption (8) puts a lower bound on the discount rate for one period. For a fixed annual interest rate ρ , the discount 
rate β corresponds to a period length of l = 1

ρ ln 1
β

years and the useful lifetime of the durable of T · l years. Accordingly, 
a lower bound on β is equivalent to an upper bound L̄T = T

ρ ln 1
β(T )

on the useful lifetime. For ρ = 0.02, a typical value 

used in most of the literature on consumer intertemporal choice, L̄T is between 34.6 and 48.1 years, depending on T . In 
most high-innovation markets, where our model is plausibly applicable, durables become completely obsolete long before 
age 35. Hence, assumption (8) does not seem restrictive for empirically relevant parameter values.

We now establish the optimality of no-delay policies within the broader class of all feasible durable replacement rules. 
The general durable replacement policy is a sequence of pairs 

{
τ ′

k,dk
}

, where τ ′
k is the model number and dk ∈ [0, 1) is the 

“delay” of the k-th purchase, so the time of the k-th purchase is τ ′
k + dk . The following theorem states that it is optimal to 

set dk = 0 for all k.

Theorem 2. For each α = 1, . . . , T , the optimal value function Vα(b) is that given by (9) in Theorem 1. For any budget b ≥ 0, the 
corresponding optimal purchasing policy {(τ ′

k, dk)}k≥1 has dk = 0 for all k and is an (R, b)-flexible rule, where R is such that b ∈
[bα,R+1, bα,R ].

Proof. See Appendix A. �
We now present a sketch of the proof for Theorem 2. Suppose that an agent replaces her durable of age R with delay 

in the current period. Consider the costs and benefits from this delay, given that there are no delays in the future. If the 
consumer increases the delay of the replacement by dt , she forgoes service flow (x0 − xR)dt but increases her wealth by 
p0ρdt , the amount of interest saved by purchasing the good later. Theorem 1 implies that the marginal utility of wealth for 
someone who follows an R-flexible rule is less than or equal to AR . Simple algebra shows that

ρp0 AR ≤ x0 − xR , (11)

so the gain from delay is less than the corresponding loss of service.
The proof of the theorem generalizes this argument by showing that similar reasoning applies when more than one 

durable purchase is delayed. An arbitrary policy with delays can be modified recursively by eliminating one delay at a time 
while maintaining the same budget and improving its value.

Physical depreciation: The results of Theorems 1 and 2 generalize in a straightforward fashion if we allow deterministic 
physical depreciation within a period. Suppose that the service flow from the good of age α ≥ 1 equals xα · 	 (s), where 
s ∈ [0,1] is the time elapsed since the beginning of the current period, and 	 (·) is a decreasing function that describes 
physical depreciation during a period. The amount of physical depreciation depends on the time elapsed since the date 
of purchase. To capture this, assume that for α = 0, the service flow from the durable purchased at time d ≤ s equals 
x0 · 	 (s − d). Let 	 (0) = 1 and 	 (1) > maxα

(
xα+1

xα

)
to guarantee that the service flow from the durable is non-increasing. 

As before, define the average service flow per period,

x̂α = xα

1∫
0

e−ρs	(s)ds. (12)

By construction, x̂α is a non-increasing sequence, so Theorem 1 holds. To see if Theorem 2 holds, consider the costs and 
benefits of a single delay. The service flow forgone by delaying a durable purchase by dt now depends on d and equals 
[x0 · 	(0) − xR · 	(d)] dt . That is, since the current durable experiences physical depreciation, the forgone service flow rises 
with delay and is always greater than (x0 − xR)dt . Hence,

ρp0 AR ≤ x0 − xR < x0 − xR · 	(d) ,

and we can see that physical depreciation strengthens the incentive to replace durables without delay. Thus, Theorem 2
extends to the case with physical depreciation.
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Fig. 3. The first-order condition for optimal consumption (left) and the optimal decision rule c∗
α (w).

4.1. Optimal budget allocation

We now solve the budget allocation problem (4). Consider an agent with wealth w and a durable of age α. As we argued 
before, if the agent allocates a budget b for durable consumption, then she optimally spends c = (1 − β)(w − b) per period 
on non-durables. The agent should pick b so as to equate the marginal utilities of durable11 and non-durable consumption:

V ′
α(b) = û′((1 − β)(w − b)).

Fig. 3 depicts the marginal utility of durable consumption (the falling step-function because Vα is a concave piecewise 
linear function) and the marginal utility of consumption as functions of b (for given values of α and w).

In the left panel of Fig. 3, û′((1 − β)(w − b)) crosses V ′
α(b) at a point of discontinuity. In the figure, the optimal durable 

budget equals bα,R and the corresponding durable purchasing policy is the R-fixed rule. Now, decrease w by a small amount. 
The graph of û′((1 −β)(w −b)) will shift to the left, but it will still cross V ′

α at b = bα,R . In other words, there is an interval
of wealths w for which it is optimal to follow the R-fixed rule from the state (α, w). If we further decrease w , û′ will 
eventually cross V ′

α at a point where V ′
α is flat and equal to AR . In this case, it is optimal to choose a budget corresponding 

to an R-flexible rule and pick the non-durable budget cR , where û′(cR) = AR . Hence, there is also an interval of wealths w
for which it is optimal to follow the R-flexible rule and spend cR on non-durables every period. For that range of wealths, 
the optimal non-durable budget remains constant and variations in wealth affect the durable consumption path only (higher 
wealth affords replacing durables at age R more frequently, while lower wealth requires replacing durables at age R + 1
more often). In contrast, when a fixed rule is optimal, higher wealth leads to a higher level of non-durable consumption.

For a fixed α, if w varies continuously from infinity to zero, the intersection of û′((1 − β)(w − b)) with V ′
α(b) in Fig. 3

moves monotonically to the left and maps out the optimal decision rule (as a function of w). The wealthiest consumers 
use a 1-fixed rule. Next comes a group of consumers that follow a 1-flexible rule, and then a group that follows the 2-fixed 
rule, and so on. The intervals of wealth where agents follow fixed rules are interlaced with the intervals of wealth where 
they follow flexible rules. The bounds of these intervals can be computed explicitly. Let

wα,R(c) = c

1 − β
+ bα,R

be the wealth required to follow the R-fixed rule and spend a constant non-durable budget c per period when the initial 
durable is of age α. The wealthiest agent that follows the R-flexible rule replaces her durable every R periods and con-
sumes cR . Hence, her wealth is wα,R(cR). The poorest agent that follows the (R − 1)-flexible rule also replaces her durable 
every R periods but consumes cR−1 > cR , so that her wealth is wα,R (cR−1) > wα,R(cR). In between, there are consumers 
with wealth w ∈ [wα,R(cR), wα,R(cR−1)] that follow the R-fixed rule. Each one spends the same durable budget bα,R and 
the non-durable budget per period

cα,R(w) = (1 − β)(w − bα,R).

A consumer with more wealth than w1,1(c1) = (c1 + p0)/(1 − β) will replace her durable every period and spend more 
than c1 per period on non-durables. We will assume that ȳ/ρ ≥ w1,1(c1), and define w̄ = ȳ/ρ and c0 = (1 − β)w̄ − p0. 
Similarly, a consumer with less wealth than cT /(1 − β) will spend all her wealth on non-durable consumption. We will 
assume that y/ρ ≤ cT /(1 − β), and define w = y/ρ and cT +1 = (1 − β)w .

We can also express the optimal purchasing policy (10), stated in Theorem 1, as a function of w (and, with abuse of 
notation, denote this function by the same symbol δ∗

α ). The following theorem states these results formally.

11 The piecewise linear function Vα is not differentiable at the budgets bα,R , but since Vα is concave, it has a well defined interval of subgradients at 
bα,R , which, with abuse of notation, we still denote by V ′

α(bα,R ) ∈ [AR , AR−1].
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Theorem 3. Let c0 = (1 −β)w̄ − p0 , cT +1 = (1 −β)w, and for each R = 1, . . . , T , let cR be such that û′(cR) = AR . Denote by b∗
α(w)

the optimal solution of problem (4). Then, for α = 1, . . . , T , b∗
α(w) = w − c∗

α(w)/(1 − β), where

c∗
α(w) =

{
cα,R(w) for w ∈ [wα,R(cR), wα,R(cR−1)], R = T + 1, . . . ,1

cR for w ∈ [wα,R+1(cR), wα,R(cR)], R = T , . . . ,1,

and

δ∗
α(w) =

⎧⎨
⎩

0 for w < wα+1,α+1(cα)

{0,1} for wα+1,α+1(cα) ≤ w ≤ wα−1,α(cα)

1 for w > wα−1,α(cα).

(13)

Proof. See Appendix A.

Over time, a consumer that follows an R-fixed rule has a constant holding time R and revisits the same points in the 
state space (α, w) every R periods. Her wealth trajectory is cyclical. While the consumer keeps the current good, both α
and w increase, as the consumer “saves” for the next purchase. When the consumer buys a new durable, both α and w go 
down, and the holding cycle starts again.

The time path for wealth of a consumer that follows an R-flexible rule is more erratic. Usually, her wealth trajectory is 
not cyclical: each time the durable is of age R , she has a different wealth level (recall the discussion in Section 3). Thus, the 
agent will switch replacement frequencies in a seemingly erratic pattern, as each time that she revisits the state α = R , her 
wealth level w falls into a different place on the interval [w R+1,R (cR), w R,R(cR)].

4.2. Secondary markets

Many durable goods have active resale markets, and it is informative to investigate how opening the used-goods market 
affects our main results. We start with the simplest case T = 1. The used market might potentially play a role in allocating 
used goods with lower service flows to less-affluent consumers. Accordingly, for the purposes of this section, we assume 
that the durable experiences physical depreciation, as in (12). The durable of age s ∈ [0,1] provides instantaneous utility 
x0	 (s). Depending on the range of 	 (s), there may be a continuum of used goods with distinct instantaneous utilities in 
the range [0, x0]. We assume that there are no trading frictions, allowing consumers to realize any positive gains from trade 
in the used market.

Before stating results formally, we develop some relevant intuitions. When T = 1, there are just two classes of consumers: 
the 1-fixed rule class and the 1-flexible rule class. Think in terms of an efficient allocation of used goods across consumers. 
It is not efficient to allocate used goods to 1-fixed rule consumers because they want to further increase their durable 
consumption, but are constrained by the maximum attainable durable utility x0

ρ . This leaves the 1-flexible rule consumers 
as the only potential used-good buyers. Trades within the flexible rule class are a wash because all members of this group 
have identical marginal utilities of wealth, û (c1) = A1, despite having different w . Alternatively, the 1-flexible class could 
be induced to buy used goods from the 1-fixed class at sufficiently low prices. However, any price acceptable to the buyers 
will be too low to be acceptable to the sellers. Hence, there are no gains from trade, and the used market is redundant. 
Formally, we have

Proposition 2. Let T = 1, and let the service flow from the durable of age s ∈ [0,1] be given by x0	 (s). Then, the gains from trade in 
the used market are, at most, zero.

Proof. See Appendix A.

Proposition 2 shows that the used market is redundant for T = 1, even if assumed physical depreciation generates a 
continuum of distinct used goods. In the special case, there is no resale because the 1-fixed rule consumers cannot be 
induced to sell their durables until age 1, and everyone else has zero gains from trade.

The main argument in Proposition 2 generalizes to the case when T > 1. It is inefficient for 1-fixed rule consumers to 
sell used goods until they reach age 1 because doing so will reduce their utility from the durables and make it necessary 
to spend even more on non-durables that have low marginal utility û′ (c) ≤ A1 to begin with. Hence, successive cohorts of 
1-period-old goods will come on the market at dates τ ∈ N. Accordingly, the potential buyers of these 1-period-old used 
goods have an incentive to time their own resale decisions with dates τ and offer their old units for sale at the same 
time. By induction, we expect that this mechanism will generate supply spikes for multiple older vintages of used goods 
precisely at dates τ when 1-fixed rule consumers choose to trade. Beyond this, an analytical characterization of the used 
market equilibrium for T > 1 becomes difficult because of the combinatorics associated with a large number of distinct 
replacement rules that can potentially be part of equilibrium. Nevertheless, the above argument demonstrates why the 
demand for new goods may remain periodic even when the used markets have active trade.
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5. Aggregate implications

The suitability of our model for analyzing aggregate phenomena outside of a narrow sector depends on the assumptions 
that we are willing to make on the innovation process underlying the introduction of better products. If there are numerous 
durable-good categories and innovations are uncorrelated across categories, sectoral demand fluctuations will wash out in 
the aggregate. The above description of innovation is plausible and analytically convenient, but it is not complete: historians 
studying creative destruction point out that drastic innovations are important drivers of progress, and that some of these 
innovations are radical enough to make an aggregate impact (e.g., Mokyr, 1990a, 1990b). Accordingly, another prominent 
branch of the creative destruction literature (see, in particular, Helpman and Trajtenberg, 1998; Laitner and Stolyarov, 2004; 
and Jovanovic and Rousseau, 2005) stresses the importance of general purpose technologies (GPT) that are so pervasive as to 
affect the entire economy. Generally, any technology with wide applicability could induce nearly simultaneous innovations 
across multiple sectors and make a model like ours potentially useful for studying demand at higher levels of aggregation.12

Battery technology is one recent example. Power supply has been a constraint in adding features to portable devices across 
multiple categories; it also has been a major factor affecting development of new propulsion technologies in transportation. 
Hence, a substantial improvement in battery energy density might simultaneously bring about feature-rich smart phones, 
lightweight power tools and long-range electric cars.

5.1. Consumption response to a change in wealth

Durable and non-durable consumption show different responses to changes in wealth. Fixed-rule consumers have a fixed 
durable budget and a positive marginal propensity to consume non-durables (see Fig. 3). Therefore, if any such consumer 
receives windfall income, she will spend it all on non-durable consumption. By contrast, flexible-rule consumers have a 
zero marginal propensity to consume non-durables and a variable durable budget.13 They will save all of their windfall to 
make future durable purchases and will not change their non-durable consumption. Leahy and Zeira (2005) call this the 
“insulation effect”: the windfall is entirely absorbed by changes in durable purchase timing, and non-durable consumption 
is, thus, insulated from the wealth shock.

The insulation effect highlights durable purchase timing as a potentially important propagation channel for income and 
wealth shocks. Interestingly, comparisons between our model and that of Leahy and Zeira (2005) reveal that the underlying 
mechanisms for consumption insulation are very different. In both models, the insulation effect arises because the agent’s 
marginal utility of wealth is independent of purchase timing14 (for R-flexible-rule consumers it is constant and equal to 
AR , for example). In our model, the insulation effect is a consequence of restricted choices of purchase timing: flexible rules 
arise precisely because it is optimal to adjust holding periods for the durable only in discrete increments. In Leahy and 
Zeira, by contrast, the insulation effect obtains mostly due to unrestricted choice of purchase dates, but restricted choice of 
the holding period for the durable.

5.2. Volatility of durable consumption

It is well known that aggregate durable consumption is more volatile than aggregate non-durable consumption. Our 
analysis explains why the demand for durables may exhibit strong fluctuations even in the absence of income or wealth 
shocks. In the deterministic version of the model, the time series volatility of durable and non-durable expenditure are 
at opposite extremes. That is, the standard deviation of the growth rate of durable expenditure is large because durable 
purchases exhibit spikes at discrete dates. Since non-durable consumption is constant, the standard deviation of its growth 
rate is zero.

In reality, consumers may experience idiosyncratic shocks to their permanent income or to the service flow from their 
current durable. Consumers subject to idiosyncratic shocks cannot perfectly plan ahead all their durable purchases, and 
they will make some purchases in the middle of the cycle. We expect that large idiosyncratic shocks will moderate the 
volatility of durable expenditure, while making the volatility of non-durable consumption positive. The distinct implication 
of our model is that higher income variance (e.g., Haider, 2001) can have opposite effects on the volatility of durables and 
non-durables: it can lower the volatility of durable demand, while increasing the variance of non-durable consumption.

12 When technological change is assumed to have an aggregate impact, periodic innovations can induce movements in the equilibrium interest rate. 
Some features of the optimal policy will be affected – for instance, non-durable consumption will become time-varying; however, we conjecture that the 
non-standard features of consumer behavior emphasized in the rest of this section will still be present in general equilibrium. This is because certain 
classes of consumers (e.g., the upper tail of the wealth distribution) will replace durables without delay and will follow fixed rules even when the interest 
rate is not constant. The full general equilibrium characterization is outside of the scope of this paper; nevertheless, some results from partial equilibrium 
analysis can be relevant in general equilibrium, as well.
13 The obsolescence process that controls xα determines the boundaries of wealth intervals corresponding to the various fixed-rule and flexible-rule 

groups and, thus, selects where and when the consumers spend their windfall, and the size of the wealth shock determines how much they spend.
14 The additively separable utility function and the interest rate at the steady-state level are necessary conditions for this property in both models.
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6. Random period length

In this section, we solve the durable replacement problem with random arrival times, focusing on the “diffusion curve” 
(the number of users of the new model as a function of time since its introduction). In our basic framework with certainty, 
the consumers can perfectly predict when new models will arrive at the market. The diffusion of every new model of 
the durable is, therefore, instantaneous (L-shaped): all consumers who purchase model τ do so simultaneously at time τ . 
By contrast, in a model with Poisson arrivals, the hazard rate of model introduction stays constant, and the expected 
service flow of a new durable is independent of the time of purchase. Therefore, consumers have no incentive to time their 
purchases near the model introduction dates. The diffusion of the new model will happen with inertia, with the shape of 
the diffusion curve determined by the distribution of wealth.

We adopt a framework that combines these two extreme cases. We assume that the development times of new models 
are i. i. d. random variables distributed on [S, ∞), where S ≥ 0 is the minimum gestation period. If τ is the time it takes to 
develop and introduce a new model into the market, then τ − S has an exponential distribution with parameter λ. Thus, 
the average arrival time is S + 1/λ. Note that our deterministic model is the limit case when S = 1 and λ → ∞, and that 
the pure Poisson arrival model corresponds to the case when S = 0 and λ > 0. Our goal is to demonstrate that the diffusion 
curve features an adoption plateau: there is a group of early adopters who purchase the new model right away, followed by 
no purchases at all for a while (plateau), followed by gradual purchases by late adopters.

For tractability, we assume that there is only one good, the durable, and that each agent has a lifetime budget b to spend 
on durables.15 This model focuses exclusively on the intertemporal trade-off of purchasing the durable at different points in 
time, and it excludes the possibility of an ongoing substitution between the durable and other goods. Since we are primarily 
interested in the timing of durable purchases, this simplified specification seems appropriate.

In many durable-goods markets, the quality-adjusted price for the durable falls over time because of manufacturing 
efficiency improvements. Thus, we now also let the price of the durable fall exponentially over time: pt = p0e−γ t . With 
falling prices, it may become attractive to buy a durable with delay: though its expected service flow decreases, the durable 
also becomes cheaper.

The state variables for the consumer are α – the technological age of the endowed durable; b̄t = bt/pt – the “purchasing 
power” of the consumer; and s - the time since the last arrival of a new model (i.e., the age of the current model). The law 
of motion for the purchasing power is

b̄t+	t =
(

b̄t − δt

)
e(r+γ )	t,

where, as before, δt = 1 if a new durable is purchased at date t and δt = 0 otherwise.

Let Vα

(
b̄, s
)

be a consumer’s total discounted value of holding a purchasing power b̄ and a durable of technological age 
α at the moment when a time s has elapsed since the last arrival of a new model. We restrict attention to the case T = 1, 
so α ∈ {0,1}. This captures the main insights from the extended model without making the proofs excessively complicated.

When the new model reaches age S , innovations start arriving at a constant Poisson rate λ, and s becomes uninformative 
about the time of the next arrival. Therefore, the value function ceases to depend on s:

Vα

(
b̄, s
)

= Vα

(
b̄, S

)
, s ≥ S.

V 0

(
b̄, S

)
is the value of the service flow x0 until the next Poisson event and the continuation value of an old model 

afterwards:

V 0

(
b̄, S

)
=

∞∫
0

λe−λt

⎡
⎣ t∫

0

e−ρτ x0dτ + e−ρt V 1

(
b̄e(r+γ )t,0

)⎤⎦dt

= x0

λ + ρ
+

∞∫
0

λe−(λ+ρ)t V 1

(
b̄e(r+γ )t,0

)
dt. (14)

For s < S ,

V 0

(
b̄, s
)

=
S−s∫
0

x0e−ρτ dτ + e−ρ(S−s)V 0

(
b̄e(r+γ )(S−s), S

)
.

15 Because we assumed that durable budgets are exogenously determined, there is not an exact correspondence between the durable purchasing policy and 
the solution to an optimal consumption problem with two goods. In a dynamic optimization problem with two goods, the agents will optimally reallocate 
their budgets between durables and non-durables when new information becomes available. For example, if the design cycle has been unexpectedly long, 
an agent may want to start using part of his durable budget to increase her non-durable consumption.
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Replacement decision: Every time a new model arrives, all existing durables depreciate. An agent with purchasing power 
b̄ chooses the delay d 

(
b̄
)

in purchasing the new model. It is convenient to distinguish between two cases – d < S and 

d > S – and to separate the optimization problems over these intervals. Call the corresponding value functions V L
1

(
b̄
)

and 

V R
1

(
b̄
)

. Both of these value functions are measured at the point where s = 0. Then,

V 1

(
b̄,0

)
= max

{
V L

1

(
b̄
)

, V R
1

(
b̄
)}

,

where

V L
1

(
b̄
)

= max
0≤d≤S

(
x1(1 − e−ρd)

ρ
+ e−ρd V 0

(
b̄e(r+γ )d − 1,d

))
(15)

and

V R
1

(
b̄
)

= max
d≥S

S∫
0

x1e−ρτ dτ + e−ρ S

d−S∫
0

λe−λt

⎡
⎣ t∫

0

x1e−ρτ dτ + e−ρt V 1

(
b̄e(r+γ )(t+S),0

)⎤⎦dt

+ e−λ(d−S)

⎛
⎝ d∫

S

x1e−ρτ dτ + e−ρd V 0

(
b̄e(r+γ )d − 1, S

)⎞⎠ . (16)

The first term in (16) is the value of holding the depreciated good until the new model reaches age S; the second term 
is the expected value of holding the depreciated good between S and d; and the third term is the expected value of the 
replacement at d. (Note that when a new good is bought at the time when s > S , the corresponding continuation value of 
a new durable is as if it were of age S .) The following proposition characterizes the optimal delay.

Proposition 3. Let ρ = r + γ and let S > 0. Then, there is an interval 
[
S, S̄

]
with 0 ≤ S < S < S̄ such that no durable purchases are 

made in the interval 
[

S, S̄
]

after new model arrivals. That is,

d
(

b̄
)

≤ S or d
(

b̄
)

≥ S̄ for all b̄ ≥ 0.

Moreover, all consumers who can afford the new model either purchase it right away (when s = 0) or after date S:

d
(

b̄
)

= 0 or d
(

b̄
)

≥ S̄ for all b̄ ≥ 1.

Furthermore, if S = 0, then S = S̄ = 0.

Proof. See Appendix A. �
Proposition 3 illustrates how predictability of innovations affects the adoption timing. When S = 0 and the hazard rate 

of innovation is constant (i.e. arrival is unpredictable), demand for the durable stays positive from the time of innovation 
until the time when all consumers have purchased the current model. By contrast, when S > 0, demand for the durable falls 
to zero as the date of possible new arrivals (that is, date S) draws sufficiently close and stays at zero for some time after 
date S .16 In other words, early adopters act before time S; no one adopts between S and S̄; and late adopters postpone 
action until after time S̄ . Thus, the no-purchase interval represents the flat part of the diffusion curve where the number of 
adopters stays constant over time. Fig. 4 illustrates a typical diffusion curve that arises in this case.

We investigate numerically whether the adoption plateaus are quantitatively important, especially when the price of the 
durable is falling. For the simulations, we choose parameter values that we think are representative of markets for high-tech 
products. If x0 and x1 are the service flows of the durables in a detrended model, then the corresponding absolute service 
flows are zτ = exτ , τ = 0, 1. Hence, z0/z1 = e(x0−x1) is the relative advantage of a new model. We set x0 = 0.4 and x1 = 0, 
which corresponds to a new model providing 50 percent more service than old models. We perform simulations for two 
average design cycle lengths: L = S + 1/λ = {3,5} years. We set parameters ρ = r = 0.04 and experiment with different 
values of γ , S and λ.

Fig. 5 shows our results. In each panel, purchase delay is on the vertical axis and λ is on the horizontal axis. The average 
introduction time L is three years for the left panels and five years for the right panels, while γ = 0.05 for the top panels 

16 The latter result mirrors our Theorem 2, where we showed that new models are always purchased without delay for r = ρ and γ = 0. By continuity, 
Proposition 3 should also hold when r = ρ and γ > 0 is sufficiently small.
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Fig. 4. A diffusion curve with an adoption plateau.

Fig. 5. No-purchase intervals for various values of γ , λ and S .

and γ = 0.12 for the bottom panels. Since, in each panel, the average introduction time is kept constant, as λ varies, S needs 
to be adjusted accordingly. Let S(λ) = L − 1/λ. This function is plotted as a thin solid line in each panel. The thick lines 
show the ends of the no-purchase interval, S (λ) and S̄ (λ). In all cases, S(λ) ≤ S(λ) ≤ S̄(λ). All three lines cross at S = 0, 
which corresponds to the case of pure Poisson arrival times.
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Note that when γ = 0.05, S = 0. When the average introduction time is L = 3 (top-left panel), note, also, that S̄ > L
for λ ≥ 0.4. For those parameters, the time between new arrivals will often be shorter than S̄ . That is, the consumers who 
wanted to delay the purchase beyond S̄ are frequently ‘surprised’ by a new arrival before the time when they were prepared 
to buy a new model. Obviously, when this happens, the consumers begin the new cycle with higher purchasing power; and 
those with a high enough b̄ will buy the new model right away. That is, for some consumers, the surprise provokes an 
earlier purchase than what was ‘scheduled.’ This means that for a given realization of model arrival times, the majority of 
the purchases will be perfectly synchronized with the arrival dates, as in the deterministic setting. When γ = 0.12, S > 0

for sufficiently high λ. In this case, the initial purchase spike, produced by those consumers with d 
(

b̄
)

= 0, is followed by 
a period of positive demand (until S). Afterwards, demand drops to zero, and purchases resume only if the innovation cycle 
turns out to be sufficiently long.

7. Conclusion

We develop a model of durable goods that highlights the difference between obsolescence and physical wear and tear. 
The basic model is simple and can be solved analytically. We identify predictable obsolescence as a distinct source of 
demand fluctuations and explain how it affects technology adoption decisions. The key implications of the basic model 
carry over to the case with stochastic obsolescence and falling relative price of the durable. The stochastic model produces 
a diffusion curve with an adoption plateau, which is in contrast to the standard, S-shaped, logistical diffusion curve.

The model explains simultaneous adoption of new durables without relying on network effects or externalities. This 
result provides a new perspective on policies that are designed to encourage mass technology adoption (e.g., a subsidy for 
digital TV). What is more, our analysis explains why durable and non-durable consumption might respond to wealth and 
income shocks in non-standard ways. Specifically, in our model, larger income shocks reduce the volatility of durable demand 
but increase the volatility of non-durable demand. Also, the possibility of shifting durable purchase timing in response to 
changes in wealth leads to an insulation effect for non-durable consumption. The above results may inform empirical studies 
of demand in markets in which obsolescence cycles are important.
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Appendix A. Proofs

Proof of Proposition 1. If a consumer uses model τ − α when the state-of-the-art model is τ , her utility from durable 
consumption equals

g (τ − α) = xα + g(τ − T ).

Note that along the trajectory (α (t) , c (t)), the model being consumed at time t is τ (t) = �t� − α(t), where �t� denotes the 
integer part of t . Thus, the total discounted utility for the trajectory (α (t) , c (t)) is

U (α, c) =
∞∫

0

e−ρt[ln(zτ (t)) + u(c(t))]dt =
∞∫

0

e−ρt[g(�t� − T + T − α(t)) + u(c(t))]dt

= K +
∞∫

0

e−ρt[xα(t) + u(c(t))]dt,

where

K =
∞∫

0

e−ρt g(�t� − T )dt = g

ρ

[
β

1 − β
− T

]
.

Arbitrarily, we can re-normalize utility to set K = 0 without changing the consumer’s preferences over consumption 
paths. �
Proof of Theorem 1. Suppose that the agent is endowed with a durable of age α and follows an arbitrary purchasing policy 
τ = {τk}∞ . We first show that the total cost and value (b, v) of policy τ can be represented as a convex combination of 
k=1
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the points {(bT ,R , v T ,R)}T +1
R=1. Let τ0 = −α and for all k ≥ 0, let rk = min {τk+1 − τk, T } be the “holding time” for the durable 

purchased at time τk . Then,

b = p0

∑
k≥1

βτk and v = Xα,r0 +
∑
k≥1

βτk X0,rk .

Define K R = {k ≥ 1 | rk = R} for R = 1, . . . , T to be the set of purchases where the purchased durable is subsequently held 
for R periods. Then,

βτ1 = [βτ1 − βτ2 ] + [βτ2 − βτ3 ] + · · · ≥
T∑

R=1

∑
k∈K R

βτk (1 − βR),

where the inequality is strict if for some k ∈ KT , τk+1 − τk > T . Let λR =∑
K R

βτk (1 − βR) for R = 1, . . . , T , and let λT +1 =
1 −∑T

R=1 λR . Thus, λR ≥ 0 for all R , 
∑T +1

R=1 λR = 1, and, since bT ,T +1 = v T ,T +1 = 0,

b = p0

T∑
R=1

∑
k∈K R

βτk =
T∑

R=1

∑
k∈K R

βτk (1 − βR)bT ,R =
T +1∑
R=1

λRbT ,R

v − Xα,r0 =
T∑

R=1

X0,R

∑
k∈K R

βτk =
T∑

R=1

X0,R

1 − βR

∑
k∈K R

βτk (1 − βR) =
T +1∑
R=1

λR v T ,R .

Put differently,[
b

v − Xα,r0

]
=
∑

R

λR

[
bT ,R

v T ,R

]

is a convex combination of the two-dimensional vectors (bT ,R , v T ,R). Note that when α = T , Xα,r0 = 0 for all r0.17

We next deduce an optimal policy for the case where α = T (i.e., when the agent is endowed with a useless durable). If 
b ≥ bT ,1, the agent can afford to replace the durable every period and V T (b) = v T ,1 (moreover, if b > bT ,1, it is not possible 
for the agent to spend the budget b in durables). For what follows, assume that b < bT ,1. Let R and λ∗

R ∈ [0, 1] be such that 
b = λ∗

RbR + (1 − λ∗
R)bR+1. Since (b, V T (b)) =∑

λR(bT ,R , v T ,R) for some nonnegative weights λR adding to 1, we have that 
V T (b) ≤ λ∗

R v T ,R + (1 −λ∗
R)v T ,R+1. To conclude, we need to only show that this bound is attained. For this, we need to show 

that there exists a policy τ such that 
∑

k∈K R
βτk (1 −βR) = λ∗

R and 
∑

k∈K R+1
βτk (1 −βR+1) = 1 −λ∗

R . Put differently, we need 
to show that there exists an R-flexible rule with budget b.

Assume that R < T , and let B∗
R denote the set of budgets b(τ ) corresponding to policies τ that are R-flexible rules and 

satisfy τ1 = 0 (that is, τ makes a purchase in the first period). Let τ be such a policy and τ ′ be its continuation policy from 
the period of the second purchase onward: τ ′

t = τt+1 − τ1 for all t ≥ 1. Then, τ ′ is also an R-flexible rule, with τ ′
1 = 0 and 

its corresponding budget b(τ ′) ∈ B∗
R . Now, either b(τ ) = p0 + βRb(τ ′) (if τ2 = R) or b(τ ) = p0 + βR+1b(τ ′) (if τ2 = R + 1). 

Therefore, B∗
R is the largest set B such that

B = [p0 + βR B] ∪ [p0 + βR+1 B]. (17)

Observe that p0 + βR+1bT ,R+1 = bT ,R+1 and p0 + βRbT ,R = bT ,R , and that p0 + βRbT ,R+1 < p0 + βR+1bT ,R when βT −1(1 +
β) > 1. Therefore, B = [bT ,R+1, bT ,R ] is a fixed point of (17). Since p0 + βRb̃ < b̃ for all b̃ > bT ,R and p0 + βR+1b̃ > b̃ for all 
b̃ < bT ,R+1, B is also the largest such fixed point, and, thus, B∗

R = B . That is, for each budget b ∈ B∗
R = [bT ,R+1, bT ,R ], there 

exists an (R, b)-flexible rule (that spends the budget b exactly). The proof for R = T is similar (here, bT ,T +1 = 0, and we 
must consider policies τ where τk+1 − τk > T + 1 for some k).

Finally, observe that if (T , b) is the initial state, and τ and τ̂ are two (R, b)-flexible rules (they spend the same budget b), 
then their corresponding λR (and 1 −λR ) must coincide, and, therefore, they must have the same value, as well. In particular, 
if b ∈ [bT ,R+1, bT ,R ], then any R-flexible rule that spends the budget b exactly is an optimal policy.

By construction, the value of following an (R, b)-flexible rule starting from a durable of age T is given by

V T (b) = v T ,R+1 + AR
(
b − bT ,R+1

)
, b ∈ [bT ,R+1,bT ,R

]
, R = T , . . . ,1.

When the endowed durable is of age α < T , the corresponding optimal value function Vα (b) can be deduced from 
V T (b) from the observation that the continuation of an optimal policy is an optimal policy for the subproblem that arises 
in the second period after following the policy in the first period.

17 For each R = 1, . . . , R , we could define, instead, LR = {τk | k ∈ N and rk = R}, as we did in Section 3. Then, λR = ∑
t∈LR

βt . While K R contains the 
purchase numbers, LR contains the purchase dates (equivalently, model numbers) for the durables that are replaced at age R . However, for other purposes, 
the set K R is more convenient.
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If – starting with a budget b ∈ [p0, bT ,1] = [bT +1,T +1, bT ,1] – a consumer buys a durable in the first period and then 
keeps it for the next α − 1 periods, her budget at the beginning of period α ≥ 1 is θα(b) = (b − p0)/β

α . Moreover, for any 
1 ≤ R ≤ T + 1 and 1 ≤ α ≤ min {R, T }, θα(bT ,R) = bα,R .

Assume that the initial state is (α, b), where 1 ≤ α < T and b ∈ [bα,R+1, bα,R ] for some α ≤ R ≤ T . Let b̃ = p0 + βαb. 
Then, b = θα(b̃). Since b ∈ [bα,R+1, bα,R ], it must be that b̃ ∈ [bT ,R+1, bT ,R ]. Therefore, starting at state (T , ̃b), it is optimal 
to follow an R-flexible rule. Assume that the consumer does so. Then, after α periods, her state becomes (α, b), and from 
state (α, b) she must be following an R-flexible rule, as well. Hence, the agent must keep the durable for another R − α
periods (at least). At that point, she arrives at state (R, b/βR−α). Note that (1/βR−α)[bα,R+1, bα,R ] = [bR,R+1, bR,R ] and that 
βR−αbR+1,R+1 = bα+1,R+1 ∈ (bα,R+1, bα,R). Hence, if b/βR−α ∈ [bR,R+1, bR+1,R+1), she must keep the durable this period 
and buy a new durable next period, so her continuation value is x̂R + V T (b/βR+1−α). If b/βR−α ∈ [bR+1,R+1, bR,R ], she can 
optimally buy a new durable this period, and her continuation value is V T (b/βR−α). Therefore,

Vα(b) =
{

Xα,R+1 + βR+1−α V T (b/βR+1−α) for b ∈ [bα,R+1,bα+1,R+1)

Xα,R + βR−α V T (b/βR−α) for b ∈ [bα+1,R+1,bα,R ].
Suppose that b ∈ [bα,R+1, bα+1,R+1). Then b/βR+1−α ∈ [bR+1,R+1, bR+1,R+1/β) ⊂ [bT ,R+1, bT ,R ]. Therefore, V T (b/βR+1−α) =
v T ,R+1 + AR(b/βR+1−α − bT ,R+1), and

Xα,R+1 + βR+1−α V T (b/βR+1−α) = vα,R+1 + AR(b − bα,R+1).

Now, suppose that b ∈ [bα+1,R+1, bα,R ]. Then, b/βR−α ∈ [bR,R+1, bR,R/β) ⊂ [bT ,R+1, bT ,R ]. Therefore, V T (b/βR−α) =
v T ,R+1 + AR

(
b/βR−α − bT ,R+1

)
, and tedious algebra shows again that

Xα,R + βR−α V T (b/βR−α) = vα,R+1 + AR(b − bα,R+1).

Therefore, for all α ≤ R ≤ T and b ∈ [bα,R+1, bα,R ], Vα(b) = vα,R+1 + AR(b − bα,R+1). It remains to find Vα(b) for b > bα,α . 
We claim that Vα(b) = V T (b) for all b > bα,α . Since bα,R = bT ,R for all R ≤ α, we have that V T (b) = vα,R+1 + AR(b −bα,R+1)

for all b ∈ [bα,R+1, bα,R ] and 1 ≤ R < α, and the claim would complete the proof. To prove our claim, we show that

V T (b) > Xα,s+α + βs V T (b/βs) for all s > 0 and b > bα,α.

That is, when b > bα,α , the consumer strictly prefers to replace the durable immediately rather than replacing it at any later 
time. One can check that the above inequality holds when b = bα,α . Also, since V T is concave, the function V T (b) has a 
higher slope than the function on the right-hand side for any b > 0. Hence, the inequality holds for every b > bα,α . �
Proof of Theorem 2. Consider an arbitrary purchasing policy {(τ ′

k, dk)}∞k=1, where τ ′
k + dk denotes the time of the k-th 

purchase and τ ′
k ∈ N its corresponding period (so dk ∈ [0, 1) denotes its “delay”). Let r0 = α + τ ′

1, and for all k ≥ 1, let 
τk = τ ′

k − τ ′
1 and rk = min {τk+1 − τk, T }. Then, the continuation budget and value of such a policy, at the beginning of 

period τ ′
1, are, respectively,

b = p0

∑
k≥1

βτk e−ρdk = p0

∑
k≥1

βτk − p0

∑
k≥1

βτk (1 − e−ρdk )

v =
∑
k≥1

βτk X0,rk −
∑
k≥1

βτk (x0 − xrk−1)(1 − e−ρdk )/ρ.

Let Ir0 = 1 and I R = 0 for R 
= r0. For 1 ≤ R ≤ T , let K R = {k ≥ 1 | rk = R},

λR =
∑

k∈K R

βτk (1 − βR), γ̄R = I Rβ0 +
∑

k∈K R

βτk+1 and

γR = I Rβ0

[
1 − e−ρd1

1 − β

]
+
∑

k∈K R

βτk+1

[
1 − e−ρdk+1

1 − β

]
, (18)

so that[
b
v

]
=
[

b̂

v̂

]
−

T∑
R=1

γR

[
p0(1 − β)

x̂0 − x̂R

]
, where

[
b̂

v̂

]
=

T∑
R=1

λR

[
bT ,R

v T ,R

]
.

The coefficient λR incorporates the discounting of all the periods in which a purchase is made for a good that will be 
replaced at age R . By contrast, γR incorporates the discounting of all the periods in which a purchase is made to replace a 
good of age R . The adjustment, reflected in the factor multiplying Ir0 , of γr0 (and γ̄r0 ) is required to take into account the 
first purchase that replaces the endowed good (which, in our accounting, was not previously purchased). Observe that for 
1 ≤ R ≤ T − 1, k ∈ K R implies that τk+1 = τk + R (if k ∈ RT then τk+1 ≥ τk + T , where strict inequality holds when a useless 
good is not replaced for one or more periods). Therefore,
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γ̄R = I R +
[

βR

1 − βR

]
λR for all 1 ≤ R ≤ T − 1, and

T∑
R=1

λR

1 − βR
=
∑
k≥1

βτk =
T∑

R=1

γ̄R =
T −1∑
R=1

[
βR

1 − βR
λR + I R

]
+ γ̄T .

Hence, γ̄T =∑T −1
R=1 λR + λT /(1 − βT ) + IT − 1 = IT + λT βT /(1 − βT ). Let � = {λ ∈ RT+ |∑T

R=1 λR ≤ 1}, and


 = {(λ,γ ) ∈ � × RT+ | γR < γ̄R for 1 ≤ R ≤ T }.
The argument above essentially contains the proof of the following claim.

Claim 1. Let {(τ ′
k, dk)} be an arbitrary purchasing policy and (λ, γ ) be the weights defined by (18). Then, (λ, γ ) ∈ 
. Conversely, for 

any (λ, γ ) ∈ 
 (and τ ′
1 ≥ 1), there exists a purchasing policy {(τ ′

k, dk)} that satisfies (18). Though this policy is usually not unique, all 
such policies have the same budget and value. Thus, with abuse of notation, we will also refer to a (λ, γ ) ∈ 
 as a purchasing policy.

Claim 2. Suppose that the policy corresponds to an R-flexible rule where τ1 = 0, and the replacement of durables of age R + 1 is never 
delayed, but the replacement of durables of age R is sometimes delayed. Then, the policy is suboptimal: there exists another R-flexible 
rule without delays that costs the same and has a strictly higher value.

To prove Claim 2, observe that for such a policy, λR + λR+1 = 1, γR > 0, γR+1 = 0, and λk = γk = 0 for all k /∈ {R, R + 1}. 
Moreover, since γR < λRβR/(1 − βR), we also have λR > 0. In this case, (b̂, ̂v) is on the “Pareto frontier” (i.e., v̂ = V T (b̂)). 
The vector (b̂, ̂v) − (b, v) = (p0(1 − β), ̂x0 − x̂R) has “slope” σ = [x̂0 − x̂R ]/[p0(1 − β)], and

AR = 1

p0

[
X0,R − x̂R

1 − βR

1 − β

]
≤ (1 − βR)

x̂0 − x̂R

p0(1 − β)
< σ .

So, as the delays increase (γR increases), (b, v) moves away from (b̂, ̂v), below the Pareto frontier. But, if σ < AR+1, the 
delays may eventually take (b, v) back above the Pareto frontier. This can happen only if b < bT ,R+1. But even if every 
durable of age R is replaced with delay, the cost of the policy is more than replacing the durables at age R + 1 all the time. 
That is, b ≥ bT ,R+1. Therefore, bT ,R+1 ≤ b ≤ bT ,R and v < V T (b), and there exists another R-flexible rule with no delays that 
costs b and has value V T (b).

Claim 3. Suppose that the policy {(τk, dk)} is such that γR > 0 for some R. Then, the policy is suboptimal: there exists another policy 
without delays that uses the same budget but has strictly higher value.

Assume that the policy has delays. We now recursively modify the policy by eliminating delays, while maintaining the 
same budget and improving its value in every step. Let h = λ1 + λ2, λ̂k = λk/h for k = 1, 2, and γ̂1 = γ1/h. Then,[

b
v

]
= h

(
λ̂1

[
bT ,1

v T ,1

]
+ λ̂2

[
bT ,2

v T ,2

]
− γ̂1

[
p0(1 − β)

x̂0 − x̂1

])
+

T∑
R=2

(
λR

[
bT ,R

v T ,R

]
− γR

[
p0(1 − β)

x̂0 − x̂R

])
.

The weights (λ̂1, ̂λ2, γ̂1) represent a 1-flexible rule with delays (and λ̂1 + λ̂2 = 1). If γ1 > 0 (so γ̂1 > 0), then, by Claim 3, 
there exists another 1-flexible rule with weights (λ̃1, ̃λ2, 0) that is better. Let λ′

k = hλ̃k for k = 1, 2, γ ′
1 = 0, λ′

k = λk for k ≥ 3, 
and γ ′

k = γk for k ≥ 2. The policy (λ′, γ ′) is better than the policy (λ, γ ) and has γ ′
1 = 0. Now, let h = λ′

2 + λ′
3, λ̂k = λ′

k/h

for k = 2, 3, and γ̂2 = γ ′
2/h. The weights (λ̂2, ̂λ3, γ̂2) represent a 2-flexible rule with delays. Again, if γ̂2 > 0, Claim 3 implies 

that there exists a better 2-flexible rule without delays that can be used to modify (λ′, γ ′) and construct a new policy 
(λ′′, γ ′′) that uses the same budget and improves the value, and has γ ′′

1 = γ ′′
2 = 0. Continuing this way, after T steps, we 

will have constructed a policy (λ∗, γ ∗) with γ ∗ = 0, which uses the same budget and has a higher value than (λ, γ ).
Finally, by Claim 2 (or Theorem 1), for any τ ′

1 ≥ 1 and any weights λ∗ , there exist R and an R-flexible rule that uses 
the same budget βτ ′

1 b = βτ ′
1
∑

k λ∗
k bT ,k (from period 0 onward) and delivers a (weakly) better value. Therefore, the optimal 

value function V T coincides with that in expression (9), as defined in Theorem 1. �
Proof of Theorem 3. Let c = (1 − β)(w − b), so that b = w − c/(1 − β). With this change of variables, problem (4) becomes

Uα(w) = max
c∈[0,(1−β)w]

û(c)

1 − β
+ Vα(w − c/(1 − β)).

Let B(w, c) = w − c/(1 − β). Note that the objective function ϕ(c) = û(c)/ (1 − β) + Vα(B(w, c)) is concave. Thus, 
ĉ maximizes ϕ(c) if and only if 0 ∈ ∂ϕ(ĉ) (that is, 0 is a subdifferential of ϕ at ĉ) or equivalently, if and only if 
û′(ĉ) ∈ ∂Vα(B(w, ̂c)). There are two cases: (1) Vα is differentiable at B(w, ̂c); and (2) Vα has a kink at B(w, ̂c).
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Case 1. Observe that B(w, cR) ∈ (bα,R+1, bα,R) if and only if w ∈ (wα,R+1(cR), wα,R(cR)). Now, if B(w, cR) ∈ (bα,R+1, bα,R)

for some R , then û′(cR) = AR = V ′
α(B(w, cR)), and cR is the optimal solution of problem (4). That is, when w ∈

(wα,R+1(cR), wα,R(cR)), it is optimal to consume a constant flow cR of non-durables and follow an R-flexible rule for the 
durable good. One can check that B(w, cα) = bα+1,α+1 ⇔ w = wα+1,α+1(cα) and B(w, cα) = bα−1,α ⇔ w = wα−1,α(cα), 
and wα,α+1(cα) < wα+1,α+1(cα) < wα−1,α(cα) < wα,α(cα). Therefore, δ∗

α(w) is given by (13).

Case 2. Observe that AR−1 ≤ û′(cα,R(w)) ≤ AR if and only if cR ≤ cα,R(w) ≤ cR−1, or, alternatively, if and only if w ∈
[wα,R(cR), wα,R(cR−1)]. Since B(w, cα,R(w)) = bα,R and ∂Vα(bα,R) = [AR−1, AR ], if û′(cα,R(w)) ∈ [AR−1, AR ] for some R , 
then cα,R(w) is the optimal solution of problem (4). That is, it is optimal to consume a constant flow cα,R (w) of non-
durables and follow the R-fixed purchasing rule for the durable good. In particular, δ∗

α(w) = 1 if R ≤ α (or, equivalently, if 
w ≥ wα,α(cα)) and δ∗

α(w) = 0 if R > α, as stated in (13).

For a fixed α, the intervals corresponding to case 1 alternate with those corresponding to case 2. Moreover, collectively, 
they are mutually exclusive and cover the whole wealth range. �
Proof of Proposition 2. As argued in the text, gains from trade within the 1-flexible class are zero, leaving the 1-fixed class 
as the only candidate sellers of used goods. The proof proceeds in three steps.

Step 1 Derive the upper bound on the used-good price acceptable to the buyer. A buyer is someone with α = 1, budget 
b < b11, V 1 (b) = A1b and optimal non-durable consumption c1. Instead of purchasing a new good right away and following 
a 1-flexible rule afterwards, this consumer can purchase a used good of age s at price p (s) and follow a 1-flexible rule 
forever after. The flexible rule prescribes that the gain from trade is spent exclusively on durables. Hence, the buyer’s 
lifetime utility from a used good purchased at age s is

U B = e−ρs Xs,1︸ ︷︷ ︸
Durable service,this period

+β V 1

(
b − p (s) e−ρs

β

)
︸ ︷︷ ︸

Durable service, future

+ 1

1 − β
û (c1) .

With no trade, her utility is

U N = A1b + 1

1 − β
û (c1) .

The gain from trade for the buyer is

U B − U N = e−ρs [Xs,1 − A1 p (s)
]≥ 0.

Step 2 A good x0 that is sold in the middle of the period is not going to be replaced with a new good until the end of 
the period. Indeed, a potential seller has three options: keep the good for one period; sell in the middle of the period and 
replace with a new good, or sell and not replace until the next model. “Keep” always dominates “sell and replace” during 
the first period since p (s) < p0. Then, the only trading strategy that involves selling in the middle of the period has the 
seller without a good for the rest of the period.

Step 3 Any used-goods seller will find the price p (s) unacceptably low. To see this, take a 1-fixed rule consumer whose 
wealth is w ≥ w11. Theorem 3 shows that û′ (c∗

1 (w)
)≤ A1 for the entire 1-fixed-rule group. The payoff from following the 

1-fixed rule is

U1 = x0

ρ
+ 1

1 − β
û (c) .

If a 1-fixed consumer sells a used good, she will spend the gain from trade exclusively on non-durables. Specifically, if the 
trade brings a gain in wealth of size 	w , the non-durable consumption will increase by 	c = (1 − β)	w . Therefore, the 
payoff from selling the used good at age s and following a 1-fixed rule forever after is

U S = x0

ρ
− e−ρs Xs,1 + 1

1 − β
û (c + 	c) <

[
û is concave

]
<

x0

ρ
+ 1

1 − β
û (c) − e−ρs Xs,1 + 1

1 − β
û′ (c)	c

≤ U1 − e−ρs Xs,1 + A1 · e−ρs · p (s) = U1 + U N − U B .

The last inequality establishes that gains from trade are non-positive. �
Proof of Proposition 3. We first construct an upper bound W (b̄) for V 1(b̄, 0). Let d be such that eρdb̄ = 1. The agent has to 
wait at least until d before she can afford to purchase a new durable. If the agent consumes an old durable until d and a 
new durable forever after, her total discounted value is

W (b̄) = x1
(

1 − e−ρd
)

+ x0
e−ρd = x1

(
1 − b̄

)
+ x0

b̄.

ρ ρ ρ ρ
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Clearly, V 1(b̄, 0) ≤ W (b̄) for all b̄ ∈ [0, 1). Also, V 1(0, 0) = W (0) = x1/ρ . Therefore,

∂

∂b̄
V 1(0,0) ≤ W ′(0) = x0 − x1

ρ
.

Differentiating both sides of the Bellman equation (14) with respect to b̄ and evaluating the derivative at b̄ = 0 gives

∂

∂b̄
V 0 (0, S) = ∂

∂b̄
V 1 (0,0) .

For convenience, let G 
(

b̄,d
)

denote the right-hand side of (15). This function is defined for all 
(

b̄,d
)

where a purchase 

with delay d ≤ S is feasible – that is, for b̄ ≥ e−(r+γ )S and max
{

0, 1
r+γ ln

(
1
b̄

)}
≤ d ≤ S . Now, we show that when ρ = r +γ , 

G 
(

b̄,d
)

is strictly decreasing in d for all b̄ ≥ e−(r+γ )S . Differentiating G with respect to d and setting ρ = r + γ , we get

∂G

∂d

(
b̄,d

)
= e−ρdρ

[
∂

∂b̄
V 0

(
eρ S

(
b̄ − e−ρd

)
, S
)

− (x0 − x1)

ρ

]

< e−ρdρ

[
∂

∂b̄
V 0 (0, S) − (x0 − x1)

ρ

]
≤ 0.

If b̄ ≥ 1, any delay d ∈ [0, S] is possible. Since G 
(

b̄,d
)

is strictly decreasing in d for all d ∈ [0, S], the optimal delay must be 
either d = 0 or d > S .

If b̄ < 1, delays d < 1
r+γ ln

(
1/b̄

)
are not feasible, but since G 

(
b̄,d

)
is decreasing in d, the maximum is either d 

(
b̄
)

=
1

r+γ ln
(

1/b̄
)

< S or d 
(

b̄
)

> S . �
References

Balcer, Yves, Lippman, Steven A., 1984. Technological expectations and adoption of improved technology. Journal of Economic Theory 34 (2), 292–318.
Bannerjee, A., 1992. A simple model of herd behavior. The Quarterly Journal of Economics 107, 797–817.
Boucekkine, Raouf, de la Croix, David, Licandro, Omar, 2011. Vintage capital growth theory: three breakthroughs. Barcelona GSE Working Paper Series 

Working Paper 565.
Comin, Diego, Hobijn, Bart, Rovito, Emilie, 2006. Five facts you need to know about technology diffusion. National Bureau of Economic Research working 

paper 11928.
Comin, Diego, Hobijn, Bart, 2010. An exploration of technology diffusion. The American Economic Review 100 (5), 2031–2059.
Cooper, Russell, Haltiwanger, John, 1993a. The aggregate implications of machine replacement: theory and evidence. The American Economic Review 83 (3), 

360–382.
Cooper, Russell, Haltiwanger, John, 1993b. Automobiles and the national industrial recovery act: evidence on industry complementarities. The Quarterly 

Journal of Economics 108 (4), 1043–1071.
Dranove, David, Gandal, Neil, 2003. The DVD-vs.-DIVX standard war: empirical evidence of network effects and preannouncement effects. Journal of Eco-

nomics & Management Strategy 12 (3), 363–386.
Farrell, Joseph, Saloner, Garth, 1985. Standardization, compatibility, and innovation. The Rand Journal of Economics 16 (1), 70–83.
Fishman, A., Rob, R., 2000. Product innovation by a durable-good monopoly. The Rand Journal of Economics 31 (2), 237–252.
Francois, Patrick, Lloyd-Ellis, Huw, 2003. Animal spirits through creative destruction. The American Economic Review 93 (3), 530–550.
Grossman, Gene M., Helpman, Elhanan, 1991. Quality ladders in the theory of growth. Review of Economic Studies 58 (1), 43–61.
Haider, Steven J., 2001. Earnings instability and earnings inequality of males in the United States: 1967–1991. Journal of Labor Economics 19 (4), 799–836.
Helpman, Elhanan, Trajtenberg, Manuel, 1998. Diffusion of general purpose technologies. In: Helpman, Elhanan (Ed.), General Purpose Technologies and 

Economic Growth. MIT Press, Cambridge, Mass.
Johansen, L., 1959. Substitution versus fixed production coefficients in the theory of economic growth. Econometrica 29, 157–176.
Jovanovic, Boyan, Lach, Saul, 1989. Entry, exit, and diffusion with learning by doing. The American Economic Review 79 (4), 690–699.
Jovanovic, Boyan, Rousseau, Peter L., 2005. General purpose technologies. In: Aghion, Philippe, Durlauf, Steven N. (Eds.), Handbook of Economic Growth, 

vol. 1B. Elsevier, pp. 1182–1221.
Laitner, John P., Stolyarov, Dmitriy, 2004. Aggregate returns to scale and embodied technical change: theory and measurement. Journal of Monetary Eco-

nomics 51 (1), 191–233.
Leahy, John V., Zeira, Joseph, 2005. The timing of purchases and aggragate fluctuations. Review of Economic Studies 72 (4), 1127–1151.
Mokyr, Joel, 1990a. The Lever of Riches: Technological Creativity and Economic Progress. Oxford University Press, Oxford, New York, Toronto and Melbourne.
Mokyr, Joel, 1990b. Twenty-Five Centuries of Technological Change: An Historical Survey. Fundamentals of Pure and Applied Economics Series: Economics 

of Technological Change Section. Harwood Academic, London, New York and Melbourne.
Rust, John, 1986. When is it optimal to kill off the market for used durable goods? Econometrica 54 (1), 65–86.
Shapiro, Carl, Varian, Hal R., 1999. Information Rules: A Strategic Guide to the Network Economy. Harvard Business School Press, Boston, Mass.
Shleifer, Andrei, 1986. Implementation cycles. Journal of Political Economy 94 (6), 1163–1190.
Solow, Robert, 1960. Investment and technological progress. In: Arrow, Kenneth, Karlin, Samuel, Suppes, Patrick (Eds.), Mathematical Methods in the Social 

Sciences 1959. Stanford University Press, Stanford, CA, pp. 89–104.
Swan, Peter L., 1972. Optimum durability, second-hand markets, and planned obsolescence. Journal of Political Economy 80 (3), 575–585. Part 1.

http://refhub.elsevier.com/S1094-2025(15)00042-3/bib42616C4C697031393834s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib42616E31393932s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib426F756574616C32303131s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib426F756574616C32303131s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib436F6D6574616C32303036s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib436F6D6574616C32303036s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib436F6D486F6232303130s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib436F6F48616C3139393361s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib436F6F48616C3139393361s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib436F6F48616C3139393362s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib436F6F48616C3139393362s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib44726147616E32303033s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib44726147616E32303033s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib46617231393835s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib466973526F6232303030s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4672614C6C6F32303033s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib47726F48656C31393931s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib48616932303031s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib48656C54726131393938s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib48656C54726131393938s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4A6F6831393539s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4A6F764C616331393839s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4A6F76526F7532303035s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4A6F76526F7532303035s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4C616953746F32303034s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4C616953746F32303034s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4C65615A656932303035s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4D6F6B3139393061s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4D6F6B3139393062s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib4D6F6B3139393062s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib52757331393836s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib53686156617231393939s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib53686C31393836s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib536F6C31393630s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib536F6C31393630s1
http://refhub.elsevier.com/S1094-2025(15)00042-3/bib53776131393732s1

	Obsolescence of durable goods and optimal purchase timing
	1 Introduction
	2 Model
	3 Special case T=1
	4 General case
	4.1 Optimal budget allocation
	4.2 Secondary markets

	5 Aggregate implications
	5.1 Consumption response to a change in wealth
	5.2 Volatility of durable consumption

	6 Random period length
	7 Conclusion
	Acknowledgments
	Appendix A Proofs
	References


