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Abstract

We develop a new general equilibrium growth accounting framework that features

increasing returns to scale, imperfect competition and incorporates technological revolutions

into the description of technical progress. We propose a way to tell apart revolutionary

changes in technology and incremental innovations using stock market data. We use our

framework to jointly estimate the overall embodied TFP change during 1953–1995 and the

aggregate output elasticity. We find that the IT revolution raised the aggregate TFP level by

about 20%. We suggest a 1.09–1.11 range for the aggregate returns to scale.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Economic history provides a number of examples of progress resulting from
inventions that transform production (Landes, 1969; Rosenberg, 1982; Mokyr,
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1990). Many commentators characterize the recent information technology
revolution as such a transforming change. This paper develops a new general
equilibrium growth accounting framework with embodied technical progress that
can incorporate technological revolutions as well as continuous change and also
features increasing returns to scale and imperfect competition. Using data on stock
market values, financial rates of return, input and output quantities, and investment
good prices, we attempt to estimate the degree of aggregate returns to scale in the
U.S. economy and the relative importance of incremental progress and technological
revolutions in the last 50 years.
Following Solow (1960) and more recent work of Hulten (1992), Greenwood et al.

(1997), Greenwood and Jovanovic (2001), and others, this paper assumes that
new capital goods embody technological change. Although invention comes
for free, the economy must invest in new physical capital and applied knowledge
in order for a new technology to enhance production. Given the process for the basic
technology, our general equilibrium framework determines time paths of prices and
quantities.
Despite the complexity of our model, the aggregate properties and, surprisingly,

the simple equation of motion of Solow (1960) carry over. This makes it
straightforward to use our model as a general equilibrium growth accounting
framework. The model has three elements distinct from Solow’s (1960) analysis: (1)
we incorporate drastic technological innovations into the description of technolo-
gical change; (2) we generalize the notion of capital to include intangible stocks of
applied knowledge as well as physical plant and equipment; and, (3) we allow the
possibility of increasing returns to scale. The first new element makes our framework
potentially consistent with the popular idea that the U.S. economy underwent a
profound change due to the IT revolution, and it relates transforming changes
to low frequency stock market cycles. The second element allows our model to
match recent large discrepancies between the market value of businesses and the
production cost of their physical capital (see, for example, Hall, 2001; Laitner and
Stolyarov, 2003). The third element enables us to derive new estimates of aggregate
returns to scale and to identify separately the contribution of input accumulation to
growth.
Our work links to three different literatures on productivity analysis, technological

change, and growth. First, this paper is related to the productivity analysis literature
based on general equilibrium models of embodiment, such as Greenwood et al.
(1997), Gort et al. (1999), and Greenwood and Jovanovic (2001). From a theoretical
perspective, our model differs from existing models of embodiment in the three ways
mentioned above. Also, we use a calibration procedure that matches the time paths
of macroeconomic variables rather than just the variables’ long-run average values.
Lastly, we bring stock market and financial rate of return data into the analysis.
Second, our model relates to the literature on general purpose technologies (GPT),

particularly Helpman and Trajtenberg (1998) and Howitt (1998). The GPT literature
explicitly models the invention process that generates endogenous growth. We
instead take the process for basic technology to be exogenous, and focus on setting
up the production sector in a way that is suitable for bringing our model to data.
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Third, our work relates to the empirical productivity analysis literature,
particularly to the work following Hall (1990), which re-estimates the Solow
residual without imposing constant returns to scale and perfect competition.
Hall (1990) finds a surprisingly high degree of increasing returns to scale, and
he raises the issue of how difficult it is to identify separately returns to scale and
TFP growth. Much of the subsequent literature (e.g., Caballero and Lyons
(1992) and Basu and Fernald (1995, 1997) to name just a few examples)
focuses on overcoming the problem and providing unbiased estimates of aggregate
returns to scale. To this day, there is no broad agreement in this literature
on the degree of aggregate returns to scale. Our first contribution to this literature
is to provide a new approach that relies on general equilibrium, rather than
firm-level, theory. Our second contribution is that we measure technological
progress both from the relationship of input and output quantities and through
changes in stock market valuations and the price of investment goods per ‘‘efficiency
unit.’’
Our theoretical steps yield a system of dynamic equations for the economy’s

aggregate variables. We use the system to estimate the model’s parameters with post-
WWII U.S. data. We find the data is consistent with a dramatic TFP increase from a
technological revolution occurring around 1972–1974, and it is inconsistent with
smooth TFP growth alone over the entire period. We estimate that the IT revolution
has raised the aggregate TFP level by 15–20 percent, and that it accounts for about
40 percent of overall productivity growth during 1953–1995. Our analysis warns that
measuring neutral technological change as the difference between productivity
advance and the rate of embodied technological change may overstate its
contribution to growth: if technological change is punctuated, the capital stock
will grow faster than output after revolutions, so capital deepening can masquerade
as neutral technological change. For the same reason, productivity decompositions
based on balanced growth approximations may be inaccurate, especially when the
sample period is not much longer than the interval between technological
revolutions.
We use our model to estimate the aggregate degree of increasing returns to scale

and to disentangle growth due to productivity improvement from growth due to
input accumulation. Our preferred point estimates of the aggregate output elasticity
range from 1.09 to 1.11 and have 95% confidence intervals which lie above 1 and
below 1.20.
The paper proceeds as follows. Section 2.1 introduces the model and characterizes

the steady state equilibrium given the level of basic technology. Section 2.2 allows
the basic technology to progress stochastically in discrete upward steps. For
each technology level, the model has a unique steady-state equilibrium, and the
economy converges toward the steady state between changes in technology. Section
2.3 considers continuous, or combined continuous and discrete, technological
progress. Section 3 establishes the correspondence between the model’s
variables and quantities in the data, describes our estimation strategy and presents
our parameter estimates. Section 4 discusses estimation results, and Section 5
concludes.
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2. A model with increasing returns

In this section we propose a simple model that incorporates a generalized notion
of capital combining tangible and intangible elements. There are firm-level increasing
returns to scale and imperfect competition.

2.1. Stationary technology

Aggregate economy. The production sector is a continuum of symmetric industries
indexed by jA½0; 1� (e.g., Dixit and Stiglitz, 1977). Each firm is small in relation to the
entire economy, but not relative to its own industry. Individual firms may have
constant or increasing returns to scale in labor and capital. If returns to scale are
increasing—the case which is this paper’s focus—at each date t; within each industry
j; Njt firms operate in a Cournot oligopoly, producing the same output good.
Nevertheless, entry is free, so equilibrium profits are zero.
Let the date t output of industry j be Yjt: When households consume or firms

invest in physical capital and knowledge, they care only about obtaining units of the
aggregative commodity

Yt ¼
Z 1

0

½Yjt�Z dj

� �1=Z
; Zo1; Za0: ð1Þ

Letting Pjt be the price of the output of industry j; two-step decision making requires
a price indexZ 1

0

½Pjt�1�e dj

� �1=ð1�eÞ

; e �
1

1� Z

for the aggregate commodity. We normalize this price index to 1; aggregate (1) is our
numeraire. With such a normalization, Yt also equals total expenditure on the
aggregate commodity.
Aggregate output is homogeneously divisible into consumption, Ct; and

investment. Investment builds the stock of the capital composite M : The latter
includes both physical and intangible capital. We have

Yt ¼ Ct þ ’Mt þ dMt;

where d is the rate of depreciation. Assume that the economy saves a constant
fraction s of its income. Then

’Mt þ dMt ¼ sYt; sAð0; 1Þ:

Assume that investment is irreversible:

’Mt þ dMtX0: ð2Þ

Irreversibility will be important when we discuss technological change: because TFP,
which Z measures, is embodied, if it rises abruptly, firms would like to disinvest,
exchanging their old capital and know-how for new. However, (2) rules that out.
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Finally, let the aggregate labor force grow exponentially:

Lt ¼ L0e
nt: ð3Þ

Firms. Firms produce output with capital ðmÞ and labor ðlÞ: The output of firm f in
industry j at time t is

yfjt ¼ Z½mfjt�a½lfjt�n; aþ n � gX1; ao1;

where mfjt is the firm’s current stock of tangible and intangible capital, lfjt is its labor
input, and Z is the level of the economy’s basic technology. Firms have non-
decreasing returns to scale in m and l: We assume that the firms purchase m and l;
but that Z is freely available to all. The production function can have either
increasing ðif g > 1Þ or constant ðif g ¼ 1Þ returns to scale.
Let Wt be the wage for labor and Rt be the rental fee on capital. Each

industry’s output is homogeneous. Given the output of all other firms in the
industry, firm f chooses mfjt and lfjt to maximize its current profit. Since there is free
entry, the number of firms Njt in each industry j adjusts until every firm’s profit is
zero.
For simplicity, we do not require an integer numbers of firms. The sum over a

non-integer number of firms should be taken to meanXN

f¼1

xf ¼ x1 þ?þ x½N� þ fNgx½N�þ1;

where ½N� denotes the integer part and fNg denotes the fractal part.
We can now define an equilibrium with stationary Z:

Definition. An equilibrium is a sequence of functions of time that denote factor and
output prices

fWt;Rt;Pjtg; tX0;

quantities

fYt;Yjt; yfjt;Mt;mfjt; lfjtg; tX0; f ¼ 1;y;Njt; jA½0; 1�;

firm profits

pfjt � Pjtyfjt � Rtmfjt � Wtlfjt; tX0; f ¼ 1;y;Njt; jA½0; 1�;

and the number of firms by industry

Njt > 1; tX0; jA½0; 1�;

satisfying the following relations

yfjt ¼ Z½mfjt�a½lfjt�n; ð4Þ

Mt ¼
Z 1

0

XNjt

f¼1

mfjt dj; ð5Þ
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Yt ¼
Z 1

0

½Yjt�Z dj

� �1=Z

¼
Z 1

0

XNjt

f¼1

yfjt

" #Z

dj

0
@

1
A

1=Z

; ð6Þ

Z 1

0

½Pjt�1�e dj

� �1=ð1�eÞ

¼ 1; e �
1

1� Z
; ð7Þ

Yjt ¼ Yt½Pjt��e; ð8Þ

and the equilibrium conditions

1. Firms choose ðmfjt; lfjtÞ to maximize profits

ðmfjt; lfjtÞAargmax pfjt; all f ; j; t; ð9Þ

2. Firms earn zero economic profit

pfjt ¼ 0; all f ; j; t; ð10Þ

3. Labor and goods markets clear

Lt ¼
Z 1

0

XNjt

f¼1

lfjt dj; ð11Þ

’Mt þ dMt ¼ sYt; ð12Þ

4. The initial condition M0 is given.

Many components of the definition have been discussed above. We require Njt > 1
because we focus on oligopoly rather than monopoly. Eqs. (5)–(7) define aggregative
variables, (7) is our price normalization, (8) describes the demand curve in each
industry, (10) is a consequence of free entry, and (12) is a consequence of our simple
saving function. Also note that with free entry, any complex strategy of a firm that
conditions its current output on the history of outputs of its rivals can do no better
than zero profit in every period. Firms have nothing to gain from collusion;
therefore, we restrict a firm’s output choice to depend only on the current output of
its rivals.
The following lemma shows that in equilibrium, first-order conditions are

necessary and sufficient for profit maximization on the part of firms.

Lemma 1. Suppose a candidate equilibrium satisfies all conditions for equilibrium

except possibly profit maximization (9). Let lfjt > 0 and mfjt > 0 satisfy the first order

conditions

Wt ¼ nmrfjt

yfjt

lfjt
; ð13Þ

Rt ¼ amrfjt

yfjt

mfjt

; ð14Þ
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where marginal revenue is

mrfjt ¼ Pjt 1� ð1� ZÞ
yfjt

Yjt

� �
:

Then condition (9) holds. Conversely, (13)–(14) must hold in any equilibrium.

Proof. See Appendix B. &

Since there are no pure profits in the economy, Mt is, by construction, the market
value of private-sector net worth. It turns out that there is a unique equilibrium in
which the aggregate economy behaves like a standard Solow (1956) model with Mt

as a state variable. Proposition 1 derives the aggregate equation of motion and
proves the existence and uniqueness of equilibrium.

Proposition 1 (Existence of equilibrium with stationary technology). There exists a

unique equilibrium for any initial condition M0 > 0: In this equilibrium, all industries

behave symmetrically and all firms produce the same output.

Njt ¼ Nt ¼
g

g� 1
ð1� ZÞ;

Pjt ¼ Pt ¼ 1;

Yjt ¼ Yt ¼
Z

Ng�1 ½Mt�a½Lt�n all j; ð15Þ

yfjt ¼ yt ¼
Yt

N
; mfjt ¼ mt ¼

Mt

N
; lfjt ¼ lt ¼

Lt

N
:

The aggregate equation of motion is

’Mt ¼ s %Z½Mt�a½Lt�n � dMt all t; ð16Þ

where

%Z �
Z

Ng�1:

Proof. See Appendix B. &

If TFP level Z never changes, (16) shows the economy will converge to the steady
state equilibrium (SSE) in which all variables grow at constant rates and Rt is
constant. Formally, letting gx � ’xt=xt for any variable x; we have the following
corollary to Proposition 1.

Corollary. For any SSE, we must have

gN ¼ gR ¼ 0; gW ¼
g� 1

1� a
n;
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gY ¼ gy ¼ gM ¼
nn

1� a
:

Proof. See Appendix B. &

Proposition 1 shows that the analytical simplicity of the basic Solow (1956) model
carries over to the case with increasing returns to scale and oligopoly. The next
sections characterize the equilibrium time path of the economy with abrupt,
embodied technological change.

2.2. Technological revolutions

To capture the idea that technological revolutions occur exogenously and
randomly, assume that Z evolves over time through a series of discrete upward
steps. Let an exogenous Poisson process determine the timing of the steps: if the
initial time is t ¼ 0; let ftig

N

i¼1 with

0ot1ot2o?

be the dates of technological revolutions, with Poisson realizations determining
ti � ti�1: If the corresponding sequence of TFP levels is

Z0oZ1oZ2o?;

assume the size of each step Zi=Zi�1 is an independent draw from an exogenous
distribution. Let iðtÞ be the index of the frontier technology at time t:

iðtÞ � i; tA½ti; ttþ1Þ; iX0:

Under these assumptions, the length of the interval since the last transformation
provides no information about the timing of the next revolution, and the level of Zi

provides no insight about the relative magnitude of Ziþ1=Zi:
Consider first the model’s reaction to a single change in Z: For 0ptot1; suppose

the level of the basic technology is Z ¼ Z0; for tXt1; let Z ¼ Z1 > Z0: After
date t1; businesses can invest in capital stocks that embody the unambiguously
more productive technology Z1: It would take only ½Z0=Z1�1=ao1 units (measured
in consumption goods) of M1 to produce as much output as one unit of M0;
when they are combined with the same quantity of labor. Consequently, in our
equilibrium below, the resale price (relative to consumption good) of old capital M0

drops at time t1 from 1 to PM
0 ¼ ½Z0=Z1�1=a: Although new investments embodying

the old technology remain feasible after the revolution, they entail an immediate
capital loss from 1 to PM

0 : Agents choose to invest, therefore, only in the frontier
technology Z1: This causes irreversibility constraint (2) to bind for old vintage
capital.
As in Solow (1960), it is also the case that aggregate production function (15) from

tot1 remains valid after t1 provided we substitute Z ¼ Z1 for Z ¼ Z0 and define
aggregate capital Mt ¼ PM

0 M0t þ M1t: Proposition 2 establishes this formally.
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To extend our reasoning to an endless series of changes in Z; we need a new
definition of equilibrium. Let PM

it be the time-t resale price of a unit of capital
embodying technology Zi; let mi

fjt be the capital embodying Zi which firm f in
industry j utilizes at t; and, let li

fjt be the labor which firm f uses with machinery
embodying technology Zi: The firm takes input prices and the industry demand
curve as given, and it chooses how much output to produce, given the output of its
rivals, and which technologies to use (assume free disposal). Rental companies own
the capital and rent it to producers at a fee Rit per dollar of capital of vintage i: The
rental business is subject to free entry.

Definition. An equilibrium is a sequence of functions of time that denote prices

fWt;Rit;P
M
it ;Pjtg; i ¼ 0;y; iðtÞ; tX0;

quantities

fYt;Yjt;Mit; Iit; yfjt;m
i
fjt; l

i
fjtg; tX0; f ¼ 1;y;Njt; i ¼ 0;y; iðtÞ; jA½0; 1�;

firm profits

pfjt � Pjtyfjt �
XiðtÞ
i¼0

½RitP
M
it mi

fjt þ Wtl
i
fjt�; tX0; f ¼ 1;y;Njt; jA½0; 1�;

and number of firms by industry

Njt > 1; tX0; jA½0; 1�;

that satisfy the following relations

yfjt ¼
XiðtÞ
i¼0

Zi½mi
fjt�

a½li
fjt�

n; ð17Þ

Mit ¼
Z 1

0

XNjt

f¼1

mi
fjt dj; i ¼ 0;y; iðtÞ; ð18Þ

Yt ¼
Z 1

0

½Yjt�Z dj

� �1=Z

¼
Z 1

0

XNjt

f¼1

yfjt

" #Z

dj

0
@

1
A

1=Z

; ð19Þ

PM
iðtÞ;t ¼ 1; ð20Þ

Z 1

0

½Pjt�1�e dj

� �1=ð1�eÞ

¼ 1; e �
1

1� Z
; ð21Þ

Yjt ¼ Yt½Pjt��e; ð22Þ
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and the equilibrium conditions

1. Firms choose ðmi
fjt; l

i
fjtÞ

iðtÞ
i¼0 to maximize profits

ðmi
fjt; l

i
fjtÞAarg max

fmx
fjt
;lx

fjt
g;x¼0;y;iðtÞ

fpfjtg all i ¼ 0;y; iðtÞ; f ; j; t; ð23Þ

2. Firms earn zero economic profit

pfjt ¼ 0 all f ; j; t; ð24Þ

3. Labor and goods markets clear

Lt ¼
Z 1

0

XNjt

f¼1

XiðtÞ
i¼0

li
fjt dj; ð25Þ

XiðtÞ
i¼0

PM
it Iit ¼ sYt; ð26Þ

4. Capital stocks follow their laws of motion

’Mit ¼ Iit � dMit; i ¼ 0;y; iðtÞ; tXti; ð27Þ

given the initial conditions M0;0 and

Mi;ti
¼ 0; i ¼ 1;y; iðtÞ;

5. Investment is irreversible, and it seeks the highest return:

IitX0 for all iX0 and t; Iit > 0 3 iAarg max
x¼f0;y;iðtÞg

fPM
xt g: ð28Þ

If g > 1; the convexity of the production function implies that each firm will use
just one vintage of capital. Furthermore, the resale price of older vintages must
reflect their lower efficiency. Finally, the price of different vintages will adjust in such
a way that all firms will end up hiring the same amount of labor and supplying the
same quantity of output. Formally, we have

Lemma 2. In any equilibrium,

(i) PM
it ¼

Zi

ZiðtÞ

� �1=a
all i ¼ 0;y; iðtÞ; tXti;

(ii) Rit ¼ Rt all i ¼ 0;y; iðtÞ; tXti;

(iii) All new investment goes to the capital that embodies the latest technology iðtÞ;
(iv) Each firm uses a single vintage of capital,
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(v) Any firm employs the same amount of labor and produces the same quantity of

output.

Proof. See Appendix B. &

In equilibrium, the price of an old vintage of capital falls over time in a series of
discrete downward steps that coincide with changes in technology. All new
investment is used to purchase capital that embodies the current frontier technology
iðtÞ: Capital is allocated across firms in such a way that the firms are indifferent over
which vintage to use. All firms employ the same amount of labor, the same number
of efficiency units of capital, and, thus, produce equal output. The number of firms in
an industry stays constant over time even though firms continue switching
technologies.
In any equilibrium, all industries must behave in a symmetric fashion: profit

maximization and zero profit conditions cannot hold unless all firms produce equal
output. Because of this symmetry, any distribution of technology use by industry is
consistent with equilibrium. However, the aggregate fraction of firms that use a
particular technology is uniquely determined. Let jðZi; tÞ denote the fraction of firms
in the economy that use technology Zi: As the composition of capital stock changes
over time due to new investment and depreciation, capital has to be constantly
reallocated across firms to maintain equilibrium. This is why the fraction of firms
using a particular technology will change over time. The fraction jðZi; tÞ increases
while technology Zi is at the frontier and subsequently declines when a better
technology arrives. Proposition 2 establishes that an equilibrium exists and that all
equilibria have the same prices and aggregate quantities.

Proposition 2 (Equilibrium with technological revolutions). Given the initial condi-

tion M0 and an increasing sequence fZi; tig
iðtÞ
i¼0; there exists an equilibrium with

PM
it ¼

Zi

ZiðtÞ

� �1=a

; i ¼ 0;y; iðtÞ; tXti; ð29Þ

Mit ¼

R t

ti
e�dðt�sÞsYs ds; tA½ti; tiþ1Þ;

Mi;tiþ1e
�dðt�tiþ1Þ; tXtiþ1;

(
ð30Þ

Njt ¼
g

g� 1
ð1� ZÞ;

jðZi; tÞ ¼
0; toti;

MitP
M
itP

sX0
MstP

M
st

; tXti;

8<
: i ¼ 0;y; iðtÞ: ð31Þ

Aggregation:

Yt ¼
ZiðtÞ

Ng�1 ½Mt�a½Lt�n � %ZiðtÞM
a
t Ln

t all tX0; ð32Þ
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Rit ¼ Rt ¼
a
g

Yt

Mt

and Wt ¼
n
g

Yt

Lt

; ð33Þ

where

Mt ¼
XiðtÞ
i¼0

PM
it Mit: ð34Þ

The aggregate equation of motion is

’Mt ¼ s %ZiðtÞ½Mt�a½Lt�n � dMt; ð35Þ

Any equilibrium has the same Pjt; PM
it ; Mt; Mit; Njt; jð�Þ; Yt; Yjt; yfjt; lfjt; Rit;

Rt and Wt:

Proof. See Appendix B. &

Aggregate output depends on capital stocks of different vintages only through
their aggregate market value. Aggregation result (32) implies that even with a series
of technological revolutions, the aggregate dynamics of the model follow (16)
between changes in Z: Specifically, starting from a given M0; we can solve (35) on
each ðti�1; tiÞ; using the terminal value Mti

from one interval as the initial condition
for Mt on the next. Fig. 1 illustrates the time series outcomes of the model. The
economy starts with technology Z0: If there were no further technological
revolutions, the economy would eventually converge to the balanced growth path
YN

0 ; as described in Section 2.1. At date t1; a new technology Z1 arrives, which leads
to abrupt obsolescence of all existing capital and a fall in the stock market (see lower
left panel of Fig. 1). Subsequently the economy converges toward a new balanced
growth path YN

1 ; until this convergence is interrupted by another revolution
at t2; etc.
It is useful to compare Fig. 1 with the time paths for the same variables in a model

where embodied technological change is exponential. For example, in the Solow
(1960) model Mt would continuously approach a balanced growth path, and the
price of old capital would fall exponentially at a rate that is proportional to the rate
of embodied technical progress.
The lower right panel of Fig. 1 depicts the diffusion curves for technologies Z1 and

Z0:While Zi is the frontier technology, the capital stock that embodies it grows, and
(31) implies that jðZi; tÞ grows as well. At date tiþ1; Zi is no longer a frontier
technology, so investment in capital Mi stops. Thereafter, obsolescence and
investment in more modern vintages cause jðZi; tÞ to fall.
Along the equilibrium path, there is an on-going reallocation of used capital

across firms. This occurs because the old, less productive, capital must become
concentrated in the hands of progressively fewer firms, in order for them to earn the
same profit as firms with the most up to date capital. Because we assume free entry
and frictionless resale of capital goods, our model does not predict whether
reallocation of capital happens via mergers or entry and exit: both are
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consistent with equilibrium behavior (for a model that can discriminate between
capital reallocation by exit and by acquisition, see Jovanovic and Rousseau,
2002).

2.3. Continuous technological change

The results of Lemma 2 and Proposition 2 hold regardless of the total number of
different technologies Zi; and none of the equilibrium conditions are intertemporal;
therefore, our framework is fully consistent with any increasing time path for the
frontier technology, ZðtÞ; continuous or otherwise. As an important special case that
maps our framework into existing models of embodiment, we give a detailed
description of ZðtÞ which is piecewise exponential.
Starting with an increasing sequence fZitig

N

i¼0; define

gip
1

tiþ1 � ti

ln
Ziþ1

Zi

� �
ð36Þ

ARTICLE IN PRESS
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to be the rate of embodied technological change on the interval ½ti; tiþ1Þ: Ac-
cordingly, let

ZðtÞ ¼ Zie
giðt�tiÞ; tA½ti; tiþ1Þ:

When (36) holds with equality, Z evolves continuously—though different epochs
may have different growth rates. When (36) is a strict inequality, ZðtÞ combines
exponential growth with technological revolutions at dates ti: Solow (1960) is a
special case of this formulation with t1 ¼ N and g0 constant forever.
The mathematics of Section 2.2 carry over. In particular, the equilibrium

conditions underlying pricing rule (29) hold at any point in time: if PM
vt is the price of

capital of vintage v at time tXv;

PM
vt ¼

ZðvÞ
ZðtÞ

� �1=a

:

The arguments for the existence and uniqueness of equilibrium are virtually
unchanged as well, with integrals replacing the summation signs in (31) and (34), and
with Mvt ¼ sYte

�dðt�vÞ replacing (30). The analog of (35) is

’Mt ¼ %ZðtÞMa
t Ln

t � dþ
gi

a

� �
Mt; tA½ti; tiþ1Þ: ð37Þ

The extra depreciation term gi=a reflects the fact that the price of capital goods falls
at a rate of gi=a on the interval ½ti; tiþ1Þ:
The next section estimates the parameters of our model. Section 4 then attempts to

use the estimates to evaluate the significance of the information technology
revolution in overall productivity change for the post-war U.S. economy.

3. Estimation

3.1. National accounts and intangible capital

To take our model to data, we must establish the correspondence between
variables in the model and those in the NIPA. A preliminary step is to distinguish
between intangible and tangible capital.
We think of intangible capital as consisting of proprietary applied knowledge,

such as firm-specific human capital, particular production techniques, product
designs, etc. We think that intangible capital is a non-rival good, which may
contribute to internal increasing returns to scale. Firms can either rent
applied knowledge from consultants, or, more likely, invest in it themselves but
they can sell the undepreciated portion of it in the future, just as they can resell
undepreciated physical capital. Suppose that intangible capital embodies a
technology in the same way as physical capital, with the same current technology
available in every period for tangible and intangible investment, and suppose that
aggregate output Yt divides homogeneously into intangible and tangible investment,
as well as consumption.

ARTICLE IN PRESS
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Let us also assume that the value of intangible capital is a constant fraction y of
the overall capital stock, where y is a parameter to be estimated.1 Let

Mt ¼ At þ Kt;

with

At ¼ yMt; Kt ¼ ð1� yÞMt: ð38Þ

If physical and intangible capital depreciate at roughly equal rates, then the market
clearing condition for output is2

sYt ¼ ’At þ dAt þ ’Kt þ dKt ¼ IAt þ IKt:

It immediately follows from (38) that investments in intangible and physical capital
are constant fractions of output:

IAt ¼ ysYt and IKt ¼ ð1� yÞsYt: ð39Þ

While the model’s output, Yt; then includes investment in intangible capital, national
accounts typically classify such investments as intermediate goods (see, for example,
Howitt, 1996). Thus, the conventional measure of aggregate output, which we label
GDP�; is the difference between our Yt and intangible investment:

GDP�t ¼ Ytð1� ysÞ: ð40Þ

3.2. Quality-adjusted price of investment

With each subsequent change in technology, one unit (one dollar) of consumption
good spent on investment buys a unit of capital that embodies a more productive
technology. According to (29), the consumption good price of a constant-quality
capital good falls over time. Let us fix an arbitrary vintage v and measure the
effective quantity of capital in constant-quality units of Mv: In particular, define one
efficiency unit to be the amount of capital that can produce as much output as one
unit of capital of vintage v when combined with the same quantity of labor. Let pe

t be
the amount of consumption good that must be sold at time t in order to purchase one
efficiency unit of capital. To compute pe

t ; we must equate outputs from one unit of
vintage v capital and pe

t dollars worth of frontier vintage-t capital. Thus,

pe
t ¼

ZðvÞ
ZðtÞ

� �1=a

all t > v:

ARTICLE IN PRESS

1Under these assumptions, our results will carry over if the firms have a production function y ¼
Zaakbln and choose a; k and l to maximize profit. Then, in equilibrium, y ¼ a=ðaþ bÞ: See Laitner and
Stolyarov (2003) for details.

2Dividing U.S. National Income and Product Account annual depreciation of nonresidential fixed

capital by the sum of physical nonresidential fixed capital and business inventories yields an average of

0.0589 for 1954–1999. Jones and Williams (1995) suggest an average of 0.10 for the depreciation rate on

applied knowledge. Estimates of the depreciation of monopoly profits from patents range from 4 to 25

years—see Pakes and Schankerman (1984), Mansfield et al. (1981) and Caballero and Jaffe (1993).

Roughly equal rates are presumably not a mere coincidence: if technology is embodied in physical capital,

producers would logically design capital goods to last as long as a technology typically does.
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The level of pe
t has no meaning, because it depends on the choice of efficiency units,

but the rate of change in pe
t on any interval ½t; t þ Dt� is proportional to the rate of

change in Z:

ln
pe

tþDt

pe
t

� �
¼ �

1

a
ln

Zðt þ DtÞ
ZðtÞ

� �
: ð41Þ

The above expression relates the rate of embodied technological progress to the rate
of change in the quality-adjusted relative price of investment goods. One way to
measure Z is from (41), if we have observations on pe

t : Gordon’s (1990) price series
offers a possible set of such observations—see Section 3.4 below.

3.3. The process for the basic technology

We estimate/calibrate parameter values using U.S. data from 1953–1995. We
exclude the data for 1996–2001, because exogenous information suggests that market
values may have been experiencing a bubble in the late 1990s.3 Our procedure
assumes one drastic change in the economy’s basic technology during the entire
period. We think the change occurred between 1972 and 1974 and corresponded to
the information technology revolution, which became possible with the invention of
the microprocessor. There may have been other, minor technological changes as
well, and we allow continuous embodied progress in the spirit of Solow (1960) to
capture these. Our most general model of TFP is

ZðtÞ ¼
Z0e

g0ðt�1953Þ; tot1;

Z1e
g1ðt�t1Þ; tXt1;

(
ð42Þ

with

Z1XZ0e
g0ðt1�1953Þ;

g0X0; g1X0:

With the above constraints ZðtÞ is non-decreasing. Parameters g0 and g1
characterize the flow embodied technological change, and the difference between
Zðt1 þ 0Þ and Zðt1 � 0Þ measures the extent of revolutionary change.

3.4. Calibration/estimation

This section describes our procedure for calibrating the model. As stated, we
assume—on the basis of existing work by historians and others—that a transforming

ARTICLE IN PRESS

3When we include 1996–2001 market values and rates of return into the estimation and test whether the

data from this time period is consistent with the parameters estimated using just 1953–1995 time series, the

test strongly rejects. Also, the market values from 2001 on came back in line with parameter estimates

from 1953–1995 data. See Laitner and Stolyarov (2003, Table 4) for more details.
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technological revolution occurred at t1Af1972; 1973; 1974g: The parameters which
we calibrate are a; y; n; Z0; Z1; g0; g1; s; and d: They constitute a vector ~uu:4

The results of Section 2 do not depend on whether or not Lt grows at a constant
rate, and henceforth we take Lt to be an exogenous function of time. We provide two
different measurements of it. The first is NIPA labor hours (normalized to 1 in
1954).5 The second is the product of the first and a quality index for private labor
input from Ho and Jorgenson.6 The ‘‘quality’’ index corrects for changes in age, sex,
education, and class of employment (i.e., self-employed or wage/salary).
For the estimation, we use a discrete-time version of our model, which matches

annual data. Note that the variable Mt measures end-of-year net worth, hence the
level at the start of year t þ 1: The difference version of (37) is

Mt ¼ mðMt�1; tÞ � s %Zt½Mt�1�a½Lt�n þ 1� d�
gi

a

� �
Mt�1: ð43Þ

The equations of our statistical model have the form

f i
t ¼ ei

t; i ¼ 1;y; 7:

In each case, f i
t gives, as described below, the discrepancy between a current

dependent variable and a function, which the theoretical model determines, of
exogenous variables, past dependent variables, and parameters. ei

t is a regression
error.
We assume that the instant after the revolution of t1; the resale value of existing

capital falls according to (29). Using that formula, define

*Mt ¼
Mt

Z0
Z1

� �1=a
; t ¼ t1;

Mt; tat1:

8<
:

Then our regression equations are as follows:

f 1t � lnðMtÞ � lnðmð *Mt�1; tÞÞ; t ¼ 1953;y; 1996; ð44Þ

f 2t � lnðGDP�t Þ � lnðð1� ysÞ %Zt½ *Mt�1�a½Lt�nÞ; t ¼ 1953;y; 1996; ð45Þ

f 3t � lnðIKtÞ � lnðð1� yÞs %Zt½ *Mt�1�a½Lt�nÞ; t ¼ 1953;y; 1996; ð46Þ

f 4t �
WtLt

GDP�t
� ð1� ttÞ

n
gð1� ysÞ

; t ¼ 1953;y; 1996; ð47Þ

f 5t � lnðDtÞ � lnð%dð1� yÞ *Mt�1Þ; t ¼ 1953;y; 1996; ð48Þ

f 6t � rt � ð1� ttÞ
a
g
%Zt½ *Mt�1Þ�a�1½Lt�n � Dt

� �
; t ¼ 1953;y; 1996; ð49Þ
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4Notice that our empirical analysis will not separately identify N:
5NIPA table 6.9B, row 2. See http://www.bea.doc.gov/bea/dn1.htm. This measures annual hours of full

and part-time employees of domestic industries in the U.S.
6See Mun S. Ho and Dale Jorgenson, ‘‘The Quality of the U.S. Workforce 1948–95,’’ updated tables

through 1999, http://post.economics.harvard.edu/faculty/jorgenson/papers/papers.html.
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where Dt is physical depreciation plus the capital loss from obsolescence:

Dt ¼

dþ
1

a
g0 if tot1;

dþ
1

a
g1 þ 1�

Z0

Z1

� �1=a
" #

; if t ¼ t1;

dþ
1

a
g1 if t > t1;

8>>>>>>><
>>>>>>>:

f 7t ¼ ln
pe

tþ1

pe
t

� �
þ
1

a
ln

Zðt þ 1Þ
ZðtÞ

� �
; t ¼ 1953;y; 1983: ð50Þ

Appendix A lists our data sources. As stated, (44) comes from (35). Notice that
since f 1t is a difference of logarithms, there is no reason to think of e1t as having a time
trend—it equals the log of the ratio of actual to predicted M : The same logic applies
for the second, third, and fifth equations above.
Eq. (45) comes from (40): the left side is the log of the flow of GDP (omitting

residential housing services)—see Appendix A; the right side is the cumulative flow
of the model’s prediction of the same.
Eq. (46) comes from (39). In (47), factor payments to labor, as a fraction of GDP�;

are equated to the same from the model. Before doing so, we introduce indirect
business taxes, which affect the marginal revenue products of inputs. Let t�t be the
measured indirect tax rate. We set the tax rate tt ¼ t�t ð1� ysÞ in (47) to make tax
collections ttYt match NIPA tax collections t�t GDP�t :
In (48), Dt is the annual flow of NIPA depreciation. The latter includes both

physical deterioration and declining resale value due to obsolescence. Therefore, on
the right side of (48), %d combines physical deterioration and obsolescence—from
both continuous and revolutionary technological change. The counterpart of the
long-run average depreciation rate in our model is the physical depreciation rate d
plus the average rate of obsolescence from flow embodied technical progress and
technological revolutions. Accordingly, we set

%d � dþ
1

a
g0

t1 � 1953

1995� 1953

� �
þ g1

1995� t1

1995� 1953

� �� �
þ

1

T
1�

Zðt1 � 0Þ
Zðt1 þ 0Þ

� �1=a
" #

;

where T is the average interval between major technological revolutions. We set T

from long-term data on revolutionary inventions. For example, Cohen et al. (2000,
p. 30) list 5–7 distinct revolutionary inventions over the last 200 years. This suggests
a value of T between 30 and 40: We experimented with values of T between 30 and
50 and found that our results are essentially unchanged. Longer term stock market
data seem to be consistent with the same values of T : during the 20th century there
were three major market declines of roughly the same magnitude: in 1916, 1929 and
1972. Accordingly, we set T ¼ 30 (see Laitner and Stolyarov, 2003).
Note we do not use the NIPA capital stock series. It is constructed using a

depreciation rate that is constant over time. This misses the unevenness of
obsolescence, especially during episodes of revolutionary change (see Laitner and
Stolyarov, 2003).
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Eq. (49) incorporates data on the empirical rate of return on financial investments,
rt: The latter comes from ex post returns—see Appendix A. The right side of (49)
comes from Lemma 1: it is the model’s average rate of return, including capital
losses, during year t:
Eq. (50) matches the decline in the quality-adjusted relative price of private non-

residential investment with its counterpart in the model, according to (41). The
quality adjusted equipment price index is available from 1953 to 1983; and we only
use Eq. (50) for this subperiod. See Appendix A for details.
We estimate (44)–(50) from a collection of first moments,

mð~uuÞ ¼
1

1995� 1953

X1995
t¼1953

f 1t v1t

y

f 7t v7t

0
B@

1
CA

where vi
t is a vector of ones and zeros.7

The vector vi
t is the same for Eqs. (44)–(45), and (49)—having six elements. The

first element is 1 for tot1; and 0 otherwise; the second is 1 for tXt1; and 0 otherwise;
the third is 1 for first and third thirds of the time interval before t1; and 0 elsewhere;
the fourth is 1 for the first third and �1 for the third, and 0 elsewhere; the fifth is 1
for the first and third thirds of the time interval with tXt1; and 0 elsewhere; and, the
sixth is 1 for the first third and �1 for the third, and 0 elsewhere. The rationale is as
follows. We think of our data as forming a panel of episodes ½ti; tiþ1Þ; i ¼ 0; 1;y :
Econometrically, we think of the length of each episode as very long. Our period of
analysis includes two episodes. The first two elements of vi

t embody the idea that the
mean of eiT should be 0 over each episode. Beyond that, the model has specific
predictions. For example, within an episode, lnðMtÞ should rise rapidly at first, then
its rate of increase should diminish as it converges to a steady-state level—recall
Fig. 1. Elements 3–4 and 5–6 allow us to attempt to match such precise patterns.
For (46)–(47), the model does not make episodic predictions; and, for (48), the

data only reflects average depreciation over entire episodes. Thus, vi
t for i ¼ 3; 4; 5

has a single element, 1.
For (50), we let the first element of v7t be 1 prior to t1; and 0 after; the second

element is 0 before t1; and 1 for tXt1: In fact, to eliminate possible data irregularities
from the Nixon price controls, we set all elements of v7t to 0 for tAf1972; 1973; 1974g:
Our estimation steps follow Gallant (1987, Chapter 6). Define

Sð~uu;V Þ � ½ð1995� 1953Þmð~uuÞ�0V�1½ð1995� 1953Þmð~uuÞ�:

We choose parameter values to minimize Sð:Þ: There are two stages. In the first, V

has submatricesX
t

½vi
t�½v

i
t�
0

ARTICLE IN PRESS

7Nonlinear least squares would have a consistency problem from the lagged dependent variable in (44)–

(45) if E1T and E2T are autocorrelated. Pure calibration (which would roughly correspond to using single-

element instruments below, always equaling 1) would not be able to set 9 parameters from 6 equations.
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along its principal diagonal. Given this V ; minimizing Sð:Þ with respect to ~uu yields
consistent estimates. Using these to evaluate f i

t ; we form an improved estimate #V of
V ; which is consistent even with autocorrelated and heteroscedastic errors. The
second stage minimizes Sð:; #VÞ; yielding our estimator #u: Finally, we compute the
covariance matrix for #u:

3.5. Method of moments parameter estimates

We estimate three specifications of our model. (i) The first one, which we call the
‘‘flow model,’’ restricts ZðtÞ in (42) to be continuous and growing at rate g0 before
date t1 and at rate g1 afterwards. We estimate, g0X0; g1X0 and Z0; Z1 is pinned
down by the constraint

Z1 ¼ Z0e
g0ðt1�1953Þ:

The estimation uses Eqs. (44)–(50). (ii) The second specification, which we call the
‘‘punctuated model,’’ excludes flow technological progress but allows a discrete step
at t1: In particular, we set g0 ¼ g1 ¼ 0; but estimate Z1 subject only to Z1XZ0: Since
an index for investment good prices in efficiency units is likely to be conceptually
inconsistent with this formulation, we employ only Eqs. (44)–(49). The price effects
of embodied technological progress can still be manifest, of course, in the resale
value of used capital and ex post financial rates of return—which (44) and (49) can
capture. Section 4 provides a detailed discussion on the omission of (50). (iii) The
third specification, which we call the ‘‘combined model,’’ allows both flow and
punctuated technological change: we estimate g0X0; g1X0; and Z1; subject to the
constraint

Z1XZ0e
g0ðt1�1953Þ:

Again, the estimation uses (44)–(49).
Table 1 presents our estimates.8 As discussed above, we have two labor series. We

also estimate conditional on three possible revolution dates t1Af1972; 1973; 1974g;
hence, there are 6 sets of estimates for each of our three model specifications. The
instruments in our method of moments procedure are, as also described above,
always vectors of ones and zeros; maintaining the spirit of calibration, we do not
employ independent variables or lagged dependent variables as instruments.
Nevertheless, the number of instruments exceeds the number of estimable
parameters in every case, and Table 1 presents the p-values of chi-squared tests of
overidentification restrictions. The tests never reject at the 5% significance level.

ARTICLE IN PRESS

8Our regression equations involve variables with trend growth, and we therefore need to check if the

residuals are growing as well, because this may lead to inconsistent parameter estimates. For all 18 sets of

estimates, we perform equation-by-equation autoregressions of residuals as well as the VARs for the whole

set of equations. The residuals of Eqs. (46)–(48) for the saving share, labor share and average depreciation

rate, respectively, have the highest AR coefficients—they are in 0.70–0.92 range for the flow model and in

0.75–0.88 range for the punctuated and combined models. The VARs produce similar results: the largest

(by absolute value) eigenvalue of the coefficient matrix is in the 0.90–0.95 range for the flow model, and in

the 0.80–0.90 range for the punctuated and combined models.
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Table 1

Estimation results

Flow model: point estimates (standard errors in parenthesis)

Labor series 1 Labor series 2

Revolution date 1972 1973 1974 1972 1973 1974

Share of intangible

capital, aA

0.077 0.077 0.112 0.077 0.032 0.078

(0.059) (0.059) (0.044) (0.050) (0.066) (0.047)

Share of physical

capital, aK

0.282 0.255 0.222 0.215 0.245 0.210

(0.043) (0.043) (0.032) (0.034) (0.046) (0.031)

Returns to scale, g 1.34 1.29 1.15 1.06 1.09 1.04

(0.067) (0.075) (0.067) (0.053) (0.055) (0.051)

Physical

depreciation rate, d
0.053 0.047 0.056 0.046 0.034 0.047

(0.013) (0.014) (0.014) (0.015) (0.016) (0.015)

Savings rate, s 0.150 0.154 0.173 0.159 0.136 0.161

(0.025) (0.028) (0.025) (0.028) (0.030) (0.027)

Growth rate, g0 0.0057 0.0080 0.0093 0.0065 0.0061 0.0074

(0.0012) (0.0012) (0.0011) (0.0012) (0.0011) (0.0011)

Growth rate, g1 0.0035 0.0057 0.0059 0.0060 0.0059 0.0059

(0.0012) (0.0013) (0.0014) (0.0011) (0.0012) (0.0014)

TFP level Z0 20.15 17.18 14.92 13.67 14.71 13.49

(2.41) (2.36) (2.07) (1.44) (1.09) (1.39)

Calculated parameters

Capital share, a
(95% confidence

interval)

0.36 0.33 0.33 0.29 0.28 0.29

(0.32, 0.40) (0.29, 0.37) (0.30, 0.37) (0.26, 0.33) (0.23, 0.32) (0.25, 0.32)

Share of intangible

capital in M; y
0.21 0.23 0.34 0.26 0.12 0.27

Test of

overidentifying

restrictions, p-

value, w2ðSð:Þ; 15Þ

0.871 0.851 0.876 0.884 0.854 0.883

Punctuated model: point estimates (standard errors in parenthesis)

Labor series 1 Labor series 2

Revolution date 1972 1973 1974 1972 1973 1974

Share of intangible

capital, aA

0.130 0.113 0.114 0.057 0.028 0.064

(0.052) (0.055) (0.051) (0.061) (0.066) (0.056)

Share of physical

capital, aK

0.229 0.250 0.248 0.233 0.253 0.235

(0.032) (0.036) (0.034) (0.039) (0.046) (0.036)

Returns to scale, g 1.22 1.29 1.27 1.09 1.11 1.11

(0.059) (0.063) (0.058) (0.044) (0.044) (0.041)

Physical

depreciation rate, d
0.066 0.061 0.061 0.049 0.041 0.050

(0.016) (0.014) (0.014) (0.016) (0.015) (0.014)

Savings rate, s 0.179 0.169 0.171 0.148 0.135 0.151

(0.028) (0.027) (0.025) (0.030) (0.030) (0.028)

TFP level Z0 17.04 20.39 19.25 14.87 15.78 15.88

(2.19) (2.69) (2.29) (1.01) (0.81) (1.07)

TFP change, Z1; Z0 3.28 3.29 3.41 2.62 2.67 2.69

(0.33) (0.33) (0.26) (0.23) (0.28) (0.17)
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Calculated parameters

Capital share, a
(95% confidence

interval)

0.36 0.36 0.36 0.29 0.28 0.30

(0.32, 0.40) (0.32, 0.41) (0.32, 0.41) (0.24, 0.34) (0.23, 0.33) (0.26, 0.34)

Share of intangible

capital in M; y
0.36 0.31 0.32 0.20 0.10 0.21

Test of

overidentifying

restrictions, p-

value, w2ðSð:Þ; 14Þ

0.870 0.862 0.828 0.818 0.762 0.743

Combined model: point estimates (standard errors in parenthesis)

Labor series 1 Labor series 2

Revolution date 1972 1973 1974 1972 1973 1974

Share of intangible

capital, aA

0.107 0.086 0.121 0.071 0.042 0.085

(0.050) (0.046) (0.043) (0.053) (0.054) (0.030)

Share of physical

capital, aK

0.221 0.211 0.190 0.212 0.219 0.198

(0.032) (0.087) (0.333) (0.033) (0.028) (0.014)

Returns to scale, g 1.14 1.05 1.03 1.03 1.00 1.00

(0.058) (0.036) (0.333) (0.046) NA NA

Physical

depreciation rate, d
0.064 0.050 0.065 0.055 0.041 0.058

(0.015) (0.027) (0.022) (0.016) (0.018) (0.001)

Savings rate, s 0.172 0.164 0.186 0.158 0.143 0.166

(0.028) (0.030) (0.027) (0.030) (0.027) (0.017)

Growth rate, g0 0.0058 0.0086 0.0090 0.0036 0.0051 0.0050

(0.0016) (0.0090) (0.0089) (0.0015) (0.0014) (0.0010)

Growth rate, g1 0 0.0023 0.0018 0 0.0012 0

NA (0.0077) (0.0076) NA (0.0011) NA

TFP level, Z0 14.33 12.70 12.03 13.03 12.62 12.68

(1.72) (8.43) (7.40) (1.16) (0.41) (0.14)

TFP change, Z1;
Z0e

g0ðt1�t0Þ
2.73 2.21 2.08 2.33 2.12 2.18

(0.29) (1.45) (1.39) (0.23) (0.33) (0.20)

Calculated parameters

Capital share, a 0.33 0.30 0.31 0.28 0.26 0.28

(0.29, 0.37) (0.12, 0.47) (0.13, 0.49) (0.24, 0.33) (0.21, 0.31) (0.25, 0.31)

Share of intangible

capital in M; y
0.33 0.29 0.39 0.25 0.16 0.30

Test of

overidentifying

restrictions, p-

value, w2ðSð:Þ; 13Þ

0.686 0.599 0.587 0.678 0.696 0.616

Table 1 (continued)

Punctuated model: point estimates (standard errors in parenthesis)

Labor series 1 Labor series 2
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We now present a detailed analysis of our results.

4. Results

Continuous technological change. We first estimate our model imposing the
constraint that Z changes continuously. This specification is a bridge between our
analysis and existing studies of embodied technical change such as Greenwood et al.
(1997) and Gort et al. (1999). Our estimation uses all seven of Section 3’s equations,
incorporating Gordon’s (1990) quality adjusted price series for producer durable
equipment (see Appendix A).
The conventional approach for measuring the rate of technological progress

compares the growth rates of output and inputs. Taking a time derivative
of both sides of aggregate production function (32), and using the notation
gX � ’X=X ;

gY ¼ gZ þ agM þ ngL: ð51Þ

There are three ways in which the right-hand side can explain a given growth rate of
output: (i) inputs can grow relatively rapidly, (ii) returns to scale—i.e., the sum
g � aþ n—can be relatively high, or (iii) technological progress—i.e., gZ—can be
relatively rapid. We have observations on M and two different measures of L; our
focus is separating the roles of the remaining two elements, returns to scale and
technological progress.
With continuous productivity change, basically we have a two-pronged strategy:

Eq. (45) compares output and input quantities as in (51); Eq. (50) compares the rate
of technological progress with the rate of decline of quality-adjusted investment
good prices as in (41). In words, our theoretical model leads to a primal and a dual
framework for pinning down the roles of technological progress and increasing
returns to scale. In (51), higher returns to scale reduce the need for positing a high
rate of technical progress; conversely, in (41) a higher a requires a higher gZ to match
the same price series.
Table 2 presents the estimates. The first three columns employ NIPA labor data;

the second three use labor corrected for quality improvements that occur over time.
On the grounds of sophistication and economic logic, we prefer the quality adjusted
labor series. Each column assumes a specific date t1 ¼ 1972; 1973, or 1974 for the IT
revolution.
Table 2’s point estimates of aggregate returns to scale (i.e., g) are all greater than 1.

Our quality adjustment to labor makes gL higher, especially prior to 1970, a period
when education was growing especially rapidly. Eq. (51) implies that faster input
growth leaves less of a role for increasing returns and technological progress.
Switching from labor series 1 to 2 affects both of the latter: the point estimates of g
go down, and the estimates of g0 also become smaller and much more similar to g1:
The estimated rates of change for investment goods prices per efficiency unit �g0=a
and �g1=a roughly match the observations, except with labor series 1 and t1 ¼ 1972;
where the model picks g0 and g1 that are too low.
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Letting y be the average product of labor (i.e., y ¼ Y=L), one can rewrite
(51) as

ð1� aÞgy ¼ gZ þ aðgM � gY Þ þ ðg� 1ÞgL: ð52Þ

The terms on the right-hand side correspond to contributions from embodied
technical progress, capital deepening, and returns to scale, respectively, and the last
three rows of Table 2 provide a productivity decomposition based on these. For
quality-adjusted labor, our estimate of the total share of embodied technological
change in productivity growth agrees with the 60% share in Greenwood et al. (1997)
and 52% share in Gort et al. (1999). We differ from the existing studies in our
interpretation of the remainder ð1� aÞgy � gZ: In Greenwood and Gort, the long-
run rate of TFP growth equals ð1� aÞgy: These authors independently estimate gZ:
But, because they use a balanced growth approximation, they identify the left over
ð1� aÞgy � gZ as the rate of ‘‘neutral’’ technical progress. In contrast, we set the
parameters of our model from the entire time path of macroeconomic variables, and
we interpret ð1� aÞgy � gZ as a combination of contributions from capital deepening
and increasing returns. Even with continuous technological change, it seems
plausible that capital deepening was important in the U.S. after WWII and the Great
Depression.
Despite its correspondence to the existing literature, we believe the specification

with flow embodied technical progress has a number of shortcomings. First, it is
inconsistent with abrupt falls in the stock market and sharp variations in the rate of
return on financial investments. This inconsistency is manifested in Fig. 2 that shows
the simulation results for the flow model. We perform dynamic simulations from t1
forward to 1995 and backward to 1953. The model does not track market values,
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Table 2

Flow model: Z0e
g0ðt1�t0Þ ¼ Z1

Labor series 1 Labor series 2

1972 1973 1974 1972 1973 1974

Returns to scale (95%

confidence interval)

1.34 1.23 1.15 1.06 1.09 1.04

(1.20, 1.47) (1.07, 1.37) (1.02, 1.29) (0.96, 1.16) (0.98, 1.20) (0.94, 1.14)

Lagrange multiplier test

(significance): Z0e
g0ðt1�t0Þ ¼ Z1

0.006 0.004 0.001 0.004 0.004 0.001

�g0=a (%) (actual, 1953-t1) �1:59 �2:41 �2:78 �2:23 �2:16 �2:57
ð�2:39Þ ð�2:51Þ ð�2:76Þ ð�2:39Þ ð�2:51Þ ð�2:76Þ

�g1a (%) (actual, t1-1995) �0:97 �1:72 �1:77 �2:05 �2:12 �2:05
ð�2:15Þ ð�2:03Þ ð�1:76Þ ð�2:15Þ ð�2:03Þ ð�1:76Þ

Average productivity growth decomposition, shares, 1953–1995

Embodied technical change 0.33 0.49 0.56 0.58 0.55 0.63

Capital deepening 0.30 0.27 0.27 0.30 0.28 0.30

Returns to scale 0.37 0.24 0.17 0.12 0.17 0.07
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especially in the earlier period, and it cannot produce any sizeable variations in the
rate of return. Formally, Table 2 shows that a Lagrange multiplier test of the
constraint Z0e

g0ðt1�t0Þ ¼ Z1 rejects even at a very low significance level. Second, many
commentators have written on the significance of the IT revolution and dated it to
the early 1970s, but in all cases the estimated flow rate of technological progress is
less after t1 than before.

Punctuated technological progress. In our second specification, technological
progress is punctuated. Discontinuous improvements arrive every 20–40 years at
Poisson time intervals, with no technological progress in between.
The analysis again offers two ways of measuring the rate of technological progress

and returns to scale. The ‘‘primal’’ approach based on quantitites—see (45)—
remains as above. Lemma 2, Section 2, provides the ‘‘dual’’ approach by showing
that the resale price of used capital should drop after a seminal invention, the decline
having a precise relation to the degree of technical progress. Eq. (44) can pick up this
second relationship from stock market data, and Eq. (49) can do the same from
financial rates of return.
From an empirical standpoint, the punctuated specification is potentially

attractive in two other ways. First, instead of predicting that the economy will
converge to a steady state and subsequently remain in its vicinity, the punctuated
model projects a sequence of cycles: a seminal invention leaves the economy
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Fig. 2. Simulation results, flow model.
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significantly below its stationary capital-to-labor ratio, and the economy begins
converging toward the higher steady state; each new seminal invention reinitiates the
process—e.g., Fig. 1. The predicted dynamics offer another basis for calibration—
indeed Section 3 chose its instruments to take advantage of the detailed implications
of Fig. 1. Second, empirical studies of the punctuated model can make use of the
dates for seminal inventions which historians independently provide.
Unfortunately, conceptually the punctuated model is almost surely inconsistent

with Gordon’s efficiency-unit-price data. In practice, construction of such indices
relies heavily on tracking the nominal prices of sets of goods whose specifications
remain the same, yet the punctuated model associates technological progress
precisely with the introduction of qualitatively new investment goods. In theory, ad
hoc hedonic procedures could lead to accurate measures of investment-good prices
per efficiency unit, but that would require enormous sophistication—e.g., Gordon
(1990, pp. 38–39). As Gordon (1990, p. 96) writes,

The most important single innovation in the capital goods industry during the
postwar period has been the replacement of the clerk working with a calculating
machine by the electronic computer. The hedonic technique has been used to
evaluate quality improvements in computers, but not to evaluate the relative
quality of computers and calculating machines.

In fact, one could view our punctuated model as developing its own, exact hedonic
index directly from an equilibrium framework. In the end, we estimate the
punctuated model from Eqs. (44)–(49).
Table 3 presents the estimates. Point estimates of g are more narrowly bunched

than for Table 2, and their standard errors are slightly smaller. All of the point
estimates imply increasing returns to scale, and none of the 95% confidence intervals
include constant returns. The punctuated model imposes constraints g0 ¼ g1 ¼ 0:
With labor series 2, a Lagrange multiplier test of these restrictions accepts a zero
multiplier at the 5% significance level. (Recall that the flow model, in contrast,
rejected the constraint imposing continuity at t1).
With labor series 2, our estimates of g range from 1.09 to 1.11. They are close to

corresponding estimates from the flow model reported in Table 2. The confidence
intervals include the 1.01–1.03 range from aggregate returns to scale reported in
Basu and Fernald (1997). Data on price markups offer an independent source of
evidence: in our model, the markup equals g (see Lemma 1); for comparison, Jones
and Williams (2000) suggest that empirical markups range from 1.05–1.4.9

Across our preferred estimates, the upper end of the confidence interval for g is no
more than 1.20, which we suggest as an upper bound on aggregate returns to scale.
This upper bound is of separate interest in macroeconomics. Apart from
productivity measurement, it is important for evaluating the empirical relevance
of existing growth models. Many macroeconomic models rely on some mini-
mum degree of increasing returns to generate qualitatively new results, such
as indeterminacy in one–sector growth models (e.g., Farmer and Guo, 1994;
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Schmitt-Grohe, 1997), or rising real wages with government purchases (Rotemberg
and Woodford, 1992).10

Integrating both sides of (52) from t0 ¼ 1953 to t2 ¼ 1995 (with a Stieljes integral),

ð1� aÞ ln
y2

y0

� �
¼ ln

Z2

Z0

� �
þ a ln

M2

M0

� �
� ln

Y2

Y0

� �� �
þ ðg� 1Þ ln

L2

L0

� �
: ð53Þ

Table 3 shows a productivity decomposition based on the right-hand side of (53). In
the calculations, the only event associated with investment specific technical progress
is the IT revolution. With our preferred estimates, roughly 40% of overall
productivity growth during 1953–1995 came from the IT revolution, 35% came
from capital deepening, and 25% resulted from increasing returns to scale.
The punctuated model has the advantage of being able to explain the stock market

decline of the early 1970s. Fig. 3 shows simulations of the punctuated model with
labor series 2. For revolution dates t1 ¼ 1972 and 1974, simulations of M; GDP�;
and r fit the data well; these are by far the best simulations that any of the estimates
in Table 1 produce.11
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Table 3

Punctuated model: g0 ¼ 0; g1 ¼ 0

Labor series 1 Labor series 2

1972 1973 1974 1972 1973 1974

Returns to scale (95%

confidence interval)

1.22 1.29 1.27 1.09 1.11 1.11

(1.11, 1.34) (1.17, 1.42) (1.15,1.38) (1.01, 1.18) (1.03, 1.20) (1.03, 1.19)

Lagrange multiplier test

(significance): g0 ¼ 0;
g1 ¼ 0

0.06 0.02 0.03 0.13 0.11 0.13

PM
0;t1

¼
Z0

Z1

� �1=a

0.61 0.66 0.64 0.57 0.57 0.60

TFP change from IT

revolution, Z1=Z0

1.19 1.16 1.18 1.18 1.17 1.17

Average productivity growth decomposition, shares, 1953–1995

IT revolution 0.37 0.30 0.32 0.43 0.42 0.40

Capital deepening 0.35 0.34 0.34 0.36 0.35 0.36

Returns to scale 0.28 0.36 0.34 0.21 0.23 0.24

10On the other hand, multisector models can generate indeterminacy with relatively small increasing

returns (Benhabib and Farmer, 1996; Perli, 1998) and this can follow even with firm-level decreasing

returns but aggregate constant returns (e.g., Benhabib et al., 2000).
11While the model overpredicts the stock market decline—the predictions for labor series 2 in Table 2

being 40–43%, and the actual decline being 22%—our Flow of Funds data for M includes noncorporate

as well as corporate business, and noncorporate values may be less accurate. Our rate of return data, on

the other hand, comes exclusively from corporations. This data shows exceptional declines for two

consecutive years, and the sum of the two declines closely matches the simulation’s single negative return.
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The punctuated model is in full agreement with the idea of productivity
enhancements from the IT revolution: Table 3 shows abrupt productivity growth
at t1 of 17–18% for labor series 2.
As indicated above, by nature the model disagrees with Gordon’s price data; the

model predicts the relative price of investment goods will follow a step pattern—
constant until t1; dropping abruptly at t1; and then constant until 1995. Nevertheless,
we can compare total effects. Gordon’s data show an average fall in the relative price
of nonresidential investment goods of about 2.2% annually. From 1953 to 1983, the
total drop is then 48%. With labor series 2, Table 3 implies that the decline over the
same period in the price per efficiency unit of investment is 40–43%.12

Combined model. We can estimate general specification (42) combining punctuated
and flow embodied technological change. We assume a revolution at t1 and flow
change before and after this date, the latter at rates g0 and g1; respectively. We
impose the constraints that ZðtÞ be nondecreasing and that gX1: As argued above,
conventional hedonic price indices are likely to be inconsistent with discontinuous
changes in technology; therefore, we estimate the combined model with six equations
(44)–(49).
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Fig. 3. Simulation results, punctuated model.

12Notice that 1953–83 coincidentally corresponds to the average duration of one revolutionary cycle in

the U.S., which Section 3 estimated to be 30 years.
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Table 4 shows our results. The estimates of aggregate returns to scale are
somewhat lower than Tables 2 and 3, and constant returns are never rejected. At a
5% significance level, a Wald test rejects simplification to either the punctuated
model (i.e., g0 ¼ 0 ¼ g1) or the flow model (i.e., Z0e

g0ðt1�t0Þ ¼ Z1). However, the
estimated magnitude of the IT revolution, Z1=ðZ0e

g0ðt1�t0ÞÞ; remains almost as large
(i.e., 14–17%) as for the punctuated model. For labor series 2, the average rate of
decline of investment prices 1953–83 (see the discussion above) roughly matches the
Gordon index’s annual rate of change of �2:2%:
In terms of productivity decomposition, Table 4’s shares of the IT revolution and

of capital deepening are similar to those for the punctuated model, especially for
estimates based on labor series 2. Flow technological change inherits much of the
former share of increasing returns, however. Averaging shares over cases with labor
series 2 yields the following decomposition for the combined framework: 38% of
overall growth in the average product of labor is due to the IT revolution, 26% is
due to other embodied technological progress, 34% is due to capital deepening, and
2% is attributed to increasing returns to scale.
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Table 4

Combined model

Labor series 1 Labor series 2

1972 1973 1974 1972 1973 1974

Returns to scale (95%

confidence interval)

1.14 1.05 1.03 1.03 1.00 1.00

(1.03, 1.25) (0.35, 1.76) (0.38, 1.69) (0.94, 1.12) NA NA

g0 (%) 0.57 0.86 0.90 0.36 0.50 0.50

g1 (%) 0 0.23 0.17 0 0.12 0

Lagrange multiplier test

(significance): g ¼ 1

NA NA NA NA 0.78 0.88

Wald test (significance)

g0 ¼ 0; g1 ¼ 0

0.0003 0.0005 0.0000 0.0171 0.010 0.0000

Wald test (significance)

Z0e
g0ðt1�t0Þ ¼ Z1

0.0000 0.1275 0.1356 0.0000 0.0000 0.0000

PM
0;t1

¼
Z0

Z1

� �1=a

0.62 0.63 0.65 0.58 0.58 0.60

TFP change from IT

revolution Z1=Z0e
g0ðt1�t0Þ

1.17 1.15 1.14 1.17 1.15 1.16

Average rate of change

in the relative price of

investment, 1953–1995

(%)

�1:93 �2:89 �2:75 �1:88 �2:45 �2:09

Average productivity growth decomposition, shares, 1953–1995

IT revolution 0.31 0.26 0.26 0.41 0.36 0.38

Flow embodied

technical change

0.21 0.42 0.43 0.18 0.33 0.28

Capital deepening 0.30 0.26 0.28 0.35 0.31 0.34

Returns to scale 0.18 0.06 0.03 0.06 0 0
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Fig. 4 shows the simulation results for the combined model. As expected,
simulation results are better than those in Fig. 2. Perhaps more unexpectedly, the
simulations of the punctuated model in Fig. 3 still produce a much better fit for the
M and GDP� data.

Discussion. Tables 2–4 and Figs. 2–4 suggest the following summary observations.
(i) Although labor quality issues are not the primary topic of this paper, one’s choice
of labor series makes a big difference to one’s estimate of g in Tables 2–4. (ii) Our
preferred formulation is one with punctuated technological progress alone. Lagrange
multiplier tests accept this specification; it yields excellent dynamic simulations,
whereas the other models do not; it is consistent with, and offers an explanation of,
the stock market decline of the early 1970s; and, it bears out the popular notion of an
information technology revolution—perhaps based on the microprocessor—in the
U.S. economy beginning in the early 1970s. The flow model, in contrast, is
inconsistent with the stock market decline and shows no evidence of an IT
revolution—indeed it seems to imply that technological progress slowed down after
1970. Our combined model attributes a larger share of its growth decomposition to
punctuated than continuous change, and its quantitative assessment of the IT
revolution agrees with the punctuated model. Although a Wald test on the combined
model rejects specialization to the punctuated model, most of the conflict appears to
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Fig. 4. Simulation results, combined model.

J. Laitner, D. Stolyarov / Journal of Monetary Economics 51 (2004) 191–233220



lie in the pre-1970s period. Perhaps incorporation of several (smaller) revolutions
preceding 1970, based on organic chemicals and/or mainframe computers (i.e.,
Mowrey and Rosenberg, 1998), would eliminate the rejection. (iii) All of the models
point to rather modest degrees of increasing returns to scale in the aggregate, with
point estimates for g lying between 1.00 and 1.11 for labor series 2.
Finally, (iv) the growth decompositions for all of the models suggest an important

role for capital deepening. In the very long run, capital deepening should have
zero average contribution to growth. Nevertheless, for our sample period the
share of capital deepening is one quarter to one third. Our analysis there-
fore provides a warning that a balanced growth approximation may not be very
accurate.

5. Conclusion

We develop a new way to decentralize an economy with aggregate increasing
returns to scale. Although the treatment of constant returns and increasing returns
economies in the growth literature has been somewhat separate, our approach treats
both within a unified framework. The classic Solow (1960) model is a special case of
ours. More importantly, we show that the aggregation properties that made Solow’s
model suitable for growth accounting carry over to our setting with increasing
returns to scale and discontinuous embodied technological change.
Increasing returns require imperfect competition, and our model has two

implications about industrial organization: our equilibrium requires a constant
markup of price over marginal cost, and the equilibrium implies a constant number
of oligopolists per industry over time. As a depiction of the U.S. economy, a model
with oligopoly and a constant concentration arguably has more appeal than one
based on monopolistic competition or pure monopoly.13

We use our model to provide a new methodology for disentangling TFP growth
and returns to scale. Whether technological change is continuous or punctuated, we
can use two types of data at the same time: our model characterizes technological
progress and returns to scale in terms of the relation of quantities of inputs and
outputs and in terms of changes in the price of old capital or new investment goods
per efficiency unit. When technological progress is discontinuous, our model
provides additional predictions about non-steady state behavior. We believe that we
can estimate returns to scale more precisely than existing approaches based on
production function regressions alone. The estimates we favor set the aggregate
output elasticity for the U.S. at about 1.1.
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13For example, Scherer (1990, Table 3.7 and p. 82) infers that ‘‘something on the order of half of all U.S.

manufacturing industries can be characterized as oligopolies.’’ Similarly, Shepherd (1972) concludes that

about half of manufacturing value added comes from industries that are ‘‘tight oligopolies.’’ Moreover, as

would be consistent with our model, Scherer finds little empirical evidence of trend: the proportion of

manufacturing value added coming from industries with a four-firm concentration ratios above 50% is

35.3% for 1947, 39.2% for 1972, and 37.1% for 1982.
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Appendix A. Data sources

This appendix presents the data for Section 3’s calculations.
Right-hand side of (44). MT is private, nonresidential net worth. Source: U.S. Flow

of Funds

http : ==www:federalreserve:gov=releases=z1=Current=data:htm

The construction is table L.100, row 1; minus L.100, row 25; minus L.106, row 15,
and L.105, row 18; plus L.105, row 7, and row 10; plus L.108, row 10; minus L.106,
row 14, and L108, row 15; plus L.107, row 1; minus L.107, row 23.

Right-hand side of (45). All NIPA data comes from

http : ===www:bea:doc:gov=bea=dn=nipaweb=SelectedTables:asp

GPD� is nominal GDP (table 1.1, row 1); less housing services (table 2.2, row 14);
divided by personal consumption chain price index (table 7.1, row 7).

Right-hand side of (46). IK is fixed nonresidential investment (table 1.1, row 8);
plus change in private inventories (table 1.1, row 12); divided by personal
consumption chain price index (table 7.1, row 7).

Right-hand side of (47). ‘‘Employee compensation’’ is NIPA table 1.14, row 2;
‘‘proprietor wages and salaries (WS)’’ is table 1.15, row 13; NI� is national income,
table 1.9, row 17, less housing services, table 2.2, row 14; ‘‘proprietor’s income’’ is
table 1.14, row 9. Then

LS� ¼
employee compensation� proprietor WS

NI� � proprietor’s income� proprietor WS

NI�

GDP�
:

Right-hand side of (48). DP� is NIPA consumption of nonresidential fixed capital
(table 5.2, row 8), divided by personal consumption chain price index (table 7.1,
row 7).

Right-hand side of (49). t is the indirect business tax rate: NIPA table 1.9, row 13,
divided by table 1.5, row 6.

r� is as follows. Let d1 be Flow of Funds nonfarm, non-financial corporate total
financial assets; less nonfarm, non-financial corporate total financial liabilities;
divided by nonfarm, non-financial corporate market value equity. Setting

o �
d1

1� d1
;

o is debt as a fraction of business financing. Then

r� ¼ o interestþ ð1� oÞ equityþ ð1� oÞ corp tax� inflation;

where ‘‘interest’’ is the 6-month nominal interest rate on prime commercial paper,
series 4 from

http : ==www:econ:yale:edu=Bshiller=data=chapt26:html

‘‘equity’’ is percent appreciation in average share price plus dividend divided
by share price (series 1–2 from the same source); ‘‘corp tax’’ is the same
dividend, times the NIPA corporate profits tax liability (table 1.14, row 23),
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divided by NIPA aggregate dividends (table 1.14, row 25); and, ‘‘inflation’’ is
percent rate of inflation for the NIPA personal consumption chain price index
(table 7.1, row 7).

Right-hand side of (50). pe
t is the ratio of the price index for private nonresidential

investment and the price index for personal consumption. The numerator of the ratio
is calculated in Fisher (2002) using Gordon (1990) quality-adjusted price index for
producer durable equipment prior to 1983 and BEA price index for structures. After
1983, no adjustment to the BEA price index for private nonresidential investment is
made. The denominator is the NIPA personal consumption chain price index (table
7.1, row 7).

Appendix B. Proofs

Proof of Lemma 1. To simplify notation for the proof , let m ¼ mfjt; l ¼ lfjt; y ¼ yfjt;
p ¼ pfjt; and mr ¼ mrfjt: Let Y� ¼ Yjt � y: Let Y ¼ Yt: Let P ¼ Pjt: Let W ¼ Wt and
R ¼ Rt:

Step 1. Verify the formula for marginal revenue.
From (8),

Y� þ y ¼ YP1=ðZ�1Þ:

So, if TRðyÞ is a firm’s total revenue, then

TRðyÞ ¼ Py ¼ ½Y �1�ZðY� þ yÞZ�1y:

Differentiating with respect to y;

MRðyÞ ¼ ½Y �1�Zð½Y� þ y�Z�1 þ ðZ� 1Þ½Y� þ y�Z�2yÞ ¼ P 1þ ðZ� 1Þ
y

Y� þ y

� �
:

Step 2. Derive the total cost function, marginal cost function, profit function, and
first-order conditions of profit maximization for firm f :
By definition,

TCðyÞ ¼ min
m;l

ðRm þ WlÞ

s:t: ypZ½m�a½l�n: ðB:1Þ

Since the set described by (B.1) is convex, the first order conditions determine the
cost function.
The Lagrangian for the cost minimization problem is

L � Rm þ Wl þ mfy � Z½m�a½l�ng

and the first order conditions for m and l read

R ¼ am
y

m
; W ¼ nm

y

l
: ðB:2Þ
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By the envelope theorem,

TC0ðyÞ ¼ MCðyÞ �
dL

dy
¼

@L

@y
¼ m:

Write the profit function as a function of only y:

p�ðyÞ ¼ TRðyÞ � TCðyÞ:

Differentiating,

d

dy
p�ðyÞ ¼ 0 3 mrðyÞ ¼ m:

One can now see from (B.2) that if y is a critical point for p�ð:Þ if and only if (13)–(14)
hold.
We can solve for TCðyÞ explicitly using the first order conditions (B.2):

TCðyÞ ¼ ðaþ nÞmy ¼ gmy:

Substituting (B.2) into (B.1) yields:

y ¼ ðmyÞgZ
a
R

� �a n
W

� �n
;

my ¼ y1=g Z
a
R

� �a n
W

� �nh i�1=g
:

Letting

x ¼ Z
a
R

� �a n
W

� �nh i�1=g
;

we can write

TCðyÞ ¼ gmy ¼ gxy1=g:

We can now write the profit function explicitly:

p�ðyÞ ¼ TRðyÞ � TCðyÞ ¼ ½Y �1�ZðY� þ yÞZ�1y � gxy1=g:

Making a change of variables

q ¼ y1=g; yðqÞ ¼ qg;

we have

p�ðyðqÞÞ ¼ #pðqÞ ¼ ½Y �1�ZðY� þ qgÞZ�1qg � gxq: ðB:3Þ
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For future reference, differentiating (B.3) yields

#p0ðqÞ ¼ � ð1� ZÞ
½Y �1�ZðY� þ qgÞZ�1

Y� þ qg gqg�1qg þ ½Y �1�ZðY� þ qgÞZ�1gqg�1 � gx

¼ ½Y �1�ZðY� þ qgÞZ�1gqg�1 1� ð1� ZÞ
qg

Y� þ qg

� �
� gx

¼ g
#pðqÞ

q
þ gx

� �
oðqÞ � gx; ðB:4Þ

where

oðqÞ ¼ 1� ð1� ZÞ
qg

Y� þ qg

� �
:

Note that

oð0Þ ¼ 1; o0ðqÞo0 for all qX0: ðB:5Þ

Taking the second derivative,

#p00ðqÞ ¼ g
#p0ðqÞ

q
�

#pðqÞ
q2

� �
oðqÞ þ g

#pðqÞ
q

þ gx
� �

o0ðqÞ: ðB:6Þ

Step 3. show that when (13)–(14) hold, (9) must hold as well. Assume (13)–(14)
hold. From (10), #pðqÞ ¼ 0; #pð0Þ ¼ 0; and, from step 2, #p0ðqÞ ¼ 0:
Suppose that there exists q0 with 0oq0oq and #pðq0Þ > #pðqÞ: Without loss of

generality, one can assume #p0ðq0Þ ¼ 0: But then using (B.4) and (B.5),

0 ¼ #p0ðq0Þ > g2xoðq0Þ � gx > g2xoðqÞ � gx ¼ #p0ðqÞ ¼ 0:

This is impossible—contradicting the supposition of the existence of q0:
Next, suppose there exists q1 with q1 > q and #pðq1Þ > #pðqÞ: At q; (B.6) and (B.5)

imply

#p00ðqÞ ¼ g2xo0ðqÞo0:

Hence, q is a local maximum for #pð:Þ: If the global maximum is to the right of q; there
exists q2 with qoq2oq1 and #pðq2Þ ¼ 0 and #p0ðq2ÞX0: But then

0p #p0ðq2Þ ¼ g2xoðq2Þ � gxog2xoðqÞ � gx ¼ #p0ðqÞ ¼ 0:

This is impossible—contradicting the supposition of the existence of q1:
Hence q is the global maximum of #pð:Þ:
Step 4. Suppose all conditions for equilibrium hold. Then each firm must be

maximizing profit. Hence, steps 1–2 show (13)–(14) must hold. &

Proof of Proposition 1. Laitner and Stolyarov (2003) cover the case with g ¼ 1:
Assume g > 1:
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Step 1. We prove that any equilibrium satisfying profit maximization condition (9)
and zero profit condition (10) must be symmetric. That is,

Njt ¼ Nt; Pjt ¼ Pt; yfjt ¼ yt; Yjt ¼ Yt; mfjt ¼ mt; lfjt ¼ lt:

Let Yt; Wt and Rt be the equilibrium aggregate output, rental fee on capital and
wage, respectively. Fix Yt ¼ Y ; Wt and Rt: Using the notation of Lemma 1, define a
firm’s indirect profit function

PðY�Þ ¼ max
y

fY 1�ZðY� þ yÞZ�1y � gxy1=gg:

It is immediate that PðY�Þ is continuous and strictly decreasing in Y�: Then, if there
exists a Y�

� such that PðY�
�Þ ¼ 0; it is unique. Let

y� ¼ arg max
y

fY 1�ZðY�
� þ yÞZ�1y � gxy1=gg:

Lemma 1, step 3, establishes that y� is unique. Then for any Yt; Wt and Rt; there is a
unique corresponding industry output level, Y�

� þ y�; such that (9) and (10) are
satisfied. The above expression also implies that each firm must produce the same
output y�: Then from (B.4),

Y�
� þ y�

y�
¼ Nj ¼

g
g� 1

ð1� ZÞ all j;

Yj ¼
g

g� 1
ð1� ZÞy�:

From (6), Yt ¼ Yjt ¼ Yj ; and from (8), Pjt ¼ Pt ¼ 1: Finally, Lemma 1 implies
that

mfjt ¼ mt and lfjt ¼ lt all f ; j; t:

We now prove existence and uniqueness of a symmetric equilibrium.
Step 2. Existence.
Set N with

N ¼
g

g� 1
ð1� ZÞ 3 g 1�

1� Z
N

� �
¼ 1: ðB:7Þ

Solve differential equation (16) for Mt all tX0: Set mfjt � mt ¼ Mt=N: Then
(5) holds. Set lfjt � lt ¼ Lt=N: Then (11) holds. Set Pjt ¼ Pt ¼ 1 all t: Then (7)
holds. Set

yfjt � yt ¼ Z½mt�a½lt�n:

Then (4) holds. Set Yjt ¼ Yt ¼ Nyt: Then (6) and (8) hold.
Using Lemma 1 and (B.7),

mrfjt ¼ mrt ¼ 1� ð1� ZÞ
yt

Yt

¼ 1�
1� Z

N
¼
1

g
: ðB:8Þ

Set Wt and Rt from (13) and (14). Then

pfjt ¼ yt � amrtyt � nmrtyt ¼ ytð1� gmrtÞ:
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From (B.8), pfjt ¼ 0: So, (10) holds. Lemma 1 and the construction of W and R then
imply (9). From (16),

’Mt þ dMt ¼ sZN
Mt

N

� �a
Lt

N

� �n

¼ sytN ¼ sYt:

Then (12) holds. That establishes existence.
Step 3. Uniqueness.
Suppose we have a symmetric equilibrium. Show that in any symmetric

equilibrium Nt is constant. With symmetry, (7) implies Pjt ¼ 1 all j; t; (6) implies
Yt ¼ Ntyt; and, the formula from Proposition 1 implies

mrfjt ¼ mrt ¼ 1�
1� Z

Nt

:

Lemma 1 shows (13)–(14) hold; thus,

pfjt ¼ pt ¼ yt � amrtyt � nmrtyt ¼ yt½1� gmrt�:

Then from (10),

1 ¼ gmrt:

So, as in step 2,

mrt ¼
1

g
and Nt ¼ N �

g
g� 1

ð1� ZÞ:

Next, show that in any symmetric equilibrium with constant N; Mt solves (16).
From (12),

’Mt þ dMt ¼ sYt ¼ sytN ¼ sZN
Mt

N

� �a
Lt

N

� �n

¼ s %ZMa
t Ln

t :

Thus, (16) must hold. Hence, we are back to the same equilibrium as in step 2—
which establishes uniqueness. &

Proof of Corollary to Proposition 1. From the definition of a SSE,
gR ¼ 0: Proposition 1 shows that gN ¼ 0 and gmr ¼ 0; and (3) implies that
gl ¼ n:
First order conditions (13) and (14) then imply gy ¼ gm and gW ¼ gy � n: Then (4)

shows

gy ¼
nn

1� a
:

Since N is constant,

gY ¼ gy ¼ gm:
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Finally,

gW ¼ gy � n ¼
g� 1

1� a
n: &

Proof of Lemma 2. (i) Take any two vintages of capital, i and i0: A rental company
that owns one physical unit of capital of vintage i and rents it to firm f in industry j

receives the same rental payment as a company that owns mi0 ¼ ðZi=Zi0 Þ
1=a units of

capital of vintage i0 and rents it to the same firm:

PjtZiðli
fjtÞ

n � Wtl
i
fjt ¼ PjtZi0 ðm

i0 Þaðli
fjtÞ

n � Wtl
i
fjt all i; i0: ðB:9Þ

Since capital of every vintage depreciates at the same rate, the above equality holds
for all t: That is, for any i and i0 holding one unit of capital vintage i and ðZi=Zi0 Þ

1=a

units of capital vintage i0 generates identical sequences of rental payments. Free entry
in the rental sector implies that two assets with the same stream of rental payments
must sell for the same price:

PM
it

PM
i0t

¼
Zi

Zi0

� �1=a

all i; i0; tXmaxfti; ti0 g:

(ii) From the zero profit condition for the firms, the left-hand side of (B.9) equals
RitP

M
it ; and the right-hand side equals Ri0tP

M
i0t mi0 : Then

Rit

Ri0t

¼
PM

i0t

PM
it

Zi

Zi0

� �1=a

¼ 1:

(iii) Since PM
iðtÞ;t ¼ 1; PM

it o1 for all ioiðtÞ: Then investment in vintages other than
iðtÞ generates an immediate capital loss. Therefore, all new investment at time t must
be in the latest vintage iðtÞ:
(iv) Take an arbitrary firm f in industry j at time t (the f ; j; and t subscripts will be

dropped for convenience). A firm chooses y and fmi; lig
i
i¼0 to solve

max
y

pðyÞ ¼ max
y

ðPðyÞy � TCðyÞÞ; ðB:10Þ

where PðyÞ is the industry demand curve given by (8) and TC yð Þ is the total cost
function:

TCðyÞ ¼ min
fmi ;lig

i
i¼0

Xi

i¼0

ðRPM
i mi þ WliÞ ðB:11Þ

s:t:
XiðtÞ
i¼0

Zi½mit�a½lit�nXy: ðB:12Þ

We first demonstrate that for any positive factor prices, the solution to the cost
minimization problem (B.11)–(B.12) involves the firm using just one technology.
Suppose, to the contrary, that we have a candidate optimum where the firm uses
more than one technology. Formally let JDf0;y; iðtÞg be the subset of available

ARTICLE IN PRESS
J. Laitner, D. Stolyarov / Journal of Monetary Economics 51 (2004) 191–233228



technologies used by the firm such that jJ j > 1 and

li > 0 3 iAJ:

For any iAJ; the first order conditions for mi and li hold as equalities. This implies
that

mi ¼
a
n

W

RPM
i

li ðB:13Þ

and that output produced with technology iAJ must equal

yi ¼ Zim
a
i lni ¼ Zi

a
n

W

RPM
i

� �a

l
g
i : ðB:14Þ

Let

zi ¼ Zi

a
n

W

RPM
i

� �a

:

Then, substituting (B.13) into (B.11) and (B.12) and noting that li ¼ 0 for any ieJ;
we find that fligiAJ must solve

min
a
n
þ 1

� �
W

X
iAJ

li

s:t:
X
iAJ

zil
g
i Xy:

However, because gX1; this problem always has only corner solutions, which
contradicts our supposition that jJ j > 1: Therefore, a necessary condition for cost
minimization is that every firm produces all its output with just one technology.
(v) In equilibrium, any technology gives the firm the same cost function, because

PM
i ¼

Zi

Zi

� �1=a

3 zi ¼ zi: ðB:15Þ

We can now repeat step 1 of Proposition 1 to prove that yfjt ¼ yt: Then (B.14)
shows each firm employs the same amount of labor, li

fjt ¼ lt: &

Proof of Proposition 2. Step 1. Existence. Set

Nt ¼ N ¼
g

g� 1
ð1� ZÞ:

Take any increasing sequence fZi; tig
iðtÞ
i¼0: Solve (35) on each ðti�1; tiÞ; using Mt0 ¼

M0;0 and the terminal value Mti
from one interval as the initial condition for Mt on

ðti; tiþ1Þ:Use (32) to compute Yt from Mt and Lt: Construct Mit for every i using (30).
Set PM

it according to (29); set Rit ¼ Rt and Wt from (33); and, set jðZi; tÞ from (31).
At each t; divide ½0; 1� into disjoint intervals Fit such that

[iðtÞ
i¼0

Fit ¼ ½0; 1�;
Z

Fit

dj ¼ jðZi; tÞ:
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In other words, industry jAFit uses only capital of vintage i: Set

li
fjt ¼

Lt

N
; fAFit;

0; otherwise:

8<
:

Then
PiðtÞ

i¼0 li
fjt ¼ Lt=N ; and the labor market clearing (25) is satisfied:

Z 1

0

XN

f¼1

XiðtÞ
i¼0

li
fjt dj ¼

Z 1

0

XN

f¼1

Lt

N
dj ¼ Lt:

Differentiating (30), Mit satisfies (27) and Iit ¼ ’Mit þ dMit satisfies (28). Eq. (20)
holds by construction. From (30),

Iit ¼
sYt; i ¼ iðtÞ;

0; otherwise:

(

Then market clearing condition (26) holds.
Set

mi
fjt ¼

Mt

PM
it N

; fAFit;

0; otherwise:

8><
>:

Then (18) holds:

Z 1

0

XN

f¼1

mi
fjt dj ¼

Z
Fit

XN

f¼1

Mt

PM
it N

dj ¼
Mt

PM
it

Z
Fit

dj ¼
Mt

PM
it

jðZi; tÞ ¼ Mit all i:

Given j and t; jAFit for one and only one i: Fix this i; and set yfjt from (17),
with the latter then holding by construction. Industry output can be expressed
as

Yjt ¼
XN

f¼1

yfjt ¼
XN

f¼1

Zi

Mt

NPM
it

� �a
Lt

N

� �n

¼
Zi

Ng�1 Ma
t Ln

t ¼ Yt:

Then (19) holds. Conditions (21) and (22) hold by construction.
Condition (24) holds: for any j and i such that jAFit; using Rt and Wt

from (33),

pfjt ¼Pjtyfjt � RtP
M
it mi

fjt � Wtl
i
fjt

¼
Yt

N
�

a
g

Yt

N
�

n
g

Yt

N
¼ 0:
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Using (32) and (33),

a
g

yt

mi
fjt

¼
a
g

ZiðtÞ
Ng Ma

t Ln
t

Mt=N
¼

a
g

Yt

Mt

¼ Rt;

n
g

yt

li
fjt

¼
n
g

ZiðtÞ
Ng Ma

t Ln
t

Lt=N
¼

n
g

Yt

Lt

¼ Wt:

Therefore, conditions (13), (14) hold for every firm. Profit maximization (23) then
also holds by Lemma 1.

Step 2. Show any equilibrium has the same PM
it ; Mit; Nt; jð�Þ; Yt; Mt; Rit; Rt and

Wt: Consider any equilibrium.
Lemma 2, part (i), shows PM

it is the same any equilibrium.
Lemma 2 shows that in equilibrium every firm has an identical cost function;

hence, step 1 of Proposition 1 shows that all industries must be symmetric.
That is

Njt ¼ Nt; and Yjt ¼ Yt all j; t:

According to Lemma 2, yfjt ¼ yt; so Yt ¼ ytNt: Repeating step 3 of Proposition 1,
any equilibrium must have the number of firms equal to

Nt ¼ N ¼
g

g� 1
ð1� ZÞ:

Using symmetry in (22), we immediately see that Pjt ¼ 1; all j; t: And, Lemma 2, part
(v) shows that lfjt ¼ Lt=N:
We show that the aggregate production function (32) holds in any equilibrium. Let

wfjtðiÞ ¼ 1 if firm fjt uses capital of vintage i and let wfjtðiÞ ¼ 0 otherwise. The proof of
Lemma 2 shows that if firm fjt uses i; PM

it mi
fjt is a number independent of i; j and f :

Call this number mt: Then

Mt ¼
XiðtÞ
i¼0

PM
it Mit ¼

XiðtÞ
i¼0

Z 1

0

XN

f¼1

wfjtðiÞP
M
it mi

fjt dj ¼ mt

XiðtÞ
i¼0

Z 1

0

XN

f¼1

wfjtðiÞ dj

¼mt

Z 1

0

XN

f¼1

XiðtÞ
i¼0

wfjtðiÞ dj ¼ mt

Z 1

0

XN

f¼1

1 dj ¼ mtN:

Consider a firm that uses capital of vintage iðtÞ: We have seen that this firm
employs Lt=N units of labor and mt units of capital. Then its output is

yt ¼ ZiðtÞm
a
t

Lt

N

� �n

¼
ZiðtÞ

Ng Ma
t Ln

t ;

and, by symmetry,

Yt ¼ ytN ¼
ZiðtÞ

Ng�1 Ma
t Ln

t all t:
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We show that Mt must be the same in any equilibrium. Eqs. (26) and (28) imply
that (30) must hold. Differentiating (30) for every i; we have

XiðtÞ
i¼0

PM
it

’Mit ¼ sYt � d
XiðtÞ
i¼0

PM
it Mit;

which is the same expression as (35), given our aggregate production function (32).
Thus, every equilibrium has the same Mt and Yt:
It follows from symmetry that every equilibrium has the same yfjt and Yjt: Eq. (30)

shows that Mit is the same as well. Lemma 2 shows that Rit ¼ Rt: Lemma 1 shows
that (33) must hold; therefore, Rt and Wt are always the same.
Finally,

jðZi; tÞ ¼
1

N

Z 1

0

XN

f¼1

wfjtðiÞ dj ¼
mt

Mt

Z 1

0

XN

f¼1

wfjtðiÞ dj

¼
PM

it

Mt

Z 1

0

XN

f¼1

wfjtðiÞm
i
fjt dj ¼

PM
it

Mt

Mit: &
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