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The Role of Annuitized Wealth in Post-retirement Behavior†

By John Laitner, Dan Silverman, and Dmitriy Stolyarov*

This paper develops a tractable model of post-retirement behavior 
with health status uncertainty and state-verification difficulties. The 
model distinguishes between annuitized and non-annuitized wealth 
and features means-tested Medicaid assistance with nursing home 
care. We show how to solve the potentially complex dynamic prob-
lem analytically, making it possible to characterize optimal behavior 
with phase diagrams. The analysis provides an integrated treatment 
of portfolio composition and consumption/wealth accumulation 
choices. We show the model can explain both the “retirement-saving 
puzzle” and the “annuity puzzle.” (JEL D14, D15, G11, I18, I38, 
J14, J26)

Interest in the economic behavior of retired households has increased with pop-
ulation aging and the associated strain on public programs for the elderly.1 Yet 

post-retirement behavior has proved challenging to understand. Intuition derived 
from classic theories, which emphasize consumption smoothing and income and lon-
gevity risk, does not fit with important features of the data. These features include 
a lack of wealth depletion after retirement—the “retirement-saving puzzle”—and a 
low demand for annuities at retirement—the “annuity puzzle.” Generalizations of 
classic theory, partly aimed at addressing these puzzles, face analytic difficulties as 
they try to accommodate rules governing social insurance aimed at the elderly and 
interactions of health uncertainty with incomplete financial and insurance markets. 
This combination of puzzles and analytic difficulties has, so far, restricted research 
either to two or three period models or to numerical analysis. The purpose of this 
paper is to develop a new, multi-period workhorse model of post-retirement  behavior 
that captures important uninsured risks and accommodates major puzzles, yet retains 

1 E.g., Hubbard, Skinner, and Zeldes (1994, 1995); Palumbo (1999); Sinclair and Smetters (2004); Reichling 
and Smetters (2015); Dynan, Skinner, and Zeldes (2004); Scholz, Seshadri, and Khitatrakun (2006); Scholz and 
Seshadri (2009); Ameriks et al. (2011, 2015, 2016); DeNardi, French, and Jones (2010, 2015); Lockwood (2014); 
Love, Palumbo, and Smith (2009); Laibson (2011); Finkelstein, Luttmer, and Notowidigdo (2013); Poterba, Venti, 
and Wise (2011a, 2011b); and Pashchenko (2013). 
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sufficient tractability to be useful for qualitative, as well as quantitative, analysis. The 
model emphasizes the distinction between annuitized and non-annuitized wealth. 
With it, we are able to reveal the mechanisms through which portfolio composition 
interacts with public programs and uninsured risks and affects retiree behavior.

The model captures uncertain health and the correlation of major health changes 
with changes in mortality risk. Importantly, it assumes that informational asymmetries 
lead to incomplete private markets for long-term care insurance. It also incorporates 
a means-tested public alternative, Medicaid nursing home care, which households 
can use as a fallback during poor health. The model takes into account the inflexible 
nature of annuities as a form of wealth, as well as their treatment under Medicaid.

Despite its richness, the model is analytically tractable. One key to the tractabil-
ity is the model’s continuous-time formulation, which enables it to sidestep technical 
challenges related to non-convexities that emerge when accounting for the Medicaid 
means test. A second key is the simple case-based analytic approach that our formula-
tion allows: although the model’s elements and assumptions generate a variety of opti-
mal behavioral patterns, we can partition the domain of observable initial conditions 
in such a way that outcomes are relatively straightforward on each (partition) element.

We demonstrate the value of the model in two ways. The first way consists of new, 
qualitative insights revealed by the analytic tractability of the model. Specifically, 
Propositions 3 and 4 and the associated phase diagrams in Figure 2 show both how 
portfolio composition plays a critical role in post-retirement behavior and how the 
level of annuitized wealth is central to the decision (to try) to self-insure or instead 
to rely on Medicaid for long-term care expenses. We show formally that whether 
liquid (bequeathable) wealth rises or falls after retirement depends not on total 
wealth levels but on the ratio of bequeathable to annuitized wealth. We also show 
how, among those households that might eventually rely on Medicaid, any efforts to 
self-insure long-term care needs are determined by the level of annuitized wealth.

The second way we demonstrate the formulation’s value is to show that, despite its 
relative simplicity, it is consistent with two well-known puzzles in data. Our frame-
work provides a unified treatment of the two puzzles, and our analytic approach 
offers detailed, intuitive explanations of each. The “retirement-saving puzzle,” to 
take the first example, consists of evidence that a cohort’s average (non-annuitized) 
wealth often remains roughly constant, or even rises, long into retirement. This con-
tradicts classical life-cycle models, which predict that households save during work-
ing years in order to dissave thereafter.2

Section IV shows that a reasonable calibration of our model is consistent with 
rising or flat cohort average wealth profiles. As important, the analytic tractability 
of the model reveals the mechanisms behind post-retirement saving and the circum-
stances under which it emerges. Our households begin retirement in good health but 
subsequently pass into lower health status and then death. On the one hand, if needs 
for personal services raise the marginal utility of expenditure during poor health, 
we show that high health-status retirees may husband wealth for the future or even 

2 The present paper considers behavior post-retirement. We do not model changes in consumption just 
before and just after retirement discussed in other strands of the recent literature, sometimes referred to as the 
 “retirement-consumption puzzle.” 
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continue saving. On the other hand, although a cohort’s members all eventually tran-
sition to poor health, the outflow of households from poor health to mortality can 
actually sustain the fraction of survivors in good health at a relatively high level. We 
show that the combination of the evolution of average health status and incentives to 
self-insure can dramatically influence cohort trajectories of average wealth.

Section V provides a second example where we generalize our baseline model 
(which takes annuitization levels as given) to allow endogenous annuities and show 
that reasonable calibrations are consistent with households’ apparent reluctance to 
annuitize all, or most, of their wealth at retirement—the “annuity puzzle.” Households, 
for instance, often claim Social Security benefits at or below the age for full retirement 
benefits, thereby forgoing additional actuarially fair annuitization (Brown 2007).

Again, the analytic tractability of the model illuminates the mechanisms behind 
the puzzle. We find that while households with low lifetime resources find  end-of-life 
Medicaid care acceptable, the middle class is ambivalent. Middle-class households 
attempt to use their private wealth to delay the standard of living that Medicaid 
entails—though they reserve, given uncertain longevity, Medicaid as a fall-back 
option. The generalized analysis in Section V shows that, because asymmetric 
information precludes health state-contingent annuities, when we allow endogenous 
levels of annuitization, middle-class households in good health choose portfolios 
with a mixture of simple (i.e., non-health-contingent) annuities and bonds. (They 
liquidate the bonds after the arrival of poor health, turning to Medicaid after the 
bonds are exhausted.) In this way, a substantial demand for liquid wealth can arise 
among the healthy. Less than complete annuitization at retirement, at least among 
the middle class, can be fully consistent with the generalized model.

Returning to our baseline specification, Section VI examines two further aspects 
of optimal life-cycle behavior. As noted, a dichotomy emerges in our analysis: 
low-resource households tend to accept Medicaid care promptly after their health 
status declines, whereas middle-class households take steps to delay their reliance 
upon it. Section VI suggests that this can explain empirical patterns of the timing 
of Medicaid take-up in different parts of the income distribution (and, in particular, 
different parts of the distribution of annuity income). Similarly, our analysis shows 
that accidental bequests arising from self-insurance behavior most frequently occur 
for households with middle class and above resource levels.

In the end, our model offers new qualitative insights about post-retirement behav-
ior by accommodating important uninsured risks and means-tested social insurance, 
while maintaining analytic tractability. The model is simple, but offers sufficient 
flexibility to make quantitative predictions consistent with key empirical puzzles. 
The model thus provides a potential new workhorse for the analysis of post-retire-
ment behavior.

Relation to the Literature.—This subsection describes a theoretical and empirical 
backdrop for related literature and compares our approach to leading examples of 
research in the area. We argue that a recognition of key uninsured risks, complex 
rules of social insurance, and empirical puzzles inspired researchers to generalize 
classic life-cycle models. Prior to our paper, however, the generalizations have been 
restricted either to two to three period models or to numerical analysis.
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In the classic life-cycle models (Modigliani 1986, Yaari 1965), households 
face few uninsured risks and smooth their lifetime consumption by accumulating 
wealth prior to retirement and decumulating it thereafter. Longevity risk is insured 
by annuitizing most wealth upon retirement. Subsequent analyses recognized the 
importance of uninsured income risk and liquidity constraints and generalized the 
classic models to accommodate different forms of income uncertainty and resulting 
precautionary savings motives (e.g., Zeldes 1989, Deaton 1991, Carroll 1997, and 
Gourinchas and Parker 2002).

A variety of empirical regularities have presented puzzles for the classic life-cycle 
models and their early generalizations. At least since Mirer (1979), for example, 
evidence has often seemed at variance with simple predictions about post-retirement 
behavior. Kotlikoff and Summers (1988, 54) noted,

Decumulation of wealth after retirement is an essential aspect of the 
life-cycle theory. Yet simple tabulations of wealth holdings by age … or 
savings rates by age … do not support the central prediction that the 
aged dissave. 

More recent work with panel data confirms that mean and median cohort wealth, 
for either singles or couples, can be stationary or rising for many years after retire-
ment (Poterba, Venti, and Wise 2011a).3,4

Similarly, economists long sought to understand with life-cycle models the rea-
sons why the strong Yaari (1965) prediction does not hold and households do not 
fully annuitize their private wealth at retirement. Benartzi, Previtero, and Thaler 
(2011, 149) write,

The theoretical prediction that many people will want to annuitize a sub-
stantial portion of their wealth stands in sharp contrast to what we observe. 

Incomplete markets that leave many forms of uninsured risk, together with these 
important empirical puzzles, inspired a new generation of life-cycle analysis that 
emphasizes health risk, the correlation of major health changes with changes in 
mortality risk, and the influence of means-tested social insurance.

Building on ideas in Hubbard, Skinner, and Zeldes (1995); Kotlikoff (1989); 
and Palumbo (1999), recent analyses of post-retirement saving such as Ameriks et 
al. (2011, 2015, 2016) and DeNardi, French, and Jones (2010) include a number of 
the same elements as our framework, namely, health changes and mortality risk, out-
of-pocket expenses in poor health, government guaranteed consumption floors (in 
our case, Medicaid nursing home care), and fixed annuity income. Since consump-
tion floors can induce non-convexities, the leading multi-period analyses of these 

3 See also, for instance, Ameriks et al. (2015), who observe, “The elementary life-cycle model predicts a strong 
pattern of dissaving in retirement. Yet this strong dissaving is not observed empirically. Establishing what is wrong 
with the simple model is vital ....” See also DeNardi, French, and Jones (2015, Figure 7) as well as Smith, Soto, and  
Penner (2009); Love, Palumbo, and Smith (2009); and many others. 

4 Other evidence, however, seems more ambiguous: cohort median wealth is shown to rise with age for 
65–79-year-olds and to fall at older ages in Hurd and Rohwedder (2015, Table 14.5a). At the same time, the rate of 
“active saving,” although small, is negative at all ages. 
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problems, including Ameriks et al. (2011, 2015, 2016) and DeNardi, French, and  
Jones (2010), rely upon numerical solutions. In explaining household wealth trajec-
tories, both recognize the potential importance of post-retirement precautionary saving.

We are thus not the first to address these important late-life risks or accommodate 
these important puzzles. Our formulation, however, sidesteps non-convexities and 
allows us to characterize solutions with first-order conditions that can provide intu-
itions and comparative-static results. As previously noted, a payoff from being able 
to avoid numerical analysis is several important refinements for the study of precau-
tionary saving. We show that a (healthy) household’s desire to save after retirement 
depends upon its portfolio composition: given two healthy households with identical 
total net worth, our model shows that the one with the higher fraction of annuities in 
its portfolio is the more likely to continue saving. Among those who might eventually 
turn to Medicaid to pay for long-term care, we show the centrality of annuity-income 
levels in the decision (to try) to self-insure or instead rely on Medicaid. We thus offer 
a refined interpretation of the evidence in DeNardi, French, and Jones (2016) show-
ing that wealthier households tend to access Medicaid assistance later in life. Our 
results are consistent with this finding, and we can characterize Medicaid take-up 
timing analytically and provide further interpretations of the data.

A recent stream of life-cycle analysis concerned with post-retirement saving 
emphasizes the role of intentional bequests in sustaining private wealth holdings 
late in life. See, e.g., Ameriks et al. (2011); DeNardi, French, and Jones (2010); 
and Lockwood (2014). Our model has no intentional bequests; all bequests here are 
“accidental.” Yet, we find that intentional bequests are not required to fit the evidence 
on late-in-life saving. Other than for the wealthiest decile of households (see Section 
V), bequests that emerge in our model are by-products of incomplete annuitization. 
Survey evidence on intentional bequests is mixed: respondents to direct questions 
about leaving a bequest split approximately equally between answering that bequests 
are important and not important (Lockwood 2014, Laitner and Juster 1996). Our 
analysis allows one to rationalize the post-retirement behavior of the latter group (as 
well as those for whom an “important” bequest could be a modest family heirloom).

There is also rich literature on the “annuity puzzle” (e.g., Finkelstein and Poterba 
2004; Davidoff, Brown, and Diamond 2005; Mitchell et al. 1999; Friedman and 
Warshawsky 1990; Benartzi, Previtero, and Thaler 2011; and many others). As with 
the “retirement-savings puzzle,” life-cycle multi-period analysis of the “annuity 
puzzle” has been numerical.

For example, both this paper and Reichling and Smetters (2015) offer new inter-
pretations of the “annuity puzzle.” While the studies have a number of assumptions 
in common, the institutional settings differ, and beyond three periods, the Reichling 
and Smetters analysis is numerical. Another important distinction is that Reichling 
and Smetters allow a household whose current health and/or mortality hazards have 
changed to purchase new annuities reflecting the revised status. Even with these 
state-contingent annuities, and without liquidity constraints, the annuity puzzle is 
resolved in Reichling and Smetters. In our model, state-verification problems pre-
clude health-contingent annuities. Nonetheless, a household suffering a decline in 
health status can access Medicaid nursing home care and that option alone, we show, 
can substantially reduce the demand for annuities at retirement.
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Ameriks et al. (2015) present simulations of a formulation that has health changes 
and state-dependent utility. Given a 10 percent load factor on annuities and house-
holds with $50–100,000 of existing income and bond wealth up to $400,000, they 
find essentially no demand for extra annuities at retirement (Ameriks et al. 2015, 
Figure 10). We show that this outcome is consistent with the qualitative implications 
of our model, and we show how and why household initial conditions, health-status 
realizations, and interest rates affect outcomes.

The organization of this paper is as follows. Section I presents our assumptions 
and compares our formulation with others in the literature. Sections II–III analyze 
our model. Section IV considers the retirement-saving puzzle, Section V the annuity 
puzzle, and Section VI Medicaid take-up and bequests. Section VII concludes.

I. Model

As indicated in the introduction, we follow the recent literature in subdividing a 
household’s post-retirement years into intervals with good and poor health.

We study single-person, retired households. At any age  s , a household’s health 
state,  h  , is either “high,”  H  , or “low,”  L . The household starts retirement with  h = H .  
There is a Poisson process with hazard rate  λ > 0 , such that at the first Poisson 
event the health state drops to low. Once in state  h = L  , a second Poisson process 
begins, with parameter  Λ > 0 . At the Poisson event for the second process, the 
household’s life ends.

We focus on the general “health state” of an individual, rather than his/her med-
ical status. Think of “health state” as referring to chronic conditions. Consider, for 
example, troubles with activities of daily living (ADLs), such as eating, bathing, 
dressing, or transferring in and out of bed. Individuals with such difficulties may 
need to hire assistance or move to a nursing home. The expense can be substan-
tial. It may, in practice, be the largest part of average out-of-pocket (OOP) medical 
expenses (see, for instance, Marshall, McGarry, and Skinner 2010; and Hurd and 
Rohwedder 2009).

State-Dependent Utility.—We assume that health state affects behavior through 
state-dependent utility. In our framework, there are no direct budgetary consequences 
from changes in  h —all retirees have access to Medicare insurance that covers the 
medical part of long-term care needs. By contrast, we treat all nonmedical long-term 
care (LTC) expenses (i.e., health-related expenses not covered by Medicare—such 
as long nursing home stays) as part of consumption. A household with  h = H  and 
consumption  c  has utility flow

  u(c) =    [c]   
γ  ____ γ  . 

Following most empirical evidence, let  γ < 0 . We assume there is a household 
production technology for transforming expenditure,  x  , to a consumption service 
flow,  c :

(1)  c =  { x  if h = H   ωx
  

if h = L
   . 
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We also assume that the low health state is an impediment to generating consump-
tion services from  x ; thus,

  ω ∈ (0, 1). 

The loss of consumption services that occurs upon reaching the low health state may 
be substantial: an agent in need of LTC might lose capacity for home production 
related to ADLs, and her quality of life may decline precipitously. Utility from con-
sumption expenditure  x  while in health state  h = L  is

(2)  U(x) ≡ u(ωx) ≡  ω   γ  u(x). 

Since   ω   γ  > 1 , an agent in the low health state has lower utility but higher marginal 
utility of expenditure. Specifically, marginal utility of consuming  X  in low health 
state equals the marginal utility of consuming a smaller amount,  X/Ω , in high health 
state:

(3)  U′(X) =   ∂ u(ωX) _______ ∂ X   = ωu′(ωX) = u′ (  X __ Ω  ) , where Ω =  [ω ]     
γ ___ 1−γ    > 1. 

Our specification of household preferences assumes the simplest form of state 
dependence: utility is  u (x)   in the high health state and   ω   γ  u (x)   in the low health 
state, where  x  is a single consumption category that includes the nonmedical part 
of LTC expenditure.5 These assumptions are not as restrictive as one might think: 
for example, state-dependent utility function (2) can be micro-founded with a richer 
model where nonmedical LTC expenditure is a separate, endogenous variable—see 
Appendix B.

Available Insurance Instruments.—Households in our model face correlated lon-
gevity and health-status risks. If asset markets were complete, agents would opti-
mally rely on state-contingent annuities and insurance contracts as follows. (i) At 
retirement, a household would buy an annuity paying a fixed benefit stream for the 
duration of the high health state. (ii) The household would also buy an insurance 
policy paying a lump-sum benefit when the high health state ends. (This is referred 
to as “long-term care insurance.”) (iii) The household would use the insurance 
payout to purchase a low health-state annuity (the return on which would reflect 
the low health-state mortality rate  Λ ). A household could complete financial steps  
(i)–(iii) at the moment of retirement, and it would have no demand for liquid wealth.

Crucially, however, our analysis assumes that state-verification problems for  
h  are much greater than for medical status (which we assume is insured through 
Medicare). An agent knows when he/she enters state  h = L  , but the transition from  

5 Hubbard, Skinner, and Zeldes (1995) and DeNardi, French, and Jones (2010) use a similar specification of 
preferences but assume that nonmedical LTC expenditure is an exogenously fixed parameter not subject to choice 
and not directly affecting utility. 
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h = H  is not legally verifiable. This prevents agents from obtaining health-state 
insurance.6 Marshall, McGarry, and Skinner (2010, 26) write,

Indeed, the ultimate luxury good appears to be the ability to retain inde-
pendence and remain in one’s home … through the use of (paid) helpers 
…. These types of expenses are generally not amenable to insurance cov-
erage …. 

Put differently, in our model, state-verification difficulties preclude private 
long-term care insurance and health state-contingent annuities, thus transactions 
(i)–(iii) are infeasible. With incomplete markets, households, we show, use simple 
(not state-contingent) annuities to insure longevity in the high health state, and they 
carry liquid wealth to (partially) self-insure higher expenditure needs associated 
with the low health state. In addition, households in the low health state are assumed 
to have access to social insurance, as described later.

Means-Tested Public Assistance.—In our framework, a household with health sta-
tus  h = L  can qualify for Medicaid-provided nursing home care. State-verification 
difficulties affecting private LTC insurance markets may be less relevant for the 
Medicaid program because it provides only a basic level of in-kind benefits and 
access is rigorously means tested. The means test for this program requires the 
household to forfeit all of its bequeathable wealth and annuities to qualify for assis-
tance.7 Let Medicaid nursing home care correspond to expenditure flow   X M   > 0 .  
In practice, elderly households often view Medicaid nursing home care as a rel-
atively unattractive option.8 Accordingly, our model assumes that the utility flow 
from Medicaid nursing home care is  U ( X 

–
  )  , where   X 

–
   ≤  X M    is the expenditure flow 

adjusted for disamenities.

Household Financial Assets.—Households retire with endowments of two assets, 
annuities, with income  a  , and bequeathable net worth  b  (i.e., liquid wealth).9 Major 
components of annuitized wealth include Social Security, defined benefit pensions, 
and Medicare benefits. Bequeathable wealth  b  pays real interest rate  r > 0 . Let  
β ≥ 0  be the subjective discount rate. We assume  r ≥ β . If we think of the analy-
sis as beginning at age 65, the average interval of  h = H  might be about 12 years, 

6 On the use of long-term care insurance, which is analogous to health-state insurance in our model, see Miller, 
Mor, and Clark (2010); Brown and Finkelstein (2007, 2008); Brown, Goda, and McGarry (2012); Congressional 
Budget Office (2004); and Pauly (1990). Private insurance covers less than  5 percent  of long-term care expenditures 
in the United States (Brown and Finkelstein 2007). For a discussion of information problems and the long-term care 
insurance market, see, for example, Norton (2000). 

7 In practice, a household may be able to maintain limited private assets after accepting Medicaid—for example, 
under some circumstances a recipient can transfer her residence to a sibling or child (see Budish 1995, 43). This 
paper disregards these program details.

8 Ameriks et al. (2011) refer to disamenities of Medicaid-provided nursing home care as public care aversion. 
Indeed, the level of service is very basic, access is rigorously means tested, and many households strongly prefer to 
live in familiar surroundings and to maintain a degree of control over their lives (Schafer 1999). 

9 In the model, liquid wealth includes home equity. This interpretation assumes that a household can borrow up 
to 100 percent of the value of its house at rate  r  and that the real estate market is frictionless. Both of the previously 
mentioned assumptions are standard in optimal consumption models with one good, including those in related 
literature on post-retirement behavior. 
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and the average duration of  h = L  about 3 years.10 With a Poisson process, average 
duration is the reciprocal of the hazard. We assume  Λ > λ > r − β .

Summary.—Recapping our baseline assumptions:

ASSUMPTION 1: “Health state” is not verifiable; hence, there is no health-state 
insurance. Annuities are exogenously set at retirement.

ASSUMPTION 2: If   b s    is bequeathable net worth when  h = H  and   B s    is the same 
for  h = L  , we have   b s   ≥ 0  and   B s   ≥ 0  all  s ≥ 0 .

ASSUMPTION 3:  γ < 0  , and  ω ∈ (0, 1) .

ASSUMPTION 4: A household transitions from  h = H  to  h = L  with Poisson 
hazard  λ  and from health state  h = L  to death with Poisson hazard  Λ . We assume  
Λ > λ .

ASSUMPTION 5: The real interest rate is  r  , with  0 ≤ β ≤ r < λ + β .

ASSUMPTION 6: A household in the low health state can turn to Medicaid 
nursing home care. The consumption value of the latter is a flow   X 

–
   .

II. Low Health Phase

We solve our model backward, beginning with the last phase of life. In that 
period, the household is in the low health state  h = L  and faces mortality hazard  
Λ . The corresponding optimal consumption problem has two state variables:  B , the 
liquid wealth at the onset of poor health, and  a  , the exogenous annuity-income flow. 
Solving the problem yields the value function  V(B, a) , which we then use as a con-
tinuation value describing behavior during the initial healthy phase. Importantly, 
we show that the value function  V(B, a)  is strictly concave despite the presence of 
the Medicaid-provided consumption floor   X 

–
   . Concavity makes it possible to derive 

analytical results based on phase diagram characterizations.
Without loss of generality, set the age at which the  h = L  state begins to  t = 0 .  

At  t = 0 , let bequeathable net worth be  B ≥ 0 . Annuity income is  a > 0 ,   X t    is 
consumption expenditure at age  t  , and  U( X t  )  is the corresponding utility flow. The 
expected utility of the household is

   ∫ 
0
  
∞

  Λ e   −Λ·S   ∫ 
0
  
S
    e   −βt  U( X t  ) dtdS =  ∫ 

0
  
∞

    e   − (Λ+β) t  U( X t  ) dt .

Later, we show that the household will optimally plan to exhaust its liquid wealth 
within a finite time, which we denote by  T . If the household dies before reaching 
age  T , it leaves an accidental bequest. If the household is alive at age  T , it becomes 

10 E.g., Sinclair and Smetters (2004). 
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liquidity constrained and chooses one of two courses of action: it either relinquishes 
its annuity income  a  and accepts Medicaid-provided consumption flow   X 

–
    , or it sets 

its consumption equal to its annuity income for the remainder of its life. Households 
with  a ≥  X 

–
    will prefer to live on their annuity income (case (i)), while households 

with  a <  X 
–
    will accept Medicaid assistance (case (ii)). To simplify the exposition, 

it is convenient to analyze the two cases separately.

Case (i):  a ≥  X 
–
   . Starting from an initial wealth level  B  , the household chooses a 

consumption expenditure path   X t    all  t ≥ 0  to solve

(4)  V(B, a) ≡  max  
 X t  
       ∫ 

0
  
∞

    e   −(Λ+β)t  U( X t  ) dt 

 subject to

   B ̇   t   = r ·  B t   + a −  X t  , 

   B t   ≥ 0 all t ≥ 0, 

   B 0   = B, and a given. 

Case (i) is thus described by a standard, infinite horizon optimal control problem 
with exponentially discounted utility and a state-variable constraint   B t   ≥ 0 . The 
strict concavity of problem (4) ensures that if a solution exists, it is unique.

We start by separately characterizing the solution to (4) in the liquidity con-
strained and unconstrained regimes. In the constrained regime, the optimal con-
sumption trajectory is flat, as the household consumes its annuity-income flow in 
every period. In the unconstrained regime, the optimal consumption falls at a con-
stant rate. We further show—in Proposition 1—that the household spends the first  T  
periods unconstrained, and subsequently, it enters the liquidity constrained regime 
for the rest of its life.

LEMMA 1: Suppose that the liquidity constraint binds at date  T  ; that is,   B T   = 0 .  
Then  ( B  t  ∗ ,  X  t  ∗ ) = (0, a)  solves (4) for all  t ≥ T . Moreover, for any  t  with   B t   > 0  , 
the optimal consumption trajectory obeys

(5)      X ̇   t   ___  X t  
   = σ, where σ ≡   r − (Λ + β)  ________ 

1 − γ   < 0. 

PROOF: 
See Appendix B.

The idea of the proof is as follows. Households in (4) behave as if their subjective 
discount rate is  Λ + β > r ; so, a household without a binding liquidity constraint 
desires a falling time path of consumption expenditure. Standard arguments in this 
case lead to the Euler equation (5).
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When   B t   = 0  , however, only   X t   ≤ a  is feasible. Choosing   X t   < a  makes (5) a 
necessary condition. But, a permanently falling consumption path cannot be optimal 
because the household’s liquid wealth would then expand until its death, with the 
final balance left unused. The solution is instead to consume the annuity income and 
maintain the constrained regime.

The phase diagram of Figure 1, case (i) depicts candidate solutions in the uncon-
strained regime. Each dotted curve in Figure 1, case (i) is a trajectory satisfying 
the budget constraint, the liquidity constraint   B t   ≥ 0  , and the Euler equation (5). 
However, we can rule out the optimality of most of the trajectories a priori. A given 
trajectory intersects the vertical line   B 0   = B > 0  at two points. Starting at the 
point with higher consumption should clearly be preferred. By the same reasoning, 
following the higher trajectory indefinitely is inferior to stopping at its intersection 
with the line   X t   = r  B t   + a . Yet, the latter cannot be optimal since bequeathable 
wealth is never exhausted. The exception is the trajectory that stops at point  (0, a)  
and stays there indefinitely. Lemma 1 shows that the transversality condition is then 
satisfied.

XtXt

Xt Xt

X⁎

X

X

Bt

tT ⁎ tT ⁎

Xt = a + rBt

a

a

a

Bt

0

X⁎
0

ˉ

ˇ

X

X̄

ˇ

Case (i): a ≥ X̄ Case (ii): a <  X̄

Figure 1. Phase Diagrams and Consumption Trajectories in Low Health State
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PROPOSITION 1: In case (i), the trajectory in Figure 1, case (i) that reaches  ( B t  ,  X t  )  
= (0, a)  from above and then remains at  (0, a)  forever solves problem (4). The 
solution,  ( B  t  ∗ ,  X  t  ∗ ) , is continuous in  t . There exists   T   ∗  =  T   ∗  (B, a) ∈ [0, ∞) , such 
that both   B  t  ∗   and   X  t  ∗   are strictly decreasing in  t  for  t ≤  T   ∗  , but  ( B  t  ∗ ,  X  t  ∗ ) = (0, a)  
for  t >  T   ∗  . The value function  V(B, a)  is strictly increasing, strictly concave, and 
continuously differentiable in  B .

PROOF: 
See Appendix B.

The concavity of the value function in Proposition 1 is a straightforward conse-
quence of the concavity of the maximization problem (4). It plays an important role 
in our analysis, enabling Section III to rely upon first-order conditions, for example.

The case (i) solution does not depend on   X 
–
    since the household never turns to 

Medicaid. Accordingly, optimal behavior in the absence of public assistance would 
also be as in Proposition 1.

Case (ii):  a <  X 
–
   . Case (ii) obtains when the value of Medicaid nursing home 

care exceeds a household’s annuity income. If such a household fully depletes its 
bequeathable wealth, accepting Medicaid nursing home assistance is attractive.

To be more precise,  ( B  t  ∗ ,  X  t  ∗ ) = (0,  X 
–
  )  is the optimal trajectory in the constrained 

regime. If   B t   = 0  , the household must either accept Medicaid or choose   X t   ≤ a . 
The logic of Lemma 1 shows that in the latter case, setting   X t   = a  for all subsequent 
ages is optimal. But in case (ii), permanently accepting Medicaid nursing home care 
is better. Once Medicaid is accepted, there is no advantage to ever leaving it.

Let  T  denote the age when the household exhausts its liquid wealth and turns 
to Medicaid (with  T = ∞  corresponding to the option of never using Medicaid). 
Then case (ii) behavior can be described with a standard free-endpoint salvage value 
problem (Kamien and Schwartz 1981, sect. 7):

(6)  V(B, a) =  max  
 X t  , T

      ( ∫ 
0
  
T
    e   −(Λ+β)t  U( X t  ) dt +  e   −(Λ+β)T    U( X 

–
  ) _____ Λ + β  )   

 subject to

  B ̇   t   = r ·  B t   + a −  X t  , 

   B t   ≥ 0 all t ≥ 0, 

   B 0   = B, and a given. 

The main difference from case (i) is that the optimal consumption trajectory expe-
riences a discontinuous drop at date  T  when the household becomes liquidity 
constrained. The value function  V(B, a)  in (6) is nevertheless concave and continu-
ously differentiable, just as in case (i). The following proposition characterizes the 
solution.
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PROPOSITION 2: In case (ii), there is a unique   X ̌   =  X ̌  (a) ∈ ( X 
–
  , ∞)  , indepen-

dent of  B  , such that the trajectory in Figure 1, case (ii) that reaches  ( B t  ,  X t  ) = (0,  
X ̌  )  from above, then jumps to the point  (0,  X 

–
  )  and remains there forever solves 

problem (6).
There exists   T   ∗  =  T   ∗  (B, a) ∈ [0, ∞) , such that both   B  t  ∗   and   X  t  ∗   are strictly 

decreasing in  t  for  t ≤  T   ∗   , but  ( B  t  ∗ ,  X  t  ∗ ) = (0,  X 
–
  )  for  t >  T   ∗  .  ( B  t  ∗  ,  X  t  ∗ )  is continu-

ous in  t  except at  t =  T   ∗   , when   X  t  ∗   drops abruptly. Specifically,

   X  t  ∗  =  {  X ̌   ·  e   σ (t− T   ∗ )    for t ∈ [0,  T   ∗ ]    
 X 
–
  
  

for t >  T   ∗ 
   , 

with  σ  defined in (5).
The value function  V(B, a)  is strictly increasing in  B ; strictly concave; and, except 

at  B = 0  , continuously differentiable.

PROOF: 
See Appendix B.

Discussion.—Once we fix the optimal   T   ∗   , problem (6) has, for  t <  T   ∗   , the same 
first-order conditions and budget constraint as (4). Hence, for  t ∈ [0,  T   ∗ ] , the same 
trajectories in Figure 1 apply as before. As in case (i), only the upper part of a tra-
jectory ending at a point with  B = 0  is of potential interest as a candidate solution.

Proposition 2 shows that optimal behavior  ( B  t  ∗ ,  X  t  ∗ )  in case (ii) leads to conver-
gence to  (0,  X ̌  )  followed by a discontinuous drop to  (0,  X 

–
  )  and subsequent stationar-

ity—see Figure 1, case (ii). The intuition for the discontinuous drop in expenditure 
at time   T   ∗   when the household becomes liquidity constrained is as follows.

If  B = 0  , we have argued that the household can do no better than immediately 
accepting Medicaid nursing home care and never leaving it. Thus,   T   ∗  = 0 . Without 
loss of generality, we can think of   X  0  ∗  =  X ̌    and   X  t  ∗  =  X 

–
    all  t > 0 .11

The consumption discontinuity arises in case (ii) because at time   T   ∗    the house-
hold exchanges its annuity-income flow  a  for a Medicaid-provided consumption 
flow   X 

–
   > a . Consider the household’s trade-offs just prior to Medicaid acceptance, 

in the interval  [ T   ∗  − dt,  T   ∗ ] . Over this interval, the optimal consumption trajec-
tory provides utility  U( X ̌  ) dt . Suppose instead that the household accepts Medicaid 
an instant earlier, at time   T   ∗  − dt . Its utility then drops to  U( X 

–
  )dt  , but its liquid 

wealth—available for consumption at prior times—rises by  [ X ̌   − a] dt . The value of 
this wealth in units of utility is  U′( X ̌  ) · [ X ̌   − a] dt . Optimality requires that accepting 
Medicaid at time   T   ∗   or an instant prior yields equal net benefit

(7)  U( X ̌  ) − U( X 
–
  ) = U′( X ̌  ) · [ X ̌   − a]. 

Since the optimal consumption expenditure never drops below the floor   X 
–
   > a  , it 

must be   X ̌    exceeds  a   so that the RHS of (7) is positive. Then, for the LHS of (7) to 
be positive, we must have   X ̌   >  X 

–
   .

11 Note that changing consumption expenditure at a single point does not affect any of this paper’s criterion 
integrals. 
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In other words, the previous analysis shows that age   T   ∗   will, in practice, be par-
ticularly unhappy: at  t =  T   ∗  , a household’s bequeathable wealth runs out, and as 
the household transits from privately funded LTC to Medicaid, its utility flow takes 
a permanent, discrete step downward. Section I notes the public’s seeming aversion 
to Medicaid nursing home care, and the decline in utility predicted by the model at 
age   T   ∗   might rationalize this aversion.

Our analytical results and phase diagram characterization depend on the value 
function  V(B, a)  being concave and smooth. These properties obtain despite the pres-
ence of a consumption floor in case (ii) because of our continuous-time formulation. 
To see the role of continuous time, compare our framework to one where time is 
discrete. Suppose that the last period of life lasts for one discrete unit of time and 
that the household carries liquid wealth  B  to its last period. The value function is then

(8)  V(B, a) =  max  
 
     {U( X 

–
  ), U(B + a)} . 

Medicaid creates a welfare floor  U( X 
–
  ) , which renders  V(B, a)  non-concave, with a 

kink at  B =  X 
–
   − a .

In contrast, with our continuous-time framework, any wealth amount  B > 0  can 
temporarily generate a consumption flow greater than   X 

–
   . Optimal Medicaid take-up 

then never occurs until   B t   = 0 . Roughly speaking, the flat segment  B ≤  X 
–
   − a  in 

(8) collapses to a single point  B = 0  , and concavity of the value function is thus 
preserved. Nor does the discontinuity of the consumption decision rule   X  t  ∗  (B, a)  at  
B = 0  interfere with the value function’s concavity—as the discontinuity occurs on 
the boundary and takes the form of a decline. Given the maximization with respect 
to  T  in (6), the familiar envelope theorem holds

    ∂ V(B, a) ________ ∂ B   = U′ ( X  0  ∗  (B, a))  , 

and Figure 1, case (ii) shows that   X  0  ∗  ( · )  increases in  B .

Summary.—Our low health-state analysis yields four results. We show that a 
household optimally decumulates its liquid wealth and depletes it in finite time; 
that it subsequently sets its consumption expenditure equal to its annuity income 
or accepts Medicaid nursing home assistance; and that at the moment a household 
accepts means-tested nursing home care, its consumption expenditure drops discon-
tinuously. Furthermore, the value function is smooth and concave in liquid wealth, 
with or without the Medicaid consumption floor.

III. High Health-State Phase

Turn next to households in the healthy phase of their retirement, where  h = H . 
Without loss of generality, rescale household ages to  s = 0  at the start of this phase. 
The household problem has two state variables: initial bequeathable net worth 
(i.e., liquid wealth),  b ≥ 0  , and annuity income,  a > 0 . With Poisson rate  λ  , the 
household’s health state changes to  h = L , and it receives (recall Section II) the 
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 continuation value  V ( b s  , a)  , where   b s    is its liquid wealth at the time of the transition. 
Accordingly, a household in state  h = H  solves12

(9)  v (b, a)  =  max   x s  
      ( ∫ 

0
  
∞

   e   − (λ+β) s  [u ( x s  )  ds + λV ( b s  , a) ]  ds)   

 subject to  

   b ̇   s   = r ·  b s   + a −  x s  , 

   b s   ≥ 0 all s ≥ 0, 

   a > 0, and  b 0   = b given. 

Concavity of  V ( · )  , shown in the previous section, assures that the integrand in (9) is 
strictly concave in  ( x s  ,  b s  ) . First-order conditions yield a consumption Euler equation

(10)    
u″( x s  ) _____ 
u′( x s  )

     x ̇   s   + λ (  
U′ ( X  0  ∗ )  − u′( x s  )  ___________ 

u′( x s  )
  )  − β = − r 

that can be interpreted as follows. Along the optimal consumption trajectory, the 
expected growth rate of discounted marginal utility is set equal to the growth rate 
of the relative price of future consumption ( − r ). Euler equation (10) has a non-
standard second term in the left-hand side. This extra term accounts for the jump 
in marginal utility upon the transition to the low health state. The marginal-utility 
growth rate in (10) depends on the value function  V ( · )   through the expression  
 U′ ( X  0  ∗  ( b s  , a) )  =   ∂ V ___ ∂ B   ( b s  , a)  —a familiar envelope condition discussed in Section II.

The Euler equation (10) and the law of motion for liquid wealth

(11)    b ̇   s   = r ·  b s   + a −  x s   

determine the phase diagram. The isocline   b ̇   = 0  is a straight line with slope  r  and 
intercept  a  :

(12)  x =  Γ b   (b) ≡ r · b + a. 

12 Our baseline model assumes that  λ  does not vary with household age  s . This assumption can be relaxed by 
letting   τ s   ds  denote transition probability to the low health state at age  s  and   p s   = 1 −  ∫ 0  

s    τ z    dz  be the probability to 
remain in healthy state at age  s . The expected utility is then

  v (b, a)  =  max   x s  
      ( ∫ 0  ∞    e   −βs  [ p s   U ( x s  )  +  τ s   V ( b s   , a) ]  ds) , 

and the corresponding consumption Euler equation—the analog of (10)—is

     u ″   __  u ′      x ̇   +    τ s   __  p s     (   U ′   −  u ′   _____  u ′    )  − β = − r. 

The baseline case (9) assumes   p s   =  e   −λs   and   τ s   = λ  e   −λs  . 
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To derive the   x ̇   = 0  isocline, we set    x ̇   s   = 0  in (10) and use expression (3) relating 
marginal utilities   u ′    and  U′ . The isocline shape follows the consumption decision 
rule in the low health state—recall Figure 1—compressed by a factor  θ ∈ (0, 1) :

(13)   x ̇   = 0:  x =  Γ x   (b) ≡ θ ·  X  0  ∗  (b, a), 

where

(14)  θ ≡   1 __ Ω     [1 −   r − β ____ λ  ]    
  1 ___ 1−γ  

  ∈ (0, 1). 

To interpret (13)–(14), consider a special case  r = β .13 Setting  r = β  
and    x ̇   s   = 0  in (10) shows that marginal utilities in high and low health states are 
equal along the   Γ x   (b)  isocline:

  u′ (x)  = U′ ( X  0  ∗ )  ⇔  Γ x   (b) =   1 __ Ω    X  0  ∗  (b, a). 

Put differently, when  r = β  , the steady-state expenditure level corresponds to the 
household fully self-insuring its health status.

Several distinct phase portraits can arise depending on the shape of   Γ x   (b)  and the 
values of exogenous parameters. We begin our analysis of phase diagrams with a 
lemma that allows us to limit the eventual number of cases.

LEMMA 2:   Γ x   (b)  and   Γ b   (b)  cross at most once.

PROOF: 
See Appendix B.

Given Lemma 2, the phase portrait of the high health-state period depends on the 
relative magnitudes of   Γ b   (0)  and   Γ x   (0)  and on their asymptotic slopes   Γ  b  ′   (∞)  and   
Γ  x  ′   (∞) . Recall that Propositions 1 and 2 imply

   Γ b   (0) = a,  Γ x   (0) =  { 
θa

  
a ≥  X 

–
  
   

θ X ̌   (a) 
  

a <  X 
–
  
   . 

Later, we show there exists   a –  ∈  (0,  X 
–
  )  , such that

(15)   Γ b   (0) <  Γ x   (0) ⇔ a <  a – . 

Turning to the asymptotic slopes of the isoclines, Proposition 3 shows that there 
exists   r –  ∈  (0, β + λ)  , such that

(16)   Γ  b  ′   (∞) <  Γ  x  ′   (∞) ⇔ r <  r – . 

13 The special case also informs on the generality of the model. When  r = β  , our phase diagram analysis can 
incorporate age-dependent transition probability of the low health state,  λ =  λ s   . Indeed, imposing  r = β  makes  θ  
in (14) independent of  λ ; hence, the isoclines are independent of  λ  as well. The optimal consumption trajectory in 
(10) would still depend on   λ s   . Nevertheless, our results in Propositions 3 and 4 will not be affected. 
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Accordingly, four phase portraits are possible depending on the signs of inequalities 
(15) and (16). We distinguish between the high annuity case  a >  a –   (labelled A) and 
low annuity case  a <  a –   (labelled a) based on the sign of (15). Similarly, the standard 
interest rate case (labelled r) will obtain when  r <  r –   , and the high interest rate case 
(labelled R) will obtain when  r >  r –  . Summarizing, we have the following.

PROPOSITION 3: The solution   ( x  s  ∗ ,  b  s  ∗ )   to (9) is a dotted trajectory on one of the 
four phase diagrams on Figure 2. The phase portrait depends on the parameter 
values as follows:

High annuity Low annuity
 a >  a –   a <  a –   

Standard interest rate  r <  r –   (Ar) (ar)
High interest rate  r >  r –   (AR) (aR)

where   r –   is the unique root in   (0, β + λ)   of

    r ____ r − σ   =   1 __ Ω     (1 −   r − β ____ λ  )    
  1 ___ 1−γ  

  

and

   a –  =  X 
–
   · θ   (1 − γ (1 − θ) )    −  1 _ γ   . 

PROOF: 
See Appendix B.

Proposition 3 and Figure 2 characterize consumption and wealth trajectories for 
all initial conditions   (b, a)   and partition the state space into regions with distinct 
wealth accumulation patterns. The new insight emerging from our analysis is that a 
household’s annuity-income level and its initial portfolio composition matter greatly 
for subsequent wealth holdings. Post-retirement wealth trajectories that vary with  
b  and  a  reflect, in part, different strategies that households use for insuring late-
life risks. For instance, in the standard interest rate case, high annuity households  
( a ≥  X 

–
   ) rely on self-insurance while low annuity households ( a <  a –  ) rely on 

Medicaid. The middle group with  a ∈  ( a – ,  X 
–
  )   self-insures at first and uses Medicaid 

as a fall-back option if it lives long enough. As a consequence, saving behavior in 
the middle and low groups is shaped in important ways by responses to the Medicaid 
means test. The strength of the self-insurance motive is shown to vary significantly 
with  a  (see Proposition 4). We can build further intuitions for Figure 2 by examining 
behavior for households in different circumstances.

Self-Insurance.—Consider behavior of households with  a ≥  X 
–
    who never find 

it optimal to resort to Medicaid (equivalently, one could set   X 
–
   = 0  ,   a –  = 0 , and 

analyze behavior without Medicaid). With  a ≥  X 
–
   >  a –   , we are left with just two 

phase diagrams—(Ar) for the standard interest rate case and (AR) for the high 
interest rate case.
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During poor health, a household’s subjective discount rate,  Λ + β  , exceeds the 
rate of return on wealth. This makes the household prefer a falling consumption pro-
file until age  T  when liquid wealth is exhausted. After age  T  , the household becomes 
liquidity constrained and consumes just its annuity income  a  (recall Proposition 1). 
Liquid wealth and annuities thus play complementary roles in the low health state: 
liquid wealth offers the flexibility to adust expenditure timing while annuity income 
provides longevity insurance.

With  b  and  a  playing complementary roles, households seek a balance of liquid 
wealth and annuities. In the standard interest rate case (i.e., phase diagram (Ar)), all 
households relying on self-insurance target the same long-run ratio of liquid wealth 
to annuities   b  ∞  ∗  /a =  ρ –   —see Proposition 4.

If  r  is high (i.e., phase diagram (AR)), liquid wealth is an attractive investment. 
At first, households may desire more liquid wealth in preparation for poor health. As 
liquid wealth grows, interest income can be used to save for the future and as well 
as to increase current expenditure. In fact, on phase diagram (AR) saving continues 
as long as high health status lasts.
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Figure 2. Possible Phase Diagrams for Optimal Behavior in High Health State

Note: See Proposition 3.
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Effects of Social Insurance.—The decision whether to accept Medicaid public 
assistance becomes relevant if the household outlives its liquid wealth. At that point, 
self-insurance would provide a standard of living  a  , and the Medicaid program would 
confiscate annuity income and provide a consumption floor   X 

–
   . Accordingly, the gain 

from Medicaid is   X 
–
   − a . When annuity income is below a threshold,  a <  a –   , the gain 

from Medicaid is great enough to induce some households to systematically dissave. 
On phase diagram (aR), for instance, saving behavior is dichotomous. Low-resource 
households (i.e., those with  b <  b  ∞  ∗   ) decumulate wealth and anticipate accepting 
Medicaid quickly upon reaching the low health state. High-resource households  
( b >  b  ∞  ∗   ), however, retain the self-insurance motive, but they count on using 
Medicaid as a fallback in the event they outlive their liquid wealth.

Whenever a household’s annuity income is below   X 
–
   , there is a state of the world 

when accepting Medicaid is attractive. Accordingly, saving disincentives associated 
with the Medicaid means test—commonly thought to affect just the poor—may 
extend to high-resource households with high liquid wealth but low annuity income. 
Phase diagram (ar) provides a stark illustration. In it, all low annuity households 
start decumulating wealth after retirement regardless of their initial wealth level.

Saving Motives of the Middle Class.—As previously noted, saving incentives 
of the middle group with annuity income in the range  a ∈  ( a – ,  X 

–
  )   are the most 

complex. In the high interest rate case (phase diagram (AR)), the middle group 
chooses self-insurance at first and relies on Medicaid as a backstop. In the standard 
interest rate case (phase diagram (Ar)), saving behavior depends on both the annu-
ity level and the initial composition of wealth.

In Figure 2, phase diagram (Ar) has a stationary point at  b =  b  ∞  ∗   =  b  ∞  ∗   (a) .  
We can view   b  ∞  ∗   (a)  as a healthy household’s “target level” of liquid wealth: if the 
household begins retirement with  b <(>)  b  ∞  ∗   (a) , it will save (dissave) until reach-
ing the target—or falling to health status  h = L . The following proposition charac-
terizes   b  ∞  ∗   (a)  in the standard interest rate case ((Ar) and (ar)).

PROPOSITION 4: Assume  r <  r –   and let

  ρ (a)  =   
 b  ∞  ∗   (a) 
 ______ a   =   1 __ a     lim  

t→∞
  

 
    b  t  ∗  (b, a)  

be the long-run optimal ratio of liquid wealth to annuities. Then

  ρ (a)  =  
⎧
 

⎪

 ⎨ 
⎪
 

⎩
 
 ρ –  
  

a ≥  X 
–
  

   ς (a)   a ∈  ( a – ,  X 
–
  ) ,   

0

  
a ≤  a – 

    

where  ς′ (a)  > 0  ,  ς ( a – )  = 0  ,  ς ( X 
–
  )  =  ρ –    , and

    b ̇    t  
∗
  > 0 ⇔   b __ a   < ρ (a) . 



90 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS JULY 2018

PROOF: 
See Appendix B.

Proposition 4 summarizes behavior in the standard interest rate case and shows 
how the long-run target wealth level   b  ∞  ∗   (a)   depends on the the household’s annuity 
endowment. The contrast between the high annuity (top) group ( a ≥  X 

–
   ) and the 

middle group ( a ∈ ( a – ,  X 
–
   )) reveals new insights about the incentive effects of public 

assistance.
The top and middle groups both possess self-insurance motives, and thus, they 

seek a balance of liquid wealth and annuities. The top group targets a long-run 
wealth level proportionate to the annuity endowment,   b  ∞  ∗   (a)  =  ρ –  a . The middle 
group, in addition, responds to anticipated public benefit, and it accumulates less 
wealth than the top group (i.e.,   b  ∞  ∗   (a) <  ρ –  a ). At the same time, the self-insurance 
motive for the middle group is more sensitive to the annuity-income level:   
b  ∞  ∗   (a) = ρ (a)  a  rises more than proportionately with  a . The steep rise of   b  ∞  ∗   (a)  
results from the interaction of the means test with the self-insurance motive: if  a  
is higher, the gain from Medicaid,   X 

–
   − a  , is less, and this, in turn, strengthens the 

incentive to self-insure.
Our analysis thus explains why incentive effects of the Medicaid means test 

may extend beyond the poorest households and why behavior of the middle class 
may be especially responsive to these incentives. Proposition 4 provides an intu-
itive explanation for numerical results in the recent literature (e.g., Amerkis et al. 
2011, Figure 1; and DeNardi, French, and Jones 2010) that shows the sensitivity 
of saving behavior to the consumption floor across broad ranges of the wealth 
distribution.

Summary.—With our analytically tractable model, we are able to characterize 
wealth trajectories for all initial conditions  (b, a)  and to partition the state space into 
regions with distinct post-retirement wealth accumulation patterns. The patterns 
correspond to different strategies that households choose to insure late-life risks. A 
novelty of our results is that a household’s annuity-income level and its wealth com-
position matter greatly for precautionary saving. Annuity income matters, in part, 
because of the incentive effects of the Medicaid means test. The analysis explains 
why these incentives may be particularly strong for the middle class.

We turn now to several important puzzles that challenged classical life-cycle 
analyses.

IV. Saving after Retirement

Although the standard life-cycle model implies that households will systemati-
cally dissave late in life, survey data often seem to show cohort post-retirement aver-
age liquid wealth declining only slowly with age or, perhaps, even increasing. The 
Introduction refers to this inconsistency as the “retirement-saving puzzle.” The pres-
ent section suggests that as we enhance our modeling framework with Medicaid, 
multiple health states, and asymmetries of health information, the discrepancy 
between the theory’s predictions and evidence diminishes.
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Section III shows that healthy households may continue to save after retirement, 
or at least, may want to husband their existing liquid wealth. Here, we demonstrate 
that healthy households can remain a significant fraction of cohort survivors long 
after retirement. Combining the two results, we then show that a cohort’s average 
liquid wealth need not decline with age.

Post-retirement Saving.—Section III finds that some households may, while 
their health status remains favorable, want to continue accumulating wealth after 
 retirement due to concerns about future consumption needs in the low health state. 
Initial conditions, in particular, a household’s annuity income, are an important 
factor.

Proposition 3 partitions households into three groups. We have a low-resource 
group,  a ≤  a –  ; a middle-class group,  a ∈ ( a –  ,   X 

–
  ) ; and a top group,  a ≥  X 

–
   . 

Households in the low-resource group tend to spend their liquid wealth promptly, 
beginning during good health. They then subsist on their annuity income until poor 
health makes them eligible for Medicaid, which they find relatively attractive.14 
The middle-class group, in contrast, builds a nest egg of liquid wealth   b  ∞  ∗   (a) > 0 . 
The target nest egg is increasing in  a . If a household in this category begins retire-
ment with liquid wealth  b <  b  ∞  ∗   (a) , it saves until  b =  b  ∞  ∗   (a)  or  h = L . After the 
onset of poor health, it spends the liquid wealth and, after the latter is gone, accepts 
Medicaid. The  a ≥  X 

–
    group also has a liquid-wealth target during good health. In 

poor health, after spending down the liquid wealth, these households live on their 
annuity income.

The richness of the set of possible behaviors hints that the model may be able to 
rationalize otherwise paradoxical post-retirement outcomes. We now examine that 
possibility further.

Cohort Composition.—The evidence on post-retirement wealth that has attracted 
the most attention measures average (liquid) wealth, at different ages, for an indi-
vidual birth cohort’s survivors. Fortunately, our model allows a detailed description 
of cohort wealth trajectories. We begin with an examination of the evolution of a 
cohort’s mixture of health states.

Consider a cohort of retired, single-person households. In the model, all begin 
retirement with health status  h = H . Each subsequently transitions to  h = L , then 
to death. As the households age, the cohort size steadily diminishes. Somewhat par-
adoxically, however, the ratio of survivors in high versus low health converges to a 
positive constant. We have the following result.

LEMMA 3: The fraction of cohort’s survivors having high health-status  t  periods 
after retirement is

(17)   f t   ≡   1  _____________________   
1 +   λ ____ Λ − λ   ·  (1 −  e   −(Λ−λ)⋅t  ) 

  . 

14 This description is somewhat oversimplified if  r >  r –  —see case (aR) in Figure 2. 
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PROOF: 
See Appendix B.

Provided  Λ > λ ,   f t    falls monotonically from   f 0   = 1  to   f ∞   = (Λ − λ)/Λ > 0 .  
With  λ = 1/12  and  Λ = 1/3  (recall the illustration in Section I), for instance,   
f ∞   = 3/4 .

Although our Poisson processes may only be approximations, they illustrate that 
healthy households can comprise a substantial fraction of cohort survivors long into 
retirement. This is important because, as previously noted, retirees in good health 
can behave quite differently from those whose health is poor.

Cohort Average Wealth.—We now characterize a cohort’s long-run average liq-
uid wealth for each of the four phase portraits in Proposition 3. For the short run, 
simulations illustrate that many outcomes are possible— including, as we shall see, 
outcomes resembling those in the data.

Long-Run Outcomes: Begin with a cohort of single-person, healthy households 
each with the same endowment  (b, a) . Normalize the cohort size to one. Let   b 

–
 (t; b, a)  

denote the cohort average liquid-wealth  t  periods after retirement, that is, the total 
liquid wealth of survivors divided by the total number of age- t  survivors.15 An ana-
lytic characterization for    b 

–
    ∗  (a) ≡  lim  t→∞       b 

–
 (t; b, a)  is possible.

COROLLARY TO PROPOSITION 3: The long-run cohort average wealth,    b 
–
    ∗  (a)   , 

depends on exogenous parameters as follows.

High annuity Low annuity
 a >  a –    a <  a –   

Standard interest rate  r <  r –      b 
–
    ∗  (a)  ∈  b  ∞  ∗   (a)  ·  [  f ∞  , 1]      b 

–
    ∗  (a)  = 0  

High interest rate  r >  r –      b 
–
    ∗  (a)  → ∞  

   b 
–
    ∗  (a)  =  { 

0
  

b <  b  ∞  ∗   (a) 
   

∞
  

b >  b  ∞  ∗   (a) 
    

The proof is straightforward. The cases in which    b 
–
    ∗  (a)  is zero or infinity follow 

directly from Proposition 3 and Figure 2. The case in which    b 
–
    ∗  (a)  is positive and 

finite corresponds to phase diagram (Ar). The bounds are intuitive. In the long run, 
new entrants to the low health group have liquid wealth no greater than   b  ∞  ∗   (a) ; con-
sequently, members of the  h = L  group have wealth that is nonnegative but bounded 
above by   b  ∞  ∗   (a) . The long-run contribution of the  h = L  group to cohort average 
liquid wealth is between  0  and  (1 −  f ∞  )  b  ∞  ∗   (a) . The wealth of the high health-status 
group converges to   f ∞   ·  b  ∞  ∗   (a) . The sum of the two contributions,    b 

–
    ∗  (a) , therefore 

must lie in the interval   b  ∞  ∗   (a) ·  [  f ∞  , 1]  . This establishes the Corollary.

15 See Appendix A for analytic expressions that relate households’ optimal wealth trajectories and   b 
–
 (t; b, a) . 
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If  r <  r –   , we can see that in the long run, a cohort with some high annuity house-
holds should have positive stationary average liquid wealth. For  r >  r –   , long-run 
average liquid wealth should approach  ∞ . The possibility of a level, or rising, cohort 
wealth trajectory depends on the asymptotic stationarity of (17) and on Section III’s 
finding that healthy retirees may husband their wealth or continue to accumulate 
more.

Simulated Wealth Trajectories: narrow wealth ranges. We utilize numerical 
simulations in illustrating our model’s ability to match empirical outcomes in the 
short run. We consider two comparisons.

Section I suggests parameter values  λ = 1/12 ,  Λ = 1/3 , and   X 
–
   = ξ ·  X   M   

for  ξ ∈ (0, 1] . Appendix A calibrates  Ω . Appendix A also suggests cross-sectional 
quantiles for  a —see Table A1—and notes values for  γ ,  r , and  β  familiar from the 
literature. Table A2 determines corresponding phase diagrams for the model.

We first compare post-retirement cohort trajectories of average (liq-
uid) wealth for the model with empirical profiles from DeNardi, French, and 
Jones (2015, Figure 4). We simulate age-wealth profiles for the model for 
selected parameters within the Appendix A domain. DeNardi, French, and 
Jones derive graphs of cohort wealth from HRS/AHEAD panel data on sin-
gle-person households aged 74 or older in 1996.16 Convenient features of the 
empirical graphs are that they segregate the underlying sample into narrow annu-
ity-income bands (i.e., into quintiles of the cross-sectional distribution of  a )  
and that, because the median age of retirement in the United States is about 62, even 
the youngest households in the graphs have often been retired for over a decade. 
The latter implies that the ratio of health types may well have virtually completed its 
convergence to  f (∞)  in (17).17 A complication, however, is that the number of data 
points is fairly small, especially at higher ages (c.f., DeNardi, French, and Jones 
2015, fn. 4). The asymptotic stationarity of our ratio  f (t)  depends on large samples. 
Accordingly, we ignore the jagged regions at the right-hand ends of the empirical 
graphs.

Figure 3, left panel, presents illustrative simulations from the model. The sim-
ulations assume  f (t) = f (∞) ,  r = β = 0.02 , and   X 

–
   = 52.5 , and they consider  

γ = − 0.75 ,  − 1.0 , and  − 1.25 . In all cases,  r <  r –  . For  a  below the median of 
Table A1, Table A2 then implies phase diagram (ar)—i.e.,  a <  a –  —with prompt 
spend-down of liquid wealth regardless of health. That behavior is consistent with 
the low and declining wealth balances evident in the two bottom-quintile empiri-
cal graphs. The model provides an intuitive explanation, namely, that low annuity 
households do not perceive that they can do better, once stricken with poor health 
status, than to depend upon Medicaid. For  a  near the (Table A1) median, similar 
parameter values yield  b ≈  b  ∞  ∗  (a) > 0  in Table A2. Hence, by age 74, the corre-
sponding simulated wealth trajectory is nearly horizontal. Again, that seems broadly 
consistent with the empirical graphs. Finally, for simulations of the top 30 and top 

16 DeNardi, French, and Jones’ panel data can avoid birth-cohort fixed effects and complications from correla-
tions of survival probability with portfolio size. 

17 With  λ = 1/12  and  Λ = 1/3 , for example, convergence to  f (∞)  is over 98 percent complete after 12 years. 
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10 percent annuity groups, Table A2 implies much higher values of   b  ∞  ∗  (a) —as 
Proposition 4 would predict. In particular,   b  ∞  ∗  (a)  tends to be large relative to  b  , lead-
ing to simulated age wealth trajectories that rise for a number of years.18 Intuitively, 
high annuity households demand high liquid-wealth balances to reduce their future 
reliance upon Medicaid.

Figure 3 suggests that, for plausible parameter values, simulations from the 
model can match empirical trajectory shapes and that, through Propositions 3–4, 
our theoretical analysis can provide explanations for the behavior arising in practice.

Simulated Wealth Trajectories: broad population averages. Second, we com-
pare the model with empirical figures from Poterba, Venti, and Wise (2011a). Single 
graphs from the latter summarize a full cross section of annuity incomes. And the 
data tend to begin at the empirical retirement age so that the convergence of (17) 
runs its course as we move along a graph. Nonetheless, this has been an important 
form for evidence in the literature, and we can again use our model to interpret the 
data’s patterns.

As discuessed earlier, Poterba, Venti, and Wise use panel data. They link average 
liquid-wealth holdings in adjoining survey waves, including only households with 
data in both waves. They process the data extensively, using trimmed means and 
medians. We focus on the graphs of Poterba, Venti, and Wise  (2011a, Figures 1.10 

18 The top-quintile graph of the data rises from age 74 to 84–86 at a rate of 0.5–1.5 percent/year. For the sim-
ulations, the average wealth of the top 30 and 10 percent of households rises 0.5 to 1.7 percent/year (cf. DeNardi, 
French, and Jones 2015, Figure 4 and the left panel of our Figure 3). 
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and 1.11), which combine five age groups. These graphs include only single house-
holds—though, as noted later, they are not limited to retirees.

We can compare simulated median liquid wealth with Poterba, Venti, and 
Wise  (2011a, Figure 1.11). Roughly speaking, the empirical graph is hori-
zontal for households in their late 60s, and falls −0.6 percent/year for house-
holds in their 70s. Medians may be less sensitive to non-retirees than means. 
Our comparison group from the model is healthy households with median ini-
tial conditions (i.e.,  (b, a) = (21, 100) ). We use single age groups. We set 
the same parameters as those previously mentioned. Thus, we have  r <  r –  .  
And, for a median household,  a >  a –  . The phase diagram is (Ar). Outcomes are 
straightforward as follows: for  b < (>)  b  ∞  ∗   (a) , the liquid wealth of healthy house-
holds monotonically rises (falls) until becoming stationary at the target level,   b  ∞  ∗   (a) .  
For  γ = −1.25 ,  −1.0 , and  −0.75 , the 15-year growth rates of simulated liquid 
wealth are, respectively, 1.4 percent/year, 0.7 percent/year, and −0.04 percent/year. 
The last is the best match.19

Figure 3, right panel, simulates cohort mean wealth trajectories from the model. 
The simulations use Table A1 endowments  (b, a) = (14, 15) ,  (100, 21) ,  (272, 34) ,  
and  (57, 892)  with weights 1/3, 1/3, 2/9, and 1/9, respectively. Parameter values 
continue to be as in the preceding subsection. For conformity with Poterba, Venti, 
and Wise (2011a, Figure 1.10), our simulations present 5-year moving averages. The 
empirical graphs reveal a growth rate of about 1.3 percent/year for 5 years and 1.4 
percent/year for the next 10. The simulated curves show a brief dip from the large 
initial (percentage) increases in low health-status households.20 Thereafter, they 
manifest growth at rates 1.1 percent/year, 0.9 percent/year, and 0.6 percent/year 
for  γ = −1.25 ,  − 1.0 , and  − 0.75 , respectively. The presence of non-retired house-
holds in the data may, in part, explain remaining discrepancies.

Thus, even in the most challenging case, Poterba, Venti, and Wise (2011a, Figure 
1.10), the illustrative simulations can match the data quite well. Our qualitative anal-
ysis shows why. If  r <  r –   , poor health or very low annuity income leads to declin-
ing liquid wealth (see Proposition 3). Households with moderate annuity income 
accumulate wealth more slowly than high annuity, healthy households (see Figure 
3 and Proposition 4). We show the rising and falling segments can counterbalance 
one another in the weighted average, and the time-varying cohort composition can 
flatten the initial portion of the average trajectory.

Discussion.—For decades, evidence of the “retirement-saving puzzle” has raised 
questions about the validity of the life-cycle model. We, however, argue that several 
elaborations of the standard framework, which are interesting and realistic in their 
own right, can greatly improve the model’s performance. The enhanced model’s 
ability to match the evidence includes both aggregative data and data on separate 
income groups.

19 For  γ = −0.50 , the simulated (15-year) growth rate would drop to  − 1.1  percent/year. 
20 The total peak-to-trough is 0.7 percent, 2.3 percent, and 5.0 percent for  γ = −1.25 ,  −1.0 , and  −0.75 , 

respectively. 
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Our analysis uses both qualitative results and straightforward numerical simula-
tions. The latter utilizes plausible parameters' values. The former enables us to shed 
light on the possible causes of otherwise surprising cohort wealth trajectory patterns 
evident in practice.

V. Demand for Annuities

Standard life-cycle theories addressing self-insurance of longevity risk—start-
ing with the well-known work of Yaari (1965)—have been hard to reconcile with 
households’ apparent lack of demand for annuities at retirement. Using our model, 
we now reconsider this “annuity puzzle.”

To study demand for annuities, this section deviates from our baseline specifica-
tion to allow households to reallocate their portfolios at retirement. Let

(18)   r A   =   
 (λ + r)   (Λ + r) 

  __________  λ + Λ + r   

denote the actuarially fair rate of return used to capitalize annuity income (see 
Appendix B for the derivation of (18)). Then household total initial wealth,   w 0    , can 
be expressed through its endowment of liquid wealth and annuities   ( b 0  ,  a 0  )   prior to 
portfolio choice as follows:

   w 0   =  b 0   +    a 0   __  r A     . 

At retirement, a household reallocates its endowed total wealth between bonds 
and annuities to maximize its post-retirement value function. The resulting opti-
mal allocation   (b, a)   becomes the initial state for the household optimization prob-
lem (9). To formulate the household portfolio choice problem, it is convenient to 
define

   α 0   =    a 0  / r A   _____  w 0     =    a 0   _______  a 0   +  r A    b 0  
  , 

the initial share of annuitized wealth at retirement. Then the household problem is

(19)   α ̂   ( w 0  )  =  arg max  
α∈ [0, 1] 

      v ( (1 − α)   w 0  ,  r A   α  w 0  ) . 

If the desired annuity share,   α ̂   , exceeds the endowed share   α 0   , a household will 
exhibit demand for annuities at retirement.

To develop intuitions, first consider the role of annuities for low-resource house-
holds, that is, the group following phase diagram (ar) or phase diagram (aR) with  
b <  b  ∞  ∗   . Medicaid provides better support in the low health state than these house-
holds could otherwise afford; therefore, they are content to accept Medicaid promptly 
after poor health begins. Annuities provide insurance against outliving one’s 
resources during good health; Medicaid provides longevity protection once  h = L .  
But, Medicaid usurps a household’s annuity income, causing annuities to lose part 
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of their appeal. Using (18), the capitalized value of annuity flow  a  is  A = a/ r A   . The 
expected present value of an annuity stream useful only during good health is

  a ·  ∫ 
0
  
∞

    e   −(λ+r)·s  ds =   A ·  r A   ______ λ + r   = A  Λ + r ______ λ + Λ + r   < A. 

With  λ = 1/12  and  Λ = 1/3  and  r = 0.02  (0.03), for example, we have

    Λ + r ______ λ + Λ + r   = 0.81 (0.81) < 1. 

In other words, an actuarially fair annuity carries, roughly speaking, an inherent user 
cost (or “load”), which is likely to be nontrivial.

The inherent cost can be even larger for middle-class households with  a ∈  ( a – ,  X 
–
  )  .  

The one-size-fits-all Medicaid benefit   X 
–
    leaves them dissatisfied. Hence, they carry 

resources to the low health state to postpone reliance upon Medicaid. To do so, a 
middle-class household augments its annuities with bonds. Upon Medicaid take-up, 
a household must relinquish its annuities and remaining bonds to the public author-
ity. As in Section II, a household can consume both the income and principal of its 
bonds prior to accepting Medicaid. Unlike bonds, however, annuities are illiquid. 
Recall that utility in state  h = L  is

   ∫ 
0
  
∞

    e   −(β+Λ)⋅t  · U( X t  ) dt. 

Since  Λ  tends to be large, even if bond wealth is used up rather quickly after the 
onset of poor health, total utility can significantly benefit. Relying exclusively on 
accumulating bonds during good health is risky as the good health phase may turn 
out to be brief. Starting with a mixture of annuities—to protect against a long span 
of  h = H — and bonds—to delay the need to accept Medicaid if the span of  h = H  
turns out to be short—becomes attractive.

Put another way, purchasing an annuity income  a  at retirement costs  A = a/ r A   . 
When the low health state arrives, the actuarially fair capitalized value of the annui-
ty-income flow drops to  a/(Λ + r) . The capital loss can be substantial: the value of  
a  after  h = L  as a fraction of its initial cost is

(20)    a/(Λ + r) _______ 
a/ r A  

   =    r A   ____ Λ + r   =   λ + r ______ λ + Λ + r  . 

Letting  Λ = 1/3  and  λ = 1/12 , for instance, the relative value in (20) is 0.24 
(0.25) when  r = 0.02  ( 0.03 )—a roughly 75 percent capital loss. If the household 
subsequently turns to Medicaid, it must relinquish  a  to the Medicaid program. At 
that moment, the value to the household of the annuity income declines further, 
to zero. These are steep drops. What is more, their timing is extremely inoppor-
tune: at the onset of  h = L , a household’s marginal-utility-of-consumption func-
tion rises abruptly. And Proposition 3 shows that as a household accepts Medicaid, 
its consumption (discontinuously) drops. Evidently, annuities subject a household 
to severe capital losses exactly at times when the household values consumption 
highly. Bond values, in contrast, are unrelated to health. At Medicaid take-up, a 
household essentially must hand over its remaining bonds. But, as Section II shows, 
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households can spend their bond wealth completely prior to that moment. Roughly 
speaking, in the last stage of life, annuities and Medicaid are substitutes, whereas 
bonds and Medicaid are complements.

The previous arguments do not apply to very high annuity households, that is to 
say, those with  a ≥  X 

–
   . The latter households never use Medicaid. Their total wealth 

must exceed   w –    with

   w –   ≥   a __  r A     ≥    X 
–
   __  r A    . 

With  λ  and  Λ  as previously stated and  r = 0.02  (0.03),

     X 
–
   __  r A     = 11.96 ·  X 

–
    (10.85 ·  X 

–
  ). 

In Table A1, only top-decile households have  w ≥  w –   .

Illustrative Examples.—We present solutions to the household portfolio choice 
problem for different initial wealth levels to illustrate the impact of Medicaid avail-
ability on the demand for annuities at retirement. Table 1 shows the initial wealth 
components and initial share of annuitized wealth, as well as the solutions to (19), for 
the thirtieth, fiftieth, seventieth, and ninetieth percentiles of the empirical wealth dis-
tribution of Table A1. The exogenous parameters are set to  r = β = 0.02 ,  γ = −1 ,  
 λ = 1/12 ,  Λ = 1/3 ,   X 

–
   = 52.5 , and  Ω = 5.25 , consistent with Figure 3.

For comparison, column 5 illustrates the case without Medicaid, with   X 
–
   = 0 . 

Proposition 3 shows that   X 
–
   = 0  implies  a >  a –  = 0 ; hence, phase diagram (Ar) 

applies. Without Medicaid long-term care, the model is homothetic in  (b, a) , and the 
optimal share of annuitized wealth at retirement,   α ̂    |   X 

–
  =0    , is independent of house-

hold total wealth. Evidently, absent Medicaid, the model exhibits the annuity puzzle 
in rows 2–4: the desired share of annuitized wealth,   α ̂    |   X 

–
  =0   , exceeds the initial share,   

α 0    in all rows except the first.21

The last column reports the optimal share of annuitized wealth,   α ̂   , with Medicaid. 
For rows 1–3, the annuity puzzle has disappeared: in rows 1–2, actual annuitization 

21 Our framework differs from Yaari (1965) in that the mortality hazard is correlated with state-dependent mar-
ginal utility—and this explains why households desire less than 100 percent annuitization. However, the deviation 
from full annuitization is slight—an outcome that is reminiscent of other recent analyses, e.g., Davidoff, Brown, and 
Diamond (2005).

Table 1—Portfolios at Retirement:  
Actual, Optimal (no Medicaid ), Optimal (with Medicaid )

  a 0     b 0     w 0     α 0   =    a 0   ______  a 0   +  r A    b 0  
     α ̂    |  X 

–
  =0      α ̂   

(1) (2) (3) (4) (5) (6)

15  14  177 0.92 0.93 0.92
21 100  328 0.70 0.93 0.67
34 272  641 0.58 0.93 0.48
57 892  1,571 0.43 0.93 0.93
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is equal or slightly larger than desired; and in row 3, the actual is 20 percent above 
desired. Our model provides an interpretation. As in Section IV, we have  r <  r –  . 
According to the model, row 1 households, with  a <  a –   , will find standard annuities 
attractive. And Table A1 shows they are heavily annuitized in practice as well. In 
the middle class, with  a ∈  ( a – ,  X 

–
  )  , the model implies households will desire mixed 

portfolios, using liquid assets to postpone reliance on Medicaid.
Annuity-puzzle behavior does emerge in row 4 of Table 1. One possibility is that 

a somewhat higher choice of  ξ  would make  a <  X 
–
   = ξ X M    for the top group (recall 

that   X M   = 70  and  a = 57 ). Another is that the millionaires in the top decile want 
to leave intentional bequests—behavior which is outside the scope of our modeling.

The analysis suggests a possible resolution of the annuity puzzle, at least for 
households with middle-class annuity incomes: the limited annuitization that house-
holds have in practice may accurately reflect their preferences, given the availability 
of Medicaid long-term care and the treatment of annuity income in the Medicaid 
means test.

VI. Medicaid Take-up and Accidental Bequests

The basic assumptions of our model enable it to offer interpretations of inter-
esting phenomena in addition to the retirement-saving and annuity puzzles. This 
section briefly describes two examples.

The Timing of Medicaid Take-up.—DeNardi, French, and Jones (2016) present 
evidence that even households with relatively high annuity income sometimes use 
Medicaid nursing home assistance very late in life, though households with lower  a  
tend to access Medicaid more frequently and at younger ages. Our model offers an 
intuitive explanation for these outcomes.

Proposition 3 shows that any household with  a <  X 
–
    will access Medicaid if 

it survives long enough. The model determines Medicaid take-up time as a func-
tion of a retiree’s initial condition  (b, a)  and age at the onset of poor health. If  
S  is the time spent in good health, then the optimal age of Medicaid take-up is  
 S +  T   ∗  ( b  S  ∗  (b, a), a) , where the function   T   ∗  ( · )  is as in Section II. The model thus 
provides a mapping between portfolio composition at retirement, household health 
history, and Medicaid take-up age—making a comprehensive treatment possible.

Consider the standard interest rate case. Households with  a <  a –   want to accept 
Medicaid promptly once  h = L . Households with  a >  a –   , however, hold liquid 
wealth to postpone their resort to Medicaid. These households are more likely to die 
before Medicaid take-up and to take up Medicaid only at advanced ages.

Bequest Behavior.—Households in the model leave accidental bequests if they 
die before spending down their liquid wealth. Survey questions suggest that such 
bequests may be important in practice, while evidence on intentional bequests has 
been mixed.22

22 E.g., Altonji, Hayashi, and Kotlikoff (1992, 1997); Laitner and Ohlsson (2001); and others. 
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In our model, a household begins health state  h = L  with liquid wealth  B ≥ 0  , 
and it spends the latter at a rapid rate (with its consumption flow exceeding   X 

–
   ). If it 

dies before exhausting  B  , the residual constitutes a bequest. If it lives longer, it has 
no bequest and finishes life relying upon Medicaid or its annuity income, whichever 
is larger.

Proposition 3 determines interest rate and annuity thresholds,   r –   and   a –  . Consider 
first a low-resource household, i.e., one following phase diagram (ar) or phase dia-
gram (aR) with  b <  b  ∞  ∗   . Section III shows the household will dissave in the good 
health state. If  h = H  lasts long enough, it will begin poor health with liquid wealth  
B = 0 . Since all households dissave in poor health, the household would then die 
with no estate. If  B > 0  , it would subsequently decumulate its liquid wealth rap-
idly, leaving a bequest only if it died before   B  t  ∗   reached 0. In general, households 
in the low-resource group will tend to leave estates only if their life span in both 
segments of retirement is short.

Alternatively, suppose a household has (i)  r >  r –   ,  b >  b  ∞  ∗    , and  a <  a –  ; (ii)  r >  
r –   and  a >  a –  ; (iii)  r <  r –   ,  a >  a –   , and  b <  b  ∞  ∗   ; or (iv)  r <  r –   ,  a >  a –   , and  b >  
b  ∞  ∗   . In case (iv), the household dissaves during good health with a lower limit   b  ∞  ∗   .  
In the remaining three cases, it saves while  h = H . It begins  h = L  with liquid 
wealth  B > 0 . It fully dissaves its liquid wealth after (finite) time span   T   ∗  (B, a)  
(recall Section II). The function   T   ∗  ( · )  is increasing in  B  and decreasing in  a . The 
household leaves an estate if it dies within  T <  T   ∗  (B, a)  years. In cases (i)–(iii), a 
longer time spent in good health leads to a higher probability of leaving an estate. 
In cases (i)–(iv), a shorter life span after  h = L  makes a positive estate more likely. 
For the same  B  , a higher annuity income  a  makes a bequest less likely. Our prop-
ositions offer a full characterization of the timing and magnitude of such transfers.

VII. Conclusion

This paper presents a life-cycle model of post-retirement household behavior 
emphasizing the roles of changing health status (correlated with changes in mor-
tality), annuitized wealth, and Medicaid assistance with long-term care. Despite 
the presence of health-status uncertainty and the non-convexities introduced by the 
Medicaid means test, our analysis yields a deterministic optimal control problem 
where the solution can be characterized with phase diagrams.

Qualitatively (and quantitatively in calibrated examples), we show the model is 
consistent with the gently rising cohort post-retirement wealth trajectories that tend 
to appear in data. Similarly, we show that a sizeable fraction of households may not 
wish to buy additional annuities at retirement—with both Medicaid LTC and exist-
ing primary annuitization from Social Security and DB pensions playing important 
roles in the outcome. The model can, in other words, offer a unified explanation for 
two long-standing empirical puzzles, the “retirement-saving puzzle” and the “annu-
ity puzzle.”

The model shows that after retirement but while in good health, middle-class 
households may want to maintain, or continue to build, their non-annuitized net 
worth. Households value primary annuities for the income that they provide, 
bonds for flexibility of access to funds, and Medicaid LTC for backstop protection 
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against extreme longevity. Primary annuities and bonds can assume complementary 
roles: middle-class households may, during good health, save part of their annuity 
income to (temporarily) support a higher living standard later, after poor health 
strikes, than Medicaid nursing home care provides. In the model, this behavior can 
be understood to be a consequence of state-dependent utility and incomplete finan-
cial and insurance markets.

Appendix A. Calibration and Numerical Results

Calibration.—Our model has a limited number of parameters. We set  λ = 0.0833  
and  Λ = 0.3333 , corresponding to time intervals of 12 and 3 years, respectively, as 
in Sinclair and Smetters (2004). The literature has a variety of estimates of  γ ≤ 0  
(see, for example, Laitner and Silverman 2012) and generally uses  β ∈ [0, 0.04] . 
We consider values  γ ∈ [−0.5, −3.0] , corresponding to a coefficient of relative risk 
aversion  1 − γ ∈ [1.5, 4]  , and values  r,  β ∈ [0.02, 0.03] .

The model includes two parameters that are less familiar:  Ω —defined in (3)—
which captures the rise in marginal utility associated with the low health state, and   
X 
–
    , which measures the value to a recipient household of Medicaid nursing home 

care.
The proposed calibration exploits the fact that Medicaid is a social-insurance 

program. Theoretically,   X 
–
    might be thought of as a choice variable for a social plan-

ner who seeks to insure the target recipient of public long-term care. Accordingly, a 
comparison of   X 

–
    with the normal expenditure of a healthy target recipient identifies 

the difference in marginal utility across states that would rationalize   X 
–
   .

Think of the target recipient as a household that would quickly turn to Medicaid 
upon reaching the low health state, and let   x –   denote the recipient’s expenditure level 
while still healthy. Efficiency requires equalizing marginal utilities of expenditure 
across health states:

(A1)  U′( X 
–
  ) = u′ ( x – ) . 

In the model, households that are quick to accept Medicaid enter the low health 
state, say, at age  s , with nearly zero liquid wealth,   b s   = B ≃ 0  (see phase diagram 
(ar)). Since   b s   ≃ 0  , the typical recipient’s consumption just prior to  s  must be   
x –  ≃ a   so that  U′( X 

–
  ) = u′ (a)   in (A1). Optimality condition (A1) then relates   X 

–
    and  

Ω  as follows (recall (3)):

(A2)  Ω =    X 
–
   __ a  . 

Condition (A2) enables us to use data on Medicaid nursing home reimbursement 
amounts and target-recipient annuity incomes to evaluate  Ω . To calibrate  a  , we assume, 
as shown earlier, that a target Medicaid recipient has low initial liquid wealth and an 
annuity income substantially below the population median. We set  a =   a _   = 10,000 ,  
which is about one-half of population median and about 2/3 of the annuity income 
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of the thirtieth percentile among single-person retired households (see Table A1, 
column 4).23

To estimate the effective long-term care consumption flow   X 
–
    , we start with a 

direct measure of nursing home care cost,   X M   . In MetLife Mature Market Institute 
(2009), annual average expenditures for nursing home care in 2008 are $69,715 
for a semi-private room and $77,380 for a private room. Accordingly, we set   
X M   = 70,000 . Prior studies (e.g., Ameriks et al. 2011, and Schafer 1999) suggest 
that   X 

–
    might be much lower than   X M   . Reasons might include the disutility of liv-

ing in an institution and/or accepting government welfare. Accordingly, for a fixed   
X M   = 70,000 , let

   X 
–
   = ξ ·  X M  , ξ ≤ 1. 

We report results for  ξ ∈ {0.5, 0.75, 1} , which imply   X 
–
   ∈ {35,000, 52,500, 70,000}  

and  Ω =  {3.5, 5.25, 7.0}  . The resulting middle estimate,   X 
–
   = 52,500  , is close to 

the calibrated consumption floor in the nursing home eligible state in Ameriks et al. 
(2011)—their estimate of   X 

–
    is 56,300 (2008 dollars).

Numerical Results.—Table A2 provides calculations that illustrate Proposition 3 
and the qualitative results of Section IV. Each panel of the table corresponds to a dis-
tinct vector of exogenous parameters   (r, β, Ω,  X 

–
  )   consistent with (A2) and reports 

the values of   a –   ,   r –   , and   b  ∞  ∗    for a set  γ ∈  {−0.5, −1, −2, −3}  .
We can see that all four phase diagrams of Figure 2 obtain for empirically rele-

vant parameter values. To illustrate the model’s predictions, we take several initial 
conditions   (b, a)   from the balance sheets of single-person households aged 65–69 
reported in Poterba, Venti, and Wise (2011b, Table 2). Table A1 shows the corre-
sponding components of annuitized and non-annuitized wealth at selected points of 
the wealth distribution.24

23 By way of comparison, the chosen value of    a _   = 10,000  is somewhat higher than the annual SSI amount 
(7,644 2008 dollars) that acts as a lower bound on household annuity income in practice. All else equal, calibrating 
from a lower    a _    would produce a higher  Ω  and supply a stronger self-insurance motive. We prefer calibrations of  Ω  
on the low side to stack the cards against the post-retirement-saving behavior that our model is trying to explain. 

24 Poterba, Venti, and Wise (2011b) use the actuarially fair rate of return on annuities to capitalize annuity flows. 
Consistent with this, we use the actuarially fair rate of return   r A    from (18) to convert between annuity wealth and 
income flow. 

Table A1—Primary Annuities and Bequeathable Wealth (000s of 2008 dollars) for 
Single-Person Households Aged 65–69

Annuitized wealth Annuity
 income,   a 0   

Bequeathable
 wealth,   b 0   Social Security,   b ss   DB pension,   b DB    

Net worth (1) (2) (3) (4)
30th percentile 166  0 15  14
Median 230  0 21  100
70th percentile 299  73 34  272
90th percentile 388  292 57  892

Source: Poterba, Venti, and Wise (2011b), Table 2 and p. 99
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Consider a household at the thirtieth percentile of the annuitized wealth distri-
bution in Table A1 with  a = 15  and  b = 14 . Table A2, columns 4 and 5, show 
the phase diagram types and the values of   b  ∞  ∗    corresponding to  a = 15 . For all  
γ > − 3  (CRRA less than 4), the model predicts that households with  a = 15  and  
b = 14  should dissave, either because they follow phase diagram (ar) or because 
they follow phase diagram (aR) and have a low initial wealth  b = 14 <  b  ∞  ∗   .

Next, take a household with a median annuity income  a = 21  and the corre-
sponding liquid wealth  b = 100 . Table 2, columns 6 and 7 show that the model’s 
predictions with respect to wealth accumulation depend on the risk aversion param-
eter. When risk aversion is low (e.g.,  γ = − 0.5 ), the phase diagram type is (Ar) 
with  b >  b  ∞  ∗    , where Proposition 4 would imply wealth decumulation. As risk aver-
sion rises, so does   b  ∞  ∗   . Accordingly, for higher levels of risk aversion ( γ ≤ − 1 ),  
we have  b <  b  ∞  ∗    , and the model predicts post-retirement saving.

Table A2—Phase Diagram Types for Various Parameter Combinations

a = 15 a = 21 a = 34 a = 57

γ   a –    r –  PD type   b  ∞  ∗   PD type   b  ∞  ∗   PD type   b  ∞  ∗   PD type   b  ∞  ∗   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A r = 0.02, β = 0.02, Ω = 7.0,   X 
–
    = 70

−0.5 20.4 0.032 ar 0 Ar 38.4 Ar 809.6 Ar 1,986.7
−1 18.6 0.026 ar 0 Ar 326.5 Ar 1,861.3 Ar 4,183.9
−2 16.5 0.019 aR 980.2 AR ∞ AR ∞ AR ∞
−3 15.3 0.014 aR 48.5 AR ∞ AR ∞ AR ∞

Panel B r = 0.02, β = 0.02, Ω = 5.25,   X 
–
    = 52.5 

−0.5 19.7 0.040 ar 0 Ar 44.8 Ar 456.5 Ar 1,017.7
−1 18.1 0.034 ar 0 Ar 162.8 Ar 795.0 Ar 1,661.2
−2 16.2 0.025 ar 0 Ar 757.0 Ar 2,411.1 Ar 5,038.3
−3 15.1 0.020 aR 206.7 AR ∞ AR ∞ AR ∞

Panel C r = 0.02, β = 0.02, Ω = 3.5,   X 
–
    = 35 

−0.5 18.4 0.052 ar 0 Ar 45.7 Ar 232.6 Ar 397
−1 17.1 0.047 ar 0 Ar 93.1 Ar 339.4 Ar 576.6
−2 15.6 0.038 ar 0 Ar 224.3 Ar 625.2 Ar 1,488.4
−3 14.6 0.031 Ar 28.7 Ar 442.1 Ar 1,081.4 Ar 2,585.5

Panel D r = 0.03, β = 0.03, Ω = 7.0,   X 
–
    = 70 

−0.5 20.4 0.035 ar 0 Ar 92.2 Ar 1,830.0 Ar 4,387.0
−1 18.6 0.028 aR 1,545 AR ∞ AR ∞ AR ∞
−2 16.5 0.020 aR 134 AR ∞ AR ∞ AR ∞
−3 15.3 0.015 aR 18.4 AR ∞ AR ∞ AR ∞

Panel E r = 0.03, β = 0.03, Ω = 5.25,   X 
–
    = 52.5 

−0.5 19.7 0.043 ar 0 Ar 64.5 Ar 639.1 Ar 1,406.6
−1 18.1 0.037 ar 0 Ar 328.5 Ar 1,526.6 Ar 3,133.8
−2 16.2 0.027 aR 314.2 AR ∞ AR ∞ AR ∞
−3 15.1 0.021 aR 8.0 AR ∞ AR ∞ AR ∞

Panel F r = 0.03, β = 0.03, Ω = 3.5,   X 
–
    = 35 

−0.5 18.4 0.057 ar 0 Ar 53.2 Ar 265.5 Ar 452.8
−1 17.1 0.051 ar 0 Ar 116.6 Ar 415.2 Ar 704.9
−2 15.6 0.040 ar 0 Ar 358.8 Ar 963.1 Ar 3,084.9
−3 14.6 0.032 Ar 110.9 Ar 1,421.7 Ar 3,123.6 Ar 4,989.4

Notes: See Figure 2 and Proposition 3. Fixed parameters: Λ = 1/3, λ = 1/12. Wealth units: 000s 2008 dollars.
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The previously discussed logic extends to the behavior of households all the way 
to the top of the wealth distribution. For instance, take a household with  a = 34  and  
b = 272  corresponding to the seventieth percentile. Table A2, column 9 shows that   
b  ∞  ∗    is large, as   b  ∞  ∗   (a)   in Proposition 4 rises rapidly with  a . The model then predicts  
b <  b  ∞  ∗    , at least for  γ < − 0.5 . At higher levels of risk aversion (CRRA 3 or 4), 
column 8 shows that the phase diagram switches to (AR), where the model predicts 
wealth accumulation starting from arbitrarily large  b .

Broadly, the patterns of Table A2 seem consistent with observations on wealth 
accumulation behavior of single-person households showing post-retirement saving 
at higher wealth levels and flat or falling wealth at lower wealth levels (e.g., Poterba, 
Venti, and Wise 2011a; and De Nardi, French, and Jones 2015).

Our analysis stresses portfolio composition at retirement as an important deter-
minant of post-retirement saving. It is therefore worth explaining why Table A1 
data might show households at retirement with annuity-heavy portfolios. If agents 
anticipate a need to save after retirement, then why did they not save more before 
retirement? We think that one answer has to do with the composition of single-per-
son households by marital status. According to the US Census (2012), 42 percent of 
single-person households aged 65–74 are widowed, and an additional 40 percent are 
divorced. Thus, the Table A1 wealth distribution used as the initial condition for the 
model describes mostly single households who experienced a past shock to family 
status. Both divorce and death of a spouse deplete wealth: Poterba, Venti, and Wise 
(2011b, Figures 2, 4) show a sharp drop in non-annuity financial assets following a 
transition from a two- to one-person household. By contrast, married couples and 
continuing singles show a rising wealth-age profile. In line with this, the data show 
that single-person households are more heavily annuitized than couples—70 per-
cent annuitization for a median single household versus 57 percent for a median 
married couple (Poterba, Venti, and Wise 2011b, Table 2).

Simulation of Cohort Average Wealth.—Here, we provide analytic expressions 
that relate households’ optimal liquid wealth trajectories and the cohort average 
wealth   b 

–
  (t; b, a)  . Using the notation of Sections II–III, a household remaining in 

high health-status  t  periods after retirement has liquid wealth   b  t  ∗  =  b  t  ∗  (b, a) . The 
total wealth of a cohort of agents, of measure one, who remain healthy is

   b H   (t; b, a)  =  e   −λt  ·  b  t  ∗  (b, a) . 

The wealth of cohort survivors in the low health state depends on the age at which 
their health status changed. If a household enters low health-status  s ≤ t  periods 
after retirement, its initial wealth upon entering that state is  B =  b  s  ∗  (b, a) . The 
household subsequently follows the low health-status optimal wealth trajectory 
(recall Section II). At time  t  , it has passed  t − s  years in low health status, and its 
wealth is   B  t−s  ∗   (B, a) . The fraction of a cohort entering the low health state at age  
s  and surviving until age  t  is  λ ·  e   −λ⋅s  ·  e   −Λ⋅(t−s)  . Accordingly, the total wealth of 
agents who are in low health  t  periods into retirement is

   b L   (t; b, a)  =  ∫ 
0
  
t
  λ e   −λs   e   −Λ (t−s)    B  t−s  ∗   ( b  s  ∗  (b, a) , a)  ds. 
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Cohort average wealth is total wealth divided by the number of survivors:

   b 
–
  (t; b, a)  =   

 b H   (t; b, a)  +  b L   (t; b, a) 
  __________________   f H   (t) +  f L   (t)

  . 

Table A3—List of Variables

State variables
a Annuity endowment
b Liquid wealth in healthy state
B Liquid wealth in low health state
s Household current age in healthy state
S Time spent in healthy state, Section VI
t Household current age in low health state
  w 0   Household initial total wealth, Section V
  α 0   Household initial portfolio share of annuitized wealth, Section V

Control variables
x Consumption in healthy state
X Consumption in low health state
  X ̌   Consumption just prior to accepting Medicaid
T Age when liquid wealth is exhausted
  α ˆ   Optimal portfolio share of annuitized wealth at retirement

Exogenous parameters
γ Curvature of the utility function
ω Rate of transformation between expenditure and consumption in low health state
β Rate of time preference
λ Transition hazard from healthy state to low health
Λ Transition hazard from low health to death
r Rate of return on liquid wealth
  X 
–
   Medicaid consumption floor

  X M   Medicaid program expenditure per recipient

Functions of endogenous variables
u(x) Utility function in healthy state
U(X) Utility function in low health state
v(b, a) Household’s value function in healthy state
V(B, a) Household’s value function in low health state
  Γ x   (b) Graph of   x ̇    = 0 isocline
  Γ b   (b) Graph of   b ̇    = 0 isocline 
  f t   Fraction of survivors in healthy-state t periods after retirement, Section IV
  b 
–
  (t, b, a) Cohort average liquid-wealth t periods after retirement, Section IV

Functions of exogenous parameters
 ξ =  X 

–
  / X M   Rate of transformation between expenditure and consumption floor for the Medicaid  

 program
 Ω =  ω     

γ
 ____ 1−γ    Marginal-utility conversion factor between low and high health states

 σ =   r − (Λ + β) ________ 1 − γ   Growth rate of expenditure in low health state

 θ =   1 __ Ω  (1 −   r − β ____ λ   )     
1 ____ 1−γ    Conversion factor between consumption decision rule and   x ˙   = 0  isocline

  a –  Threshold annuity income separating high-annuity and low-annuity phase diagrams
  r –  Threshold interest rate separating standard and high interest rate phase diagrams
  ρ –   Long-run optimal ratio of liquid wealth to annuities for households relying on  

 self-insurance
ρ(a) Long-run optimal ratio of liquid wealth to annuities, standard interest rate case,  

 Proposition 4
  r A   Actuarially fair rate of return on annuities
  w –   Minimum initial total wealth of households who never use Medicaid, Section V
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Appendix B. Proofs

PROOF OF LEMMA 1: 
The present-value Hamiltonian for (4) is

(B1)   ≡  e   −(Λ+β)t  U( X t  ) +  M t   (r B t   + a −  X t  )  +  N t    B t  ,  

with costate   M t    and Lagrange multiplier   N t    for the state-variable constraint   B t   ≥ 0 .
The first-order condition for optimal expenditure is

(B2)    ∂  ____ ∂  X t  
   = 0 ⇔  e   −(Λ+β)t U′( X t  ) =  M t  , 

and the costate equation is

(B3)    M ̇   t   = −   ∂  ____ ∂  B t  
   ⇔   M ̇   t   = − r M t   −  N t  . 

The transversality condition is

(B4)    lim  
t→∞

  
 
    M t   ·  B t   = 0 .

Provided   M t   ≥ 0  , first-order conditions and (B4) will be sufficient for optimality. 
The strict concavity of problem (4) ensures that if an interior solution exists, it is 
unique.

We start by checking that  ( B t  ,  X t  ) = (0, a)  satisfies the first-order conditions and 
(B4) for all  t  . Substituting   X t   = a  into (B2) and eliminating   M t    from (B2)–(B3) 
gives the expression for   N t    :

   N t   = [(Λ + β) − r] e   −(Λ+β)t U′(a). 

By assumption,  Λ + β > r . So,   N t   ≥ 0 , and the time path of the Lagrange multi-
plier is continuous. In this lemma,   B t   = 0  all  t . Hence,   N t   ·  B t   = 0 . Similarly, we 
can see that transversality condition (B4) also holds.

Now suppose that the state-variable constraint does not bind so that   N t   = 0 . 
Taking the logarithm of (B2) and differentiating with respect to  t  gives

      M ̇   t   ___  M t  
   =   U″( X t  ) _____ 

U′( X t  )
     X ̇   t   − (Λ + β) =  (γ − 1)      X ̇   t   ___  X t  

   − (Λ + β). 

Substituting the previous expression together with   N t   = 0  into (B3) gives

      X ̇   s   ___  X s  
   = σ, where σ ≡   r − (Λ + β)  ________ 

1 − γ   < 0.  ∎

PROOF OF PROPOSITION 1:
Refer to Hamiltonian (B1). Let  ( B  t  ∗ ,  X  t  ∗ )  be the trajectory that converges to the afore-

mentioned  (0, a)  . Equation (5) shows the vertical motion in Figure 1, case (i) is strictly 
negative. Let   T   ∗  < ∞  be the time  ( B  t  ∗ ,  X  t  ∗ )  reaches  (0, a) . For  t ≤  T   ∗   , the budget 
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 constraint of (4) together with (5) determine the shape of  ( B  t  ∗ ,  X  t  ∗ ) ; (B2) determines   M t   . 
Set   N t   = 0 .

For  t >  T   ∗  , set   N t    ,   M t    ,   X  t  ∗   , and   B  t  ∗   as in the proof of Lemma 1. Then the first-or-
der condition for   X t    , the costate equation, the budget equation, and the state-variable 
constraint all hold for  t ≥ 0 ; we have   N t   ≥ 0  all  t ; the path of   N t    is piecewise con-
tinuous;   N t   ⋅  B t   = 0 , all  t , by construction; the costate variable is nonnegative, all  t ,  
and continuous by construction; and transversality condition (B4) holds. Hence,  
 ( B  t  ∗ ,  X  t  ∗ )  is optimal. Continuity of  ( B  t  ∗ ,  X  t  ∗ )  in  t  follows by construction.

To show that the value function  V(B, a)  is continuously differentiable and con-
cave, we first establish the following Lemma.

LEMMA A1: Let   T   ∗  ,   B  t  ∗  , and   X  t  ∗   be as in Proposition 1. Then   T   ∗  (B, a)  is strictly 
increasing and continuous in  B :

   T   ∗  (0, a) = 0, and   lim  
B→∞

  
 
    T   ∗  (B, a) = ∞. 

As a function of  B  ,   X  0  ∗  =  X  0  ∗  (B, a)  is continuous, strictly increasing, and strictly 
concave:

   X  0  ∗  (0, a) = a, and   lim  
B→∞

  
 
     ∂  X  0  ∗  (B, a) __________ ∂ B   = r − σ > 0. 

PROOF OF LEMMA A1:
Expression (5) shows

   X   T   ∗   ∗   =  X  0  ∗  ·  e   σ T   ∗  . 

By construction,   X   T   ∗   ∗   = a . So,

(B5)   X  0  ∗  = a ·  e   −σ⋅ T   ∗  . 

Budget accounting then implies

(B6)  B =  ∫ 
0
   T   ∗     e   −rt  (a ·  e   −σ( T   ∗ −t)  − a)  dt,  

which determines   T   ∗  =  T   ∗  (B, a) . From (B6), we can see that   T   ∗  (B, a)  is a strictly 
increasing and continuous function of  B  , with

(B7)    lim  
B→∞

  
 
    T   ∗  (B, a) = ∞,  

and

(B8)   T   ∗  (0, a) = 0. 

Turning to the properties of   X  0  ∗  (B, a) , we can then see from (B5) that   X  0  ∗  (B, a)  is 
continuous and strictly increasing in  B ; (B8) implies   X  0  ∗  (0, a) = a .
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Differentiating (B6) with respect to  B  gives    ∂  T   ∗  ___ ∂ B   :

  1 =  ∫ 
0
   T   ∗    a ·  e   −rt  ·  (− σ)  ·  e   −σ( T   ∗ −t)  ·   ∂  T   ∗  _____ ∂ B   · dt ⇔ 

    ∂  T   ∗  _____ ∂ B   =   1  __________________________   
− a · σ ·  e   −σ T   ∗   ·  ∫ 

0
   T   ∗    e    (σ−r) t  dt

  . 

Differentiating (B5),

    ∂  X  0  ∗  _____ ∂ B   = − σ · a ·  e   −σ· T   ∗   ·   ∂  T   ∗  _____ ∂ B  . 

Combining the last two expressions,

(B9)    ∂  X  0  ∗  _____ ∂ B   =   1 ____________  
 ∫ 

0
   T   ∗     e   (σ−r)·t  dt

  . 

Since   T   ∗  (B, a)  is increasing in  B , (B9) implies   X  0  ∗   is concave in  B . Given (B7), (B9) 
also establishes

    lim  
B→∞

  
 
     ∂  X  0  ∗  (B, a) __________ ∂ B   = r − σ.  ∎

Turning now to the value function  V(B, a) , the envelope theorem shows

    ∂ V ___ ∂ B   (B, a) = U′ ( X  0  ∗  (B, a)) . 

From Lemma A1,   X  0  ∗  (B, a)  is continuously differentiable and strictly increasing in  B . 
Hence,  V(B, a)  is continuously differentiable and strictly concave in  B . ∎

PROOF OF PROPOSITION 2:

Step 1: Fix  a  and   X 
–
   . In case (ii), we have  a <  X 

–
   . Define a function

(B10)  π(X) ≡ U(X) − U( X 
–
  ) + U′(X) · (a − X), all X > a. 

This function is continuous and strictly increasing in  X  , and it has opposite signs at 
the ends of the interval  [ X 

–
  , ∞) :

  π′(X) = U″(X) · (a − X) > 0, 

  π( X 
–
  ) = U′( X 

–
  ) · (a −  X 

–
  ) < 0, 

    lim  
X→∞

  
 
   π(X) = − U( X 

–
  ) +   lim  

X→∞
  

 
   (U(X) + γ · U(X) ·   a − X ____ 

X  )  = − U( X 
–
  ) > 0. 

It follows that on  ( X 
–
  , ∞) ,  π(X)  has a unique root. Denote this root   X ̌   .
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Step 2: For any initial  B > 0 , the Hamiltonian is (B1) with   N t   = 0 . The 
 first-order condition for   X t    , costate equation, and budget equation are as in case (i). 
Hence, the phase diagram is as in Figure 1, case (ii). Choose the trajectory at the 
top of the diagram that converges to  (0,  X ̌  ) . As in case (i), convergence takes a finite 
time (which we denote   T   ∗  ). Assume Medicaid take-up for  t >  T   ∗   , with   X  t  ∗  =  X 

–
   .

Optimality requires that once   B t   = 0  , the household permanently accepts 
Medicaid. If the household enters the liquidity constrained regime at age  T , its con-
tinuation value is

  W(T ) =  e   −(Λ+β)⋅T    U( X 
–
  ) _____ Λ + β   . 

Kamien and Schwartz (1981, 143) show that the first-order conditions for the opti-
mal acceptance date   T   ∗   are

(B11)   B  T   ∗    ≥ 0,  M  T   ∗    ≥   ∂W( T   ∗ ) ________ ∂ B  T   ∗   
   ≥ 0,  B  T   ∗    ·  [ M  T   ∗    −   ∂W( T   ∗ ) ________ ∂  B  T   ∗   

  ]  = 0,  

(B12)    t= T   ∗    +   ∂W( T   ∗ ) ________ ∂T
   = 0,  

where we use the Hamiltonian from (B1) without the state-variable constraint. 
Our proposed solution has

(B13)   B  T   ∗    = 0. 

From (B2),   M  T   ∗    > 0 . Notice,  W(T )  is not a function of   B T    , making its partial 
 derivative zero. Hence, our proposed solution is consistent with (B11). Evaluating 
the left-hand side of (B12) at  T =  T   ∗   yields

  π ( X ̌  )  ·  e   −(Λ+β) T   ∗   = 0, 

so that step 1 establishes (B12).
By construction, we have   X ̌   =  lim  t→ T   ∗ −0       X  t  ∗  , and

   X  t  ∗  =  {  X ̌   ·  e   σ (t− T   ∗ )    for t ∈ [0,  T   ∗ ]    
 X 
–
  
  

for t >  T   ∗ 
   . 

It remains to show that the first-order condition for   T   ∗   is sufficient. We have argued that 
the root of  π( · )  is unique. Suppose we choose a larger (smaller)   T   ∗  . The  trajectories 
of Figure 1, case (ii) remain as before. Thus, budgetary accounting implies we 
must lower (raise)   X ̌    for our stationary point accordingly, leading to  π( X ̌  ) < (>) 0 .  
Hence, the right-hand side of first-order condition (B12) yields a maximum at our 
original   T   ∗  .

To show that the value function  V(B, a)  is continuously differentiable and  concave, 
we first establish the following lemma.
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LEMMA A2: Let   T   ∗  ,   B  t  ∗   , and   X  t  ∗   be as in Proposition 2. Then   T   ∗  (B, a)  is strictly 
increasing and continuous in  B :

   T   ∗  (0, a) = 0,  and    lim  
B→∞

  
 
    T   ∗  (B, a) = ∞. 

As a function of  B  ,   X  0  ∗  =  X  0  ∗  (B, a)  is continuous (except at  B = 0 ) and strictly 
increasing; we have

   X  0  ∗  (B, a) =  
{

 
convex in B

  
 (1 −   a _ 

 X ̌  
  )  (1 −   r __ σ  )  > 1

     
concave in B

  
 (1 −   a _ 

 X ̌  
  )  (1 −   r __ σ  )  <  (0, 1) 

  , all B > 0, 

and

    lim  
B→∞

  
 
     ∂  X  0  ∗  (B, a) __________ ∂ B   = r − σ > 0. 

PROOF OF LEMMA A2: 
The proof parallels that of Lemma A. The analog of (B5) for case (ii) is

(B14)   X  0  ∗  =  X ̌   ·  e   −σ T   ∗  , 

and

(B15)    ∂  X  0  ∗  _____ ∂ B   = − σ ·  X ̌   ·  e   −σ T   ∗   ·   ∂  T   ∗  _____ ∂ B  . 

Budgetary accounting implies

  B =  ∫ 
0
   T   ∗  (B, a)     e   −rt  ·  ( X  0  ∗  (B, a)   e   σt  − a)  dt. 

Differentiating the previous equation with respect to  B  yields

(B16)  1 =  e   −r T   ∗   ( X  0  ∗  ·  e   σ T   ∗   − a)   ∂  T   ∗  _____ ∂ B   +   ∂  X  0  ∗  _____ ∂ B   J( T   ∗ ), where J(T ) ≡  ∫ 
0
  
T
    e   −(r−σ)t  dt .

Substituting from (B14)–(B15) into (B16), we have

    ∂  X  0  ∗  _____ ∂ B   =   1 ______ 
D( T   ∗ )  , where D( T   ∗ ) ≡ −   1 __ σ   ·    X ̌   − a _____ 

 X ̌  
   ·  e   −(r−σ) T   ∗   + J( T   ∗ ). 

The asymptotic behavior of  ∂  X  0  ∗ /∂B  follows:

    lim  
B→∞

  
 
   D ( T   ∗  (B, a))  =   lim  

 T   ∗ →∞
  

 
   D( T   ∗ ) =   lim  

 T   ∗ →∞
  

 
   J( T   ∗ ) =   1 ____ r − σ   . 

The convexity or concavity of   X  0  ∗  (B, a)  follows as well:

  D′( T   ∗ ) =   r − σ ____ σ   ·    X ̌   − a _____ 
 X ̌  

   ·  e   −(r−σ) T   ∗   +  e   −(r−σ) T   ∗   

 =  [1 −  (1 −   a __ 
 X ̌  

  )  (1 −   r __ σ  ) ]  ·  e   
−(r−σ) T   ∗  .   ∎
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From Lemma A2,   X  0  ∗  (B, a)  is continuously differentiable and strictly increasing 
in  B  , except at  B = 0 . Hence,  V(B, a)  is continuously differentiable and strictly 
concave in  B  , except at  B = 0 . ∎

PROOF OF LEMMA 2: 
Suppose  ( b   ∗ ,  x   ∗ )  is a solution to (12)–(13) for a fixed  a  and   X 

–
   .

Step 1: Start with case (ii),  a <  X 
–
   .

Proposition 2 and (13) imply

   x   ∗  = θ ·  X  0  ∗  (b, a) = θ ·  X ̌   ·  e   −σ⋅T  ,

where  T =  T   ∗  ( b   ∗ , a) . Let  Z =  X ̌  /a . Then the equation for   b   ∗   reads

(B17)  θaZ e   −σT  = r b   ∗  + a ⇔    b   ∗  ___ a   =   1 __ r   [θZ e   −σT  − 1]. 

As in the proof of Lemma A2, budgetary accounting yields

   b   ∗  =  ∫ 
0
  
T
    e   −rt  (aZ e   σt   e   −σT  − a)  dt ⇔ 

(B18)     b   ∗  ___ a   = Z    e   
−σT  −  e   −rT   ________ r − σ   −   1 −  e   −rT  ______ r   .

Equating   b   ∗ /a  in (B17)–(B18), we have

    1 __ r   (θZ e   −σT  − 1)  = Z    e   
−σT  −  e   −rT   ________ r − σ   −   1 −  e   −rT  ______ r   ⇔ 

   e   −rT  (  Z ____ r − σ   −   1 __ r  )  = Z e   −σT  (  1 ____ r − σ   −   θ __ r  )  ⇔ 

(B19)   e    (r−σ)  T  Z (  1 ____ r − σ   −   θ __ r  )  =  (  Z ____ r − σ   −   1 __ r  ) .  

The last expression depends on   b   ∗   only through  T . Equation (B19) either has a 
unique solution  T > 0  or no solution. If  T > 0  exists, Lemma A2 shows that  
 T =  T   ∗  (b, a)  is strictly increasing in  b ; hence,   b   ∗   must be unique if  T  is unique.

Step 2: If  a ≥  X 
–
    , repeat the step 1 argument setting  Z = 1 —recall Proposition 1. ∎

PROOF OF PROPOSITION 3:

Step 1: Define a function:

  ξ(r) =   r ____ r − σ   −   1 __ Ω     (1 −   r − β ____ λ  )    
  1 ___ 1−γ  

 . 

Assumption 5 has  r < λ + β . On the interval   [0, β + λ]  ,  ξ(r)  is continuous (recall 
that  σ < 0 ) and strictly increasing, with  ξ(0) < 0  and  ξ(β + λ) > 0 . Hence, it 
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has a unique root   r –  ∈  (0, β + λ)  . Then, using monotonicity of  ξ(r)  and the defini-
tion of  θ  in (14), we have

  r <  r –  ⇔ r < θ (r − σ)  ⇔  Γ  b  ′   (∞)  <  Γ  x  ′   (∞) , 

where the last inequality follows from Lemmas A1–A2 and (12).

Step 2: Suppose  a ≥  X 
–
   . Then

  a ≥  X 
–
   > θ ·  X 

–
   ·   (1 − γ (1 − θ) )    −  1 _ γ    =  a – , 

and

   Γ b   (0) = a > θ X   ∗  (0, a) = θa =  Γ x   (0), 

so we have left-hand side diagrams on Figure 2. The asymptotic slope from 
Lemma A1 establishes the cases that obtain for  r < (>) θ · (r − σ) .

Step 3: Suppose  a <  X 
–
   . We show that there exists a unique   a –  ∈  (0,  X 

–
  )  , such that

   Γ b   (0) = a < θ X ̌   (a)  =  Γ x   (0) ⇔ a <  a – . 

Consider  π ( · )   from (B10), and make a change of variables

(B20)   X ̌   (a)  = aZ (a) . 

Since  π( X ̌  (a)) = 0  implies that   X ̌   (a)  > a  , we have  Z (a)  > 1 . Using (B20), equa-
tion  π = 0  can be written as

(B21)   (1 − γ)   Z   γ  + γ  Z   γ−1  =   (  a __  X 
–
  
  )    

−γ
  .

The left-hand side of (B21) is strictly decreasing in  Z  for all  Z ≥ 1 , with

  Z ( X 
–
  )  = 1,    lim  

a→0
  

 
   Z(a) = ∞, and Z′(a) < 0. 

Hence, there is a unique   a –  ∈ (0,  X 
–
  ) , with

(B22)   a –  = θ X ̌   ( a – )  ⇔ Z ( a – )  =   1 __ θ    .

Evaluating (B21) at  Z = 1/θ  and  a =  a –   gives

   a –  =  X 
–
   · θ   (1 − γ (1 − θ) )    −  1 _ γ   . 

Since  Z(a)  is strictly decreasing,

  a < θ X ̌  (a) ⇔   1 __ θ   < Z(a) ⇔ a <  a – . 
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Step 4: Step 3 shows that  a > (<)  a –   separates the left- and right-hand side 
 diagrams in Figure 2. The asymptotic slopes in Lemma A2 complete the proof. ∎

PROOF OF PROPOSITION 4:
Suppose  θ · (r − σ) > r  (i.e., standard interest rate case). Let   X ̌   (a)  = aZ (a)   as 

in (B20). Define  Z (a)   for all  a ≥  a –   as follows:

  Z(a) =  {   
1 _ a    0X ̌   (a)   if a ∈ [ a – ,  X 

–
  )    

1
  

if a ≥  X 
–
  
   . 

Then Proposition 3 shows  Z(a)  is continuous for all  a ≥  a –   and strictly decreasing 
for  a ∈ [ a – ,  X 

–
  ) . From (B22), we have

(B23)  1 ≤ Z(a) ≤   1 __ θ  . 

In the proof of Lemma 2, (B17) shows

(B24)     b   ∗  ___ a   =   θZ(a)  e   −σ T   ∗   − 1  ____________ r  . 

And (B19) relates   T   ∗   and  Z :

   e   (r−σ) T   ∗   =     
1 _ r   −   Z ___ r − σ   ______ 
  θZ __ r   −   Z ___ r − σ  

  . 

In the standard interest rate case,  θ · (r − σ) > r  and (B23) imply that both the 
numerator and the denominator of the aforementioned expression are positive. Define

  ψ (Z)  ≡ Z e   −σ T   ∗   = Z   
[
  
  1 __ Zr   −   1 ___ r − σ   ______ 
  θ _ r   −   1 ___ r − σ  

  
]
    
−  σ ___ r−σ  

 . 

Then, from (B24),

    d ___ 
da

   (   b   ∗  ___ a  )  =   θ __ r  ψ′ (Z)  · Z′ (a) . 

Showing that  ψ′ (Z)  < 0  for all  Z ∈ (1, 1/θ]  and  ψ′ (1)  = 0  would complete the 
proof. Indeed,

    d ___ 
dZ

   ln ψ (Z)  =   1 __ Z   +   σ ____ r − σ     
  1 ___ 
r  Z   2 

  
 ______ 

  1 __ rZ   −   1 ___ r − σ  
   =   1 __ Z     

  1 __ Z   − 1
 _____   r − σ ___ rZ   − 1   < 0. 

The numerator of the previous expression is negative for all  Z > 1  and 0 for  Z = 0 .  
The denominator is positive when  r <  r –   and  Z < 1/θ . ∎
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PROOF OF LEMMA 3:
Normalize the initial cohort size (at  t = 0 ) to 1. Then the number of  households 

remaining alive and in good health  t  years after retirement is   f H, t   =  e   −λt  . Similarly, 
let the fraction alive at  t  but in low health status be

   f L,t   ≡  ∫ 
0
  
t
   λ ·  e   −λ⋅s  ·  e   −Λ (t−s)   ds. 

Combining expressions, the fraction of survivors in high health status is

   f t   =   
 f H, t   _______  f H, t   +  f L, t  

   =   1  __________________   
1 +   λ ____ Λ − λ   · (1 −  e   −(Λ−λ)t  )

  .  ∎

Micro-foundation for State-Dependent Utility.—A richer model where 
 nonmedical LTC expenditure is a separate, endogenous variable would produce 
an indirect utility function of form (2). To see this, assume that a household has 
two remaining periods of life and that  h = H  in the first period and  h = L  in the 
last period.25 Set  r = 0  and  β = 1 ; disregard annuities, Medicaid, and uncertain 
 mortality. Then a newly retired household solves

(B25)   max  
x
      {u(x) + U(b − x)}. 

To endogenize the choice of nonmedical LTC expenditure,  l  , replace  U(b − x)  in 
(B25) with

(B26)  U(b − x) ≡ κ ·  max  
l
      {φ · u(b − x − l ) + (1 − φ) · u(l )}, 

where  κ > 0  and  φ ∈ (0, 1)  are preference parameters. Maximization with respect 
to  l  in (B26) yields exactly the reduced form utility function (2):

  U(b − x) =  ω   γ  · u(b − x), 

   ω   γ  ≡ κ ·  ( [φ]     
1 ___ 1−γ    +  [1 − φ]     

1 ___ 1−γ   ) . 

Derivation of the Actuarially Fair Rate of Return on Annuities.—Let  A  be the 
market value of an annuity with income  a . Then

(B27)  a = A r A   .

If   E T   [ · ]  is the expectation over the stochastic life-span   T ̃    , we have

(B28)   A =  E T   [ ∫ 
0
   T ̃      e   −rt  dt]  = a  ∫ 

0
  
∞

   λ  e   −λT   ∫ 
0
  
T
    e   −rt  dtdT 

  + a  ∫ 
0
  
∞

   λ e   −λT   ∫ 
T
  
∞

   Λ e   −Λ (S−T)    ∫ 
T
  
S
    e   −rs  dsdSdT. 

25 The two-period example is also convenient for direct comparisons with other two-period models, such as 
Finkelstein, Luttmer, and Notowidigdo (2013) and Hubbard, Skinner, and Zeldes (1995). 
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The first right-hand side term registers annuity income during the healthy phase of 
retirement; the second term gives income during the last phase of life. Performing 
the integration and combining (B27)–(B28), we have

   r A   =   (λ + r) (Λ + r)  __________  λ + Λ + r   . 
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