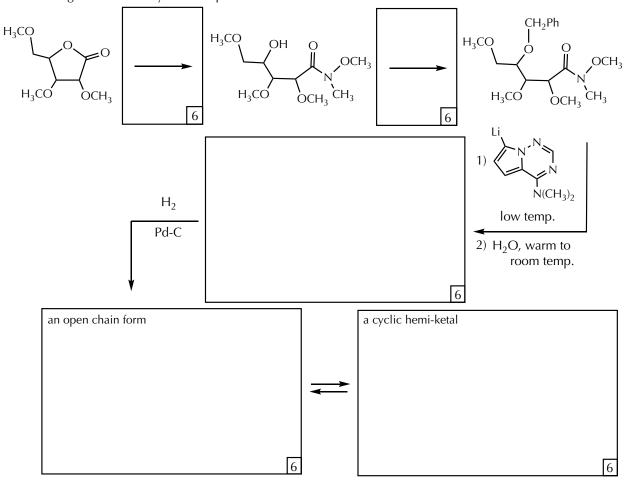

Question I (54 points)

Name: _____

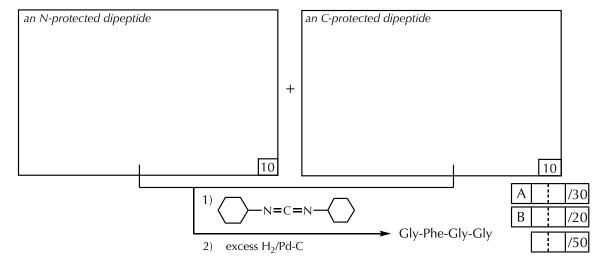
A. Complete the following reaction sequence (in part: *Org. Process Res. Dev.* **2022**, *26*, 1960), which begins with an *intramolecular aldol condensation*. You do not need to provide stereochemical information.

B. When the epoxide derived from the product in part A, above, is treated with an acid catalyst, a rearrangement to a ketone is observed. Using HB/B^{Θ} as your generic Brønsted acid/base, as needed, provide the complete, curved arrow mechanism for this transformation, in which a carbocation intermediate is anticipated.

C. Complete the following transformation, which is carried out on the aldol condensation intermediate from part A.



Α		/26
В		/21
С		/07
		/54


Question II (5	ou points)
----------------	------------

Name: _____

A. Complete the following reaction scheme that was used in a practical synthesis of remdesivir, the first and only FDA-approved antiviral drug for treating COVID-19 (*J. Org. Chem.* **2021**, *86*, 5065). Showing stereochemistry is not required.

B. Taken from a synthesis of the osteogenic growth peptide (OGP), present in small concentrations in circulating blood (*Org. Process Res. Dev.* **2015**, *19*, 1257). *Show stereochemistry; no abbreviations*.

Question III (46 points)

Name: _____

/06

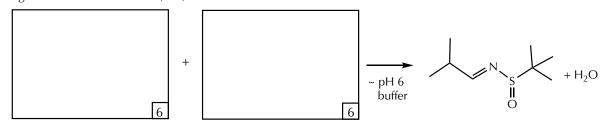
/12

/08

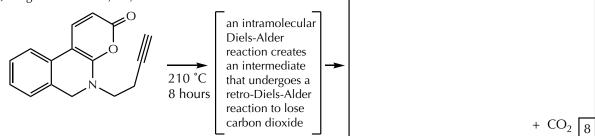
/08

Complete the following transformations.

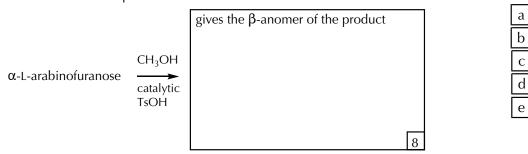
(a) Org. Process Res. Dev. 2022, 26, 2337.


$$\begin{array}{c|c} & & & \\ &$$

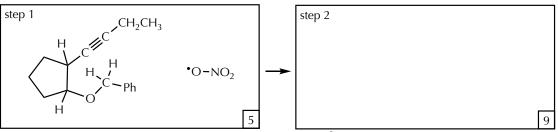
balance the equation; give the neutral/uncharged product(s)


(b) Org. Process Res. Dev. 2022, 26, 10.

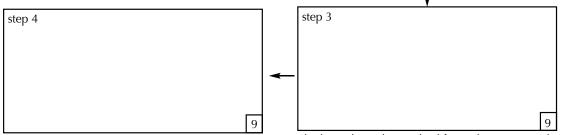
$$\begin{array}{c|c}
 & OCH_3 & DCH_3 & DC$$


(c) Org. Process Res. Dev. 2022, 26, 2138.

(d) J. Org. Chem. 1996, 61, 1650.


(e) arabinose is the C2 epimer of ribose

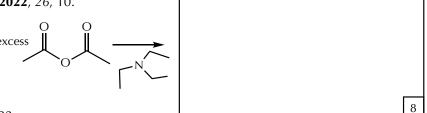
Question IV (48 points)

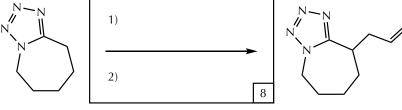

A. The photochemical decomposition of (NH₄)₂ [Ce(NO₃)₆] gives an oxygen atom radical: *O-NO₂. The following reaction is observed to occur (Molecules 2004, 9, 480).

The mechanistic steps are outlined here: provide the missing intermediates as well as the curved (fish-hook) arrows for each step.

the oxygen atom adds to the triple bond; its regioselectivity can be inferred from the product

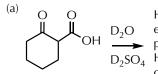
the sp² carbon radical resulting from step 1 removes a hydrogen atom intramolecularly from the benzyl group

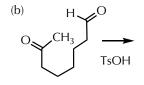



the oxygen-stabilized radical formed in step 3 gives a dissociation reaction resulting in the observed products (drawn above)

the benzylic carbon radical formed in step 2 undergoes an intramolcular addition reaction to give an oxygenstabilized radical

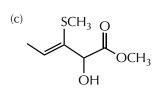
- B. Complete the following transformations.
 - (a) Org. Process Res. Dev. 2022, 26, 10.


(b) Org. Lett. 2022, 24, 6722.


N-N			
N	Α		/32
	В		/16
			/48

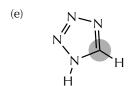
Question	V	(42	points)
~	-	·	,

How many exchangeable proton under H/D exchange conditions?



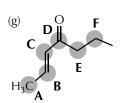
Name:

Number of possible intramolecular aldol condensations?

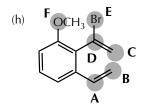

Position number of the alcohol group in the IUPAC name?

(d) O O O O O $H_3N \longrightarrow H$ SCH_3

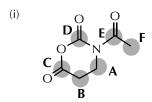
Stereochemical configuration [(R) or (S)] for methionine?


Oxidation number of the shaded atom?

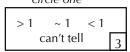
OCH₃ CH₃ OCH


Relationship of the 2 CH₃ groups in the major product? *circle one*

1,2-cis 1,2-trans 1,3-cis 1,3-trans 3


Site (A-F) of reactivity of this compound with an enol under acid conditions?

Site (**A-F**) of fastest reactivity with tributyltin radical?

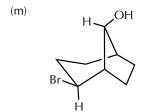


Most reactive site (**A-F**) with methyl magnesium bromide?

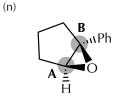
(j) H_3CO OCH₃ H_2O H_2SO_4

Based on the entropy change, the K_{EQ} for this process is: *circle one*

(k)
L-mannose is the open chain form of an aldohexose


How many chiral diastereomers does L-mannose have?

(I) The II comp


The IUPAC name for this compound would include:

circle one
trioxo dioxo oxo
no "oxo"
3

The position of the two groups, "OH" & "Br", are: circle one

exo & exo & endo endo & exo endo & endo

Site of fastest reaction with ammonia (NH₃)?

	3	

number of correct answers: 1

score:

2	3	4 12	5	6	7	8	9	10	11	12	13
6	9	12	15	18	21	24	27	30	33	36	39