\qquad
A. Complete the following reaction sequence (in part: Org. Process Res. Dev. 2022, 26, 1960), which begins with an intramolecular aldol condensation. You do not need to provide stereochemical information.

B. When the epoxide derived from the product in part A, above, is treated with an acid catalyst, a rearrangement to a ketone is observed. Using $\mathrm{HB} / \mathrm{B}^{\ominus}$ as your generic Brønsted acid/base, as needed, provide the complete, curved arrow mechanism for this transformation, in which a carbocation intermediate is anticipated.

C. Complete the following transformation, which is carried out on the aldol condensation intermediate from part A.
(C)

A	$:$	$/ 26$
B	$:$	$/ 21$
C	$:$	$/ 07$

\qquad
A. Complete the following reaction scheme that was used in a practical synthesis of remdesivir, the first and only FDA-approved antiviral drug for treating COVID-19 (J. Org. Chem. 2021, 86, 5065).
Showing stereochemistry is not required.

1)

low temp.
2) $\mathrm{H}_{2} \mathrm{O}$, warm to room temp.
an open chain form
B. Taken from a synthesis of the osteogenic growth peptide (OGP), present in small concentrations in circulating blood (Org. Process Res. Dev. 2015, 19, 1257). Show stereochemistry; no abbreviations.

Question III (46 points)

Name: \qquad
Complete the following transformations.
(a) Org. Process Res. Dev. 2022, 26, 2337.

balance the equation; give the neutral/uncharged product(s)
(b) Org. Process Res. Dev. 2022, 26, 10.

(c) Org. Process Res. Dev. 2022, 26, 2138.

(d) J. Org. Chem. 1996, 61, 1650.

(e) arabinose is the C2 epimer of ribose
α-L-arabinofuranose \(\xrightarrow{\substack{catalytic

TsOH}}\)	gives the β-anomer of the product

a	:	$/ 06$
b	$:$	$/ 12$
c	$:$	$/ 12$
d	$:$	$/ 08$
e	$:$	$/ 08$

Question IV (48 points)

Name: \qquad
A. The photochemical decomposition of $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]$ gives an oxygen atom radical: ${ }^{\circ} \mathrm{O}-\mathrm{NO}_{2}$. The following reaction is observed to occur (Molecules 2004, 9, 480).

The mechanistic steps are outlined here: provide the missing intermediates as well as the curved (fish-hook) arrows for each step.

B. Complete the following transformations.
(a) Org. Process Res. Dev. 2022, 26, 10.

(b) Org. Lett. 2022, 24, 6722.
\square

Question V (42 points)

(a)

How many exchangeable proton under
H/D exchange conditions?

(c)

Position number of the alcohol group in the IUPAC

(e)

Oxidation number of the shaded atom?

Site (A-F) of

(i)

Most reactive site (A-F) with methyl magnesium bromide?
(k)

L-mannose is the open chain form of an aldohexose

Name: \qquad
(b)

(d)

Stereochemical
configuration
$[(R)$ or $(S)]$ for
methionine?

(f)

Relationship of the $2 \mathrm{CH}_{3}$ groups in the major product?

1,2-cis		1,2 -trans
1,3-cis	1,3 -trans	
		3

(h)

Site (A-F) of fastest reactivity with tributyltin radical?

(I)

PAC name for this compound would include:

(n)

number of correct answers:
score:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	
3	6	9	12	15	$\mathbf{1 8}$	21	24	27	27	30	33	36	39	42

