Question I (24 points)

Name: \qquad
A biologically active compound known as MK-1029 blocks a receptor that is involved in stimulating an allergic reaction associated with respiratory diseases (Org. Process Res. Dev. 2022, 26, 648). A few steps from a reported synthesis are included in this question.
(a) Complete the following.

(b) Later in the synthesis, the following reaction is carried out. The starting material, called an indole, has a pK_{a} value of about 16. Provide the complete, curved arrow mechanism.

\qquad
Complete the following reaction schemes. Be sure to number different experimental steps if needed.
(a) synthesis of futibatinib, a fibroblast growth factor inhibitor (Org. Process Res. Dev. 2022, 26, 43)

(b) synthesis of 6-fluoromenadione, an intermediate in the synthesis of biologically active agents (Org. Process Res. Dev. 2022, 26, 1152)

(c) from the preparation of pharmacophores, molecular units that are integrated into the synthesis of prospective drug targets (Org. Process Res. Dev. doi.org/10.1021/acs.oprd.2c00152)
(i)

(ii)

note: two functional groups are reduced to give a product with only uncharged atoms

a	\vdots	$/ 05$
b	$:$	$/ 11$
c	\vdots	$/ 12$
	\vdots	$/ 28$

Question III (28 points)

Name: \qquad
The acid and base catalyzed hydrolysis reaction of lactones was germane to a study on developing new therapuetics for a rare form of leukemia (Org. Process Res. Dev. 2022, 26, 2739).
(a) Provide the complete, stepwise mechanism for the acid catalyzed hydrolysis of the lactone (compound A) used in this study.

(b) Because of the net entropic disadvantage, the K_{EQ} for the hydrolysis reaction, under the conditions shown above, was less than 10^{-2}. Only one of the three other reaction conditions (shown below) gave a ringopened product as the major outcome. Which set of conditions resulted in a ring-opened product? Draw the outcome.
(i) Which conditions (mark one) resulted in a ring-opened product as the outcome?

X	KOH in $\mathrm{H}_{2} \mathrm{O}$	no partial
\square	$\mathrm{CH}_{3} \mathrm{OK}$ in $\mathrm{CH}_{3} \mathrm{OH}$	
\square	$\mathrm{CH}_{3} \mathrm{OH}$ with catalytic $\mathrm{H}_{2} \mathrm{SO}_{4}$	3

(ii) Draw the outcome. No credit if the incorrect conditions were selected.

Question IV (20 points)

Name: \qquad
Complete the following as required.
(a) Org. Lett. 2001, 3, 3337.

(b) Org. Process Res. Dev. 2022, 26, 2483.

(c) Org. Process Res. Dev. doi.org/10.1021/acs.oprd.2c00200.

Question V (20 points)

Name: \qquad
Complete the following as needed.
(a) J. Org. Chem. 2004, 69, 3233.

2)

(b) Org. Lett. 2002, 4, 1403.

4
Dieckmann condensation (intramolecular acylation of the ester enolate) gives
a β-keto ester
product with 2 aromatic rings, $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{3}$
no
partial
(c) Org. Lett. 2010, 10, 1763: an intramolecular aldol condensation

