Question I (24 points)

Name: _____

A biologically active compound known as MK-1029 blocks a receptor that is involved in stimulating an allergic reaction associated with respiratory diseases (*Org. Process Res. Dev.* **2022**, *26*, 648). A few steps from a reported synthesis are included in this question.

(a) Complete the following.

(b) Later in the synthesis, the following reaction is carried out. The starting material, called an indole, has a pK_a value of about 16. Provide the complete, curved arrow mechanism.

Question II (28 points)

Name:

Complete the following reaction schemes. Be sure to number different experimental steps if needed.

(a) synthesis of futibatinib, a fibroblast growth factor inhibitor (Org. Process Res. Dev. 2022, 26, 43)

H₃CO
$$OCH_3$$
 critical amide formation = 3; if correct, then +2 for the rest if all OK; wrong regioisomer (made from RNH₂) is 2/5 if all correct OCH_3 is 2/5 if all correct

(b) synthesis of 6-fluoromenadione, an intermediate in the synthesis of biologically active agents (*Org. Process Res. Dev.* **2022**, *26*, 1152)

(c) from the preparation of pharmacophores, molecular units that are integrated into the synthesis of prospective drug targets (*Org. Process Res. Dev.* doi.org/10.1021/acs.oprd.2c00152)

Question III (28 points)

Name: _____

The acid and base catalyzed hydrolysis reaction of lactones was germane to a study on developing new therapuetics for a rare form of leukemia (*Org. Process Res. Dev.* **2022**, *26*, 2739).

(a) Provide the complete, stepwise mechanism for the acid catalyzed hydrolysis of the lactone (compound **A**) used in this study.

Use H-B as your general Brønsted acid and $B\Theta$ as a general Brønsted base.

Draw intermediates as their significant (closed shell) resonance contributors.

- (b) Because of the net entropic disadvantage, the K_{EQ} for the hydrolysis reaction, under the conditions shown above, was less than 10^{-2} . Only one of the three other reaction conditions (shown below) gave a ring-opened product as the major outcome. Which set of conditions resulted in a ring-opened product? Draw the outcome.
 - (i) Which conditions (mark one) resulted in a ring-opened product as the outcome?

(ii) Draw the outcome. No credit if the incorrect conditions were selected.

Question IV (20 points)

Name: _____

Complete the following as required.

(a) Org. Lett. 2001, 3, 3337.

(b) Org. Process Res. Dev. 2022, 26, 2483.

(c) Org. Process Res. Dev. doi.org/10.1021/acs.oprd.2c00200.

Complete the following as needed.

(a) J. Org. Chem. 2004, 69, 3233.

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3

2) H₂O, H₂SO₄ room temp. workup step

critical ketone = 2
if OK, then +2
if rest OK

$$H_3C$$
 CH_3
 Ph

(b) Org. Lett. 2002, 4, 1403.

conjugate addition of cyanide ion gives an intermediate ester enolate

Dieckmann condensation (intramolecular acylation of the ester enolate) gives a β -keto ester

(c) Org. Lett. 2010, 10, 1763: an intramolecular aldol condensation

