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Abstract

The spliceosome is a biomolecular machine that, in all eukaryotes, accomplishes site-
specific splicing of introns from precursor messenger RNAs (pre-mRNAs) with high fidel-
ity. Operating at the nanometer scale, where inertia and friction have lost the dominant
role they play in the macroscopic realm, the spliceosome is highly dynamic and assem-
bles its active site around each pre-mRNA anew. To understand the structural dynamics
underlying the molecular motors, clocks, and ratchets that achieve functional accuracy
in the yeast spliceosome (a long-standing model system), we have developed single-
molecule fluorescence resonance energy transfer (smFRET) approaches that report
changes in intra- and intermolecular interactions in real time. Building on our work using
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hidden Markov models (HMMs) to extract kinetic and conformational state information
from smFRET time trajectories, we recognized that HMM analysis of individual state tran-
sitions as independent stochastic events is insufficient for a biomolecular machine as
complex as the spliceosome. In this chapter, we elaborate on the recently developed
smFRET-based Single-Molecule Cluster Analysis (SiMCAn) that dissects the intricate con-
formational dynamics of a pre-mRNA through the splicing cycle in a model-free fashion.
By leveraging hierarchical clustering techniques developed for Bioinformatics, SiMCAn
efficiently analyzes large datasets to first identify common molecular behaviors. Through
a second level of clustering based on the abundance of dynamic behaviors exhibited by
defined functional intermediates that have been stalled by biochemical or genetic tools,
SiMCAn then efficiently assigns pre-mRNA FRET states and transitions to specific splicing
complexes, with the potential to find heretofore undescribed conformations. SiMCAn
thus arises as a general tool to analyze dynamic cellular machines more broadly.

1. INTRODUCTION

In all eukaryotes, precursor messenger RNA (pre-mRNA) splicing,

i.e., the removal of introns and ligation of flanking exons, is a crucial step

in the maturation of an mRNA. In higher eukaryotes such as humans, alter-

native splicing allows for cell- and tissue specific, tightly regulated expression

of diverse protein isoforms from a single gene (de Klerk & t Hoen, 2015;

Nilsen & Graveley, 2010; Papasaikas & Valcarcel, 2016). A vast majority

(�94%) of all human genes contain introns with an average size of

1000–2000 nucleotides (nt), approximately 10 times the size of the protein-

coding exons (Barash et al., 2010; Braunschweig, Gueroussov, Plocik,

Graveley, & Blencowe, 2013; Calarco, Zhen, & Blencowe, 2011; Chen &

Manley, 2009; de Klerk & t Hoen, 2015; Kornblihtt et al., 2013; Lander

et al., 2001; Papasaikas & Valcarcel, 2016; Rino & Carmo-Fonseca,

2009). At multimegadalton, perhaps the largest and most elaborate macromo-

lecular machine of the cell (Chen & Moore, 2014; Matera & Wang, 2014;

Nilsen, 2003; Papasaikas & Valcarcel, 2016), the spliceosome is responsible

for most cellular splicing processes. It must reliably identify intron–exon
boundaries, precisely ligate adjacent exons without inadvertent skipping,

and appropriately regulate alternative splicing to meet the biological require-

ments of each cell independent of its environment (Kornblihtt et al., 2013;

Matera & Wang, 2014; Naftelberg, Schor, Ast, & Kornblihtt, 2015;

Papasaikas & Valcarcel, 2016; Wang & Cooper, 2007). Intron excision with

single-nucleotide precision is thus no easy task. Not surprisingly, up to 50% of

all mutations leading to human disease are thought to originate from

splicing defects (Cartegni, Chew, & Krainer, 2002; Kornblihtt et al., 2013;
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Li et al., 2016; Matera & Wang, 2014; Naftelberg et al., 2015; Poulos, Batra,

Charizanis, & Swanson, 2011; Scotti & Swanson, 2016; Wang & Cooper,

2007; Zhang & Manley, 2013).

The spliceosome lacks a preformed catalytic core. Rather, for each splicing

cycle a spliceosome is—just like the proverbial Humpty–Dumpty—put

together anew on an intron-containing pre-mRNA substrate in a stepwise

manner that requires both binding and release of small nuclear ribonucleopro-

teins (snRNPs), each formed by protein cofactors binding to a single small

nuclear RNA (snRNA) (Fig. 1; Matera & Wang, 2014; Papasaikas &

Valcarcel, 2016; Wahl, Will, & Luhrmann, 2009; Will & Luhrmann,

2011). Notably, splicing entails two successive phosphoryl transfer reactions

that are isoenergetic and have been shown to also be reversible, at least

under a certain set of ionic conditions (Smith & Konarska, 2008; Tseng &

Cheng, 2008). Nonetheless, spliceosome assembly requires at least eight

RNA-dependent ATPases of the so-called DExD/H-box subfamily

(Jarmoskaite & Russell, 2014; Koodathingal & Staley, 2013; Staley &

Guthrie, 1998). These enzymes, which catalyze successive rearrangements

ofRNA and protein components, are believed to enhance the fidelity of splic-

ing by acting as proofreading clocks that allow the spliceosome to discard

mutant substrates at multiple steps in the assembly and catalytic pathway

(Burgess & Guthrie, 1993; Couto, Tamm, Parker, & Guthrie, 1987; De,

Schmitzova, & Pena, 2016; Horowitz, 2011; Jarmoskaite & Russell, 2014;

Koodathingal, Novak, Piccirilli, & Staley, 2010; Koodathingal & Staley,

2013; Mayas, Maita, Semlow, & Staley, 2010; Mayas, Maita, & Staley,

2006; Xu & Query, 2007).

For the budding yeast Saccharomyces cerevisiae, a vast array of tools for

genetic and biochemical manipulation are available, making this simple, uni-

cellular eukaryote an ideal model organism to study many biological pro-

cesses. Much has been learned about the dynamic yeast spliceosome since

its discovery (Fig. 1; Chen & Moore, 2014; Matera & Wang, 2014;

Papasaikas & Valcarcel, 2016; Wahl et al., 2009; Will & Luhrmann,

2011). Assembly is initiated by the ATP-independent formation of a com-

mitment complex in which the U1 snRNP interacts with the 50 splice site
(50SS), while BBP and Mud2 interact with the branchpoint (BP) sequence.

If the BP is mutated (UACUAAC!UACUACC), this complex cannot

form and spliceosome assembly is blocked. With a wild-type (WT) precur-

sor, the commitment complex is converted to the prespliceosome by

the ATP-dependent binding of U2 to the BP, followed by association of

the U4/U6.U5 triple snRNP and Prp19 complexes. Before the first
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Fig. 1 The pre-mRNA splicing cycle. (A) The Ubc4 pre-mRNA substrate used to monitor
pre-mRNA dynamics by smFRET contains Cy5 and Cy3 fluorophores seven nucleotides
upstream of the 50SS and six nucleotides downstream of the BP, respectively. (B) The
spliceosome assembly and catalysis pathway is thought to progress in a stepwise man-
ner requiring ATP at several steps of assembly. The biochemical and genetic stalls
referred to in this chapter are indicated by red blocks. (C) Molecular models of
spliceosomal intermediates (with more currently emerging). Solvent accessible surface
map of spliceosomal intermediates based on reported cryo-EM structures (PDB IDs
3JCM and 3JB9). RNA components are highlighted in red for substrate or product
RNA (pre-mRNA or lariat), blue for U4 snRNA, yellow for U6 snRNA, green for U5 snRNA,
and purple for U2 snRNA. Images were generated in PyMol (DeLano, 2002).
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transesterification can occur, U1 and U4 snRNPs must be released from the

assembled spliceosome to form the activated Bact complex, again in ATP-

dependent rearrangements. The DExD/H-box helicase Prp2 then converts

this complex to the catalytically active Bact complex by destabilizing the U2

snRNP protein complexes (SF3a and SF3b) such that the BP adenosine

becomes available for a nucleophilic attack on the distal 50SS (Fig. 1B). This
first chemical step, which results in formation of the looped lariat interme-

diate and free 50 exon, can occur even in the presence of a mutation at the 30

splice site (30SS mutant UAG!UAC) known to block the second trans-

esterification. After the Prp16- and Prp22-dependent second chemical step

of splicing, the spliceosome undergoes ATP-dependent disassembly from

the lariat intron and mature mRNA (Fig. 1A and B).

Recent advances in X-ray crystallography and particularly cryogenic

electron microscopy (cryo-EM) have started to reveal near-atomic resolu-

tion structures of three select spliceosomal complexes from budding

(Nguyen et al., 2015; Nguyen, Galej, Fica, et al., 2016; Wan et al., 2016)

and fission yeast (Hang, Wan, Yan, & Shi, 2015; Yan et al., 2015), as well

as from human (Agafonov et al., 2016; Pomeranz Krummel, Oubridge,

Leung, Li, &Nagai, 2009), with the hope that more gaps around the splicing

cycle may soon be filled (Fig. 1 and Table 1; Nguyen, Galej, Fica, et al.,

2016). Despite three decades of study leading to these insights, however,

until recently there was still precious little known about the timing and

coordination of the multiple compositional and conformational

rearrangements, which together constitute its enzymatic mechanism and

endow the spliceosome with high efficiency and fidelity. This gap in knowl-

edge was in large part due to, first, a paucity of biophysical tools suited to

Table 1 Currently Available High-Resolution Cryo-EM Yeast Spliceosome Structures
PDB ID Resolution (Å) Components Organism Publication

5GAN 3.7 30 proteins+U4/U6

and U5 snRNAs

S. cerevisiae Nguyen, Galej, Bai,

et al. (2016)

3JCM 3.8 U5 snRNA, U4/U6

snRNA, 30 proteins

Prp8, Snu114,

pre-mRNA

S. cerevisiae Wan et al. (2016)

3JB9 3.6 37 Proteins, three

snRNAs, 1 RNA

lariat

S. pombe Yan et al. (2015)
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dissect such a complex, highly dynamic and heterogeneous machine in a

holistic manner. Second, splicing is still studied in a crude yeast whole-cell

extract (WCE) in vitro, where multistep reversible processes are obscured by

asynchronous progression along the pathway. Third, splicing in WCE—

developed in 1985 (Brody & Abelson, 1985)—is generally inefficient, lead-

ing to only a fraction of molecules undergoing one or both steps of splicing

(Fig. 2). In addition, while RNA (–protein) conformational rearrangements

often occur at subsecond timescales, it is known that pre-mRNAs are spliced

in vitro only over 15–30 min (Das et al., 2006), requiring techniques for

in vitro studies that span a wide range of timescales.

Single-molecule fluorescence resonance energy transfer (smFRET) pre-

sents a solution uniquely suited to these challenges and can provide dynamic

information to animate the emerging static structures, a critically important

step toward understanding the splicing mechanism. More specifically, we

have developed prism-based total internal reflection fluorescence (P-TIRF)

microscopy-based smFRET assays that monitor the distances between site-

specifically placed donor and acceptor fluorophores (Figs. 1A, 2, and 3).

Alternatively, a wide-field objective-type total internal reflection fluores-

cence microscope can be used (Roy, Hohng, & Ha, 2008). Analysis of

the resulting time trajectories using smFRET histograms, hidden Markov

models (HMMs), and various transition density plots (TDPs) has begun

to dissect pre-mRNA conformational changes during splicing (Abelson

et al., 2010; Blanco, Johnson-Buck, & Walter, 2012; Blanco et al., 2015;

Blanco & Walter, 2010; Johnson-Buck, Blanco, & Walter, 2012;

Kahlscheuer, Widom, & Walter, 2015; Krishnan et al., 2013; Semlow,

Blanco, Walter, & Staley, 2016; Widom, Dhakal, Heinicke, & Walter,

2014). In particular, we identified a 135 nucleotide efficiently spliced yeast

pre-mRNA, UBC4, in which donor and acceptor were placed either in the

exons adjacent to the 50SS and 30SS or in the exon and intron adjacent to the
50SS and BP, giving us unique windows into substrate dynamics. A strength

of single-molecule approaches is that the macromolecular machines in the

sample need not be synchronized, allowing the observation of both equilib-

rium and nonequilibrium processes (Walter, Huang, Manzo, & Sobhy,

2012). This is especially important when trying to understand highly

reversible conformational steps, which are required in biological systems

for proofreading functions and to facilitate pathway bifurcations as encoun-

tered in, for example, alternative splicing. However, the sheer number of

states and interstate transitions became a challenge early on (Abelson

et al., 2010), prompting us to develop smFRET techniques that employ
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Fig. 2 Confirmation of blockage and reconstitution of splicing by in vitro splicing assays.
Denaturing polyacrylamide gels were scanned with a variable mode Typhoon imager.
The intron and intron-lariat products are observed in the Cy3 scan (green), and the
mature mRNA product is visualized in the Cy5 scan (red). (A) The optimized concentra-
tion of oligodeoxynucleotide D1 required to deplete U6 snRNA (300 nM) was deter-
mined by titrating increasing amounts of D1 into the in vitro splicing assay. (B) Using
the previously determined optimal concentration of D1 (300 nM, A), extract viability
was confirmed through reconstitution with in vitro transcribed U6 snRNA.
(C) Incubation of prp2-1 cef1-TAP yeast whole-cell extract at 37°C for 40 min completely
blocks splicing activity (ΔPrp2 lane). Addition of recombinant Prp2p to the extract
results in reconstitution of splicing, as expected. (D) Addition of recombinant dominant
mutant Prp16DN to yeast extract stalls splicing after the first chemical step.
(E) Incubation of 30SS mutant substrate with WCE stalls splicing after the first step, while
incubation with a WT substrate (F) results in efficient progression through both steps of
splicing. Reproduced with permission from Blanco, M. R., Martin, J. S., Kahlscheuer, M. L.,
Krishnan, R., Abelson, J., et al. (2015). Single molecule cluster analysis dissects splicing path-
way conformational dynamics. Nature Methods, 12, 1077–1084.
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Fig. 3 Typical acquisition of smFRET data. (A) Prism-based TIRF microscope with micro-
fluidic sample chamber containing the 50 biotinylated Ubc4 pre-mRNA substrate incu-
bated with various yeast splicing extracts (Abelson et al., 2010; Blanco et al., 2015).
(B) Raw single-molecule time trace showing the anticorrelated donor (green) and acceptor
(red) intensities. (C) The corresponding FRET trace (purple) and the HMM trace as assigned
by vbFRET (black). Reproduced in part with permission from Blanco, M. R., Martin, J. S.,
Kahlscheuer, M. L., Krishnan, R., Abelson, J., et al. (2015). Single molecule cluster analysis dis-
sects splicing pathway conformational dynamics. Nature Methods, 12, 1077–1084.
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either biochemical enrichment of specific complexes via glycerol gradient

centrifugation and immunoprecipitation (termed Single-Molecule Pull-

Down FRET, or SiMPull-FRET; Kahlscheuer et al., 2015; Krishnan

et al., 2013; Semlow et al., 2016) or bioinformatic clustering for

“computational purification” termed Single-Molecule Cluster Analysis,

SiMCAn (Blanco et al., 2015) to pinpoint the structural dynamics of specific

splicing intermediates. Our approach of focusing on the pre-mRNA sub-

strate with SiMPull-FRET and SiMCAn is particularly timely given the

emerging cryo-EM structures of relevant spliceosomal complexes typically

lack at least part of the substrate (Fig. 1C and Table 1) and can thus be

uniquely complemented and animated by substrate data.

SiMCAn translates time-resolved smFRET data into a temporal

sequence of conformational changes that single pre-mRNA molecules

adopt throughout splicing. In its initial application, SiMCAn discovered a

previously undescribed low-FRET conformation adopted late in splicing

by a 30SS mutant (Blanco et al., 2015). Conversely, the growing number

of high-resolution structures of spliceosomal components and complexes

will aid in the refinement of SiMCAn-derived conformational models, all-

owing us to test the hypothesis that specific sequences of structural changes

facilitate splicing. As an ultimate goal, SiMCAn has the potential to help

delineate the mechanism of pre-mRNA splicing by dissecting—at single-

molecule and single-nucleotide resolution—the complete “movie” of con-

formational changes throughout a full splicing cycle (Fig. 1), or any other

biomolecular process. MATLAB scripts to perform all SiMCAn analyses

are available as Supplementary Software with our original publication

(Blanco et al., 2015).

2. EXPERIMENTAL METHODS AND DATA ANALYSIS

Data from smFRET studies have directly established that populations

of single molecules often exhibit variant behaviors that include dominant,

rare, long-lived, or transient species, as well as singular and parallel (i.e.,

alternate) pathways. Observations of large populations of molecules provide

a statistical sample that mirrors ensemble measurements, while also being

sensitive enough to describe the component subpopulations. The strengths

of smFRET methods have established them as a useful probe of RNA

molecular catalysis and dynamics, yet their application to more complex

and multistep systems faces additional hurdles. Molecular systems that dis-

play two or three prominent FRET states are often accurately identified

using either thresholding or HMM approaches (Blanco & Walter, 2010).
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However, the analysis of multistate smFRET data may be subject to user

judgment and bin size selection bias. With a higher number of states, the

analysis becomes increasingly unreliable. Spliceosomally catalyzed pre-

mRNA splicing in particular is composed of a multitude of conformational

states and substates that rapidly interconvert. Analysis of smFRET trajectories

from pre-mRNA splicing in vitro required new approaches to ensure unbi-

ased sampling and accurate modeling of the interactions and rearrangements

that take place between the RNA, protein, and pre-mRNA components of

the spliceosomal machinery. Understanding the subtlety of these dynamics

required comparison of smFRET trajectories featuring different conforma-

tional states and kinetic properties from across a range of experimental

conditions. The complexity of pre-mRNA splicing precluded fitting all data

with a single HMM model, which would impose a constraining single,

preordained kinetic model on all molecules and conditions.

More generally, the results from kinetic measurements at the single-

molecule level are fundamentally different from classical ensemble-averaged

data due to their statistical nature (Moffitt, Chemla, & Bustamante, 2010).

When we began addressing the challenge of mining the increasingly com-

plex data obtained from spliceosomal complexes for commonalities, we

realized that a simple alignment of time trajectories did not yield satisfactory

results since the dwell time in any given state is part of an exponential prob-

ability distribution. That is, single molecules with both very long and very

short dwell times in a given state are found regardless of the underlying rate

constants, which only modulates the probability of their observation (and

short dwell times are always the most likely). We therefore returned to using

HMMs, aiming to overcome their underlying limitations. In particular, a

Markov transition from state A to state B is assumed to take place with total

state memory loss, a feature that is fundamentally not the case for a biological

process wherein a specific functional intermediate is a product of all preced-

ing steps and itself funnels the biomolecular machine into a subset of acces-

sible subsequent steps. Put differently, all of biology is inherently dependent

on energy being used to bias the direction of molecular interactions and

transformations, thus overcoming the dominance of complete randomness

dictated by the Second Law of Thermodynamics. In the case of biomolec-

ular machines such as the spliceosome that operate at the nanoscale—where

inertia and friction have lost their preponderant role exerted at the

macroscale—intrinsic, random thermal motions are biased directionally

by helicases that, as molecular motors, utilize the energy from ATP hydro-

lysis to achieve biased Brownian ratcheting (Kahlscheuer et al., 2015;
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Krishnan et al., 2013). To discern this nonrandomness in our smFRET data,

we turned to a hybrid method wherein HMMs are used to capture and

summarize the molecular FRET states of single molecules and the transitions

between them in a FRET similarity matrix (FSM), followed by “alignment”

of the single-molecule FSMs to identify clusters of common molecular

behaviors (Blanco et al., 2015). A second level of clustering based on the

abundance of dynamic behaviors when splicing is stalled at defined inter-

mediate steps through biochemical and genetic tools then allowed us to

assign pre-mRNA FRET states and transitions to specific splicing complex

intermediates. In the following, we elaborate on relevant considerations for

this type of analysis.

2.1 Acquisition and Initial Analysis of smFRET Data
Clustering analysis has been used in a variety of fields to help group large

datasets (e.g., gene expression profiles) based on a similarity metric that

distinguishes similar from disparate behaviors (D’haeseleer, 2005). Compu-

tational clustering provides the necessary analytical power to tease out indi-

vidual subpopulations from a larger single-molecule dataset. We here discuss

the application of SiMCAn (Blanco et al., 2015) a hierarchical clustering tool

to extract the consensus behaviors of pre-mRNAs throughout the assembly

and catalytic steps of the yeast spliceosome. The technique is generalizable

for other datasets with more or less complicated dynamics whose analysis by

traditional smFRET tools is insufficient, too error prone or too cumbersome

to extract the full scale of information available. The algorithms to perform

all SiMCAn analyses are available as MATLAB scripts (The MathWorks,

Inc., Natick, MA) as part of the Supplementary Software of our original

publication (Blanco et al., 2015).

In smFRET, a donor fluorophore (often Cy3) is excited with typically a

532-nm laser, with the resulting emission of both donor and acceptor fluo-

rophore (often Cy5) recorded on a P-TIRF microscope setup (Fig. 3A).

Importantly, SiMCAn is truly agnostic to the nature and origin of the data.

Molecules selected for further analysis by SiMCAn should fulfill certain

criteria, however. The molecule’s fluorescence time trajectory should last

at minimum, �30 data points (or, more generally, at least three times the

mean dwell time of the observed FRET states) before photobleaching of

the donor fluorophore (Cy3), show anticorrelated changes in donor

(Cy3) and acceptor (Cy5) intensity, undergo single-step photobleaching,

and contain active acceptor (Cy5) fluorophore throughout, as evidenced
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upon direct 635-nm laser excitation at the end of each data acquisition

(Blanco et al., 2015). After extracting the signal, FRET values are calculated

by dividing the cross talk corrected intensity of the acceptor emission by the

total emission from both donor and acceptor (Fig. 3B and C). Trajectories

are truncated to just before the first fluorophore photobleaches. To reliably

identify genuine FRET states and their transition kinetics in inherently noisy

datasets, each selected smFRET trace is then fitted with an HMM, which

traces the most probable sequence of FRET states and derives their dwell

times, using vbFRET (Bronson, Fei, Hofman, Gonzalez, & Wiggins,

2009) in the MATLAB environment with no assumptions about the values

or distributions (Fig. 3C). In principle, any idealized trajectories from

HMM-fitted data (generated using vbFRET, HaMMy, QuB, etc.)

(Blanco & Walter, 2010) subsequently can be fed into SiMCAn. Multiple

models with differing number of states should initially be used to determine

the underlying FRET states; typically, the entire dataset for each condition is

analyzed by the iterative application of the Viterbi and BaumWelch algo-

rithms to generate idealized trajectories (Blanco &Walter, 2010). The num-

ber of states assumed in the idealization can be varied from 2 to 11 and the

corresponding fits evaluated using the Bayesian information criterion (BIC).

The number of states that result in the best BIC score should be used in the

subsequent analysis. Using the BIC penalizes models with extraneous states

that do not result in a significant improvement in the LogLikelihood, all-

owing one to select the most appropriate model by balancing goodness of

fit and model parsimony. Many of the currently available software packages

for HMM fitting of smFRET trajectories have this procedure incorporated

into their analysis.

For pre-mRNA splicing, we binned each HMM assigned FRET state

into the closest of 10 evenly spaced FRET values (0.05–0.95, increment

of 0.10), chosen in relation to the error of �0.05 expected from a measure-

ment of a standard FRET value in the range of 0 and 1 (Abelson et al., 2010;

Blanco et al., 2015). This information is already much more fine-grained

than a simple FRET occupancy histogram, which plots frame-by-frame

FRET values for a set of molecules collected over the first 100 frames

(10 s of real time) of all FRET trajectories in a given dataset, equivalent

to typical ensemble FRET data (Fig. 4A; Blanco & Walter, 2010). In such

a histogram, all information on the connectivity of specific states, their inter-

conversion kinetics, and variance in FRET value is lost. A more appropriate

way to capture the details of HMM data of many molecules is the use of

TDPs, weighted by the number of times a particular FRET transition

268 C.E. Rohlman et al.



occurs, or transition occupancy density plots (TODPs), weighted by the

fraction of molecules displaying a particular transition (Figs. 4 and 5;

Blanco & Walter, 2010). Of note, to eliminate possible effects of the high

concentrations of proteins directly on the fluorophores, one may addition-

ally evaluate the separated donor and acceptor signals by HMM and intro-

duce a scoring function to select for anticorrelated donor and acceptor

changes that reflect verified changes in FRET (Blanco & Walter, 2010).

To better parse the complexity of pre-mRNA splicing, we decided to enrich

specific splicing intermediates through seven biochemical and genetic stalls

or combinations thereof (Fig. 2), as well as recorded smFRET data within

Fig. 4 Basic smFRET data analysis. (A) FRET probability distribution, summarizing all
FRET values observed over the first 100 data points of 6079 molecules. (B) Transition
occupancy density plot (TODP) for the data shown in (A), represented as a heat map
of the fraction of molecules showing any particular transition. (C) Assigned FRET trace
before (black) and after (blue) reassignment to the closest of 10 evenly spaced states
(0.05–0.95, increments of 0.10, gray dashed lines). The transition probability (TP) matrix
corresponds to the rebinned FRET trace in the left panel and represents the transition
probability between each of the 10 binned FRET values. The FRET similarity matrix (FSM)
combines both the TP matrix and the FRET state occupancies over the entire smFRET
trace. Reproduced in part with permission from Blanco, M. R., Martin, J. S., Kahlscheuer,
M. L., Krishnan, R., Abelson, J., et al. (2015). Single molecule cluster analysis dissects splicing
pathway conformational dynamics. Nature Methods, 12, 1077–1084.
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Fig. 5 Transition occupancy density plots (TODPs) from smFRET-monitored pre-mRNA
splicing experiments. For each of the eight experimental conditions over the time
course of the smFRET experiments, TODPs were used to depict the most probable tran-
sitions between an initial FRET state (x-axis) and a final FRET state (y-axis). Reproduced
with permission from Blanco, M. R., Martin, J. S., Kahlscheuer, M. L., Krishnan, R., Abelson, J.,
et al. (2015). Single molecule cluster analysis dissects splicing pathway conformational
dynamics. Nature Methods, 12, 1077–1084.
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three time windows of 0–8 min (early), 18–23 min (middle), and 33–40 min

(late) after starting each assay. Including the absence of any stall, we collected

a total of 10,680 time traces and corresponding HMMs (Blanco et al., 2015).

The resulting TODPs show significant differences, but commonalities across

conditions are challenging to discern by eye (Fig. 5), necessitating a more

sophisticated analysis as offered by SiMCAn.

2.2 SiMCAn: Representing Single Molecules as FRET Similarity
Matrices

In SiMCAn, each HMM of a single molecule is used to construct a symmet-

ric transition probability (TP) matrix that delineates the molecule’s FRET

states as well as the probability per time unit for transitioning from one to

any other state, including itself (Fig. 4C). The TP matrix thus summarizes

for each molecule all conformational states it adopts and their interconversion

kinetics, at a level of precision commensurate with the error of the underlying

smFRET measurement, in our case as a 10�10 matrix (Blanco et al., 2015).

Each TP matrix is then combined with an additional column describing the

percent of time (before photobleaching) a given trace spends in each FRET

state, resulting in the FSM (Fig. 4C). SiMCAn thus reduces each single-

molecule trajectory to an easily comparable unit of information, the FSM,

a data abstraction that is possible regardless of the number of FRET states

or distinct molecular behaviors among the sampled species. The FSM allows

the user to compare the multitude of FRET trajectories through hierarchical

cluster analysis in an unbiased fashion, as described in the following section.

2.3 SiMCAn: The First Layer of Clustering
The FSM datasets collected for all experimental conditions are mixed, and

then a pairwise distance between all possible trajectories is calculated using a

Euclidean distance metric. In the case of pre-mRNA splicing, prior to SiM-

CAn clustering 4601 “static” molecules (no transitions with occupancy in

only one state) were identified based on their FSMs among our total of

10,680 time traces and analyzed separately. Their features are simple so that

they can be treated separately, and they are removed to avoid that they

dominate clusters of other dynamic molecules with long lived, slowly

interconverting FRET states. It cannot be distinguished whether these

“static” molecules truly reside in only one state, adopt one long-lived state

that happened to photobleach before transitioning into another state, or

instead reside in two or more states so short lived that they time average into
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what only appears, at the available time resolution, as a single state with a

mean FRET value.

The remainder, in our case the FSMs of 6079 dynamic molecules, are

clustered using Ward’s method for hierarchical clustering, in which the

Euclidean distance between any pair of clusters r and s is given by Eq. (1):

d r, sð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2nrns

nr + ns

r
�x2r � �x2s

� �1=2
, (1)

where n is the number of elements and x is the centroids for the respective clus-

ters r and s. This clustering algorithm is implemented natively in MATLAB.

The goal is to group together molecules with short distances (high similarity)

and connect themwith other groups of molecules based on their average inter-

cluster distance. This hierarchical clustering produces a large tree where each

molecule is represented by a branch end point, or leaf (Fig. 6A). This tree can

be cut (pruned) at various heights, leaving more or less clusters. A pruning

threshold needs to be selected so that the intracluster distance (similarity within

a cluster) is minimized and the intercluster distance (dissimilarity from other

clusters) is maximized. The cutoff for this ideal number of clusters to represent

a given dataset is best determined by Eq. (2), a k-means calculation as follows:

k¼ 1

B

X
log Wr

k

� �� log Wkð Þ� �
, (2)

where B is the number of cluster sets and Wk
r is the average intercluster

distance in a random set of k clusters, while Wk is the average intercluster

distance of the actual clusters. In the case of pre-mRNA splicing, we pruned

the tree to a height of 25 distinct clusters based on an inflection point

encountered in the k-means plot over the number of clusters (Fig. 6B). That

is, while the k-means used to evaluate the intercluster distances decreases

monotonically as more clusters are chosen, at some point the number of

clusters is so high that many similar FRET traces become separated. One

therefore judiciously selects an inflection point in the k-means plot where

an additional increase in the number of clusters has a smaller effect than

the last increase had. The goal is that each final cluster represents a unique,

distinguishable molecular behavior. For our splicing data, the resulting

25 dynamic clusters were named based on the first and secondmost occupied

FRET states within the cluster (e.g., cluster 0.65–0.05 primarily occupies

0.65 and 0.05 FRET states) and were combined with the 10 static clusters,

named for their sole FRET state (e.g., 0.05-S). Bootstrap analysis can be used

to ask whether appropriate clusters capture all additional FSMs added to the
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Fig. 6 See figure legend on next page.
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dataset. This first layer of SiMCAn clustering is performed sufficiently

unsupervised to generate a model-free tree to represent the types of molec-

ular behaviors encountered in a given dataset objectively, without con-

straining the analysis with any a priori expectations.

2.4 SiMCAn: A Second Layer of Clustering Links the Data to
Biology

In the case of pre-mRNA splicing, substrate mutations or extract modifica-

tions that block splicing at specific intermediates (Fig. 1B) can be used to

limit the observed smFRET dynamics to steps prior to that block, thus

enriching certain molecular behaviors and limiting others. This combination

of a first, model-free round of clustering with a second round incorporating a

priori knowledge from biochemically and genetically manipulated yeast

extracts allowed further dissection of splicing in yeast. In particular, we

sought to identify clusters whose occupancies are similarly enriched or

depleted for a group of conditions, i.e., follow a similar pattern of high

and low occupancies across these conditions, suggesting that they can be

grouped into a “clade” (or cluster by a different name) of clusters

(Fig. 6C). To this end, the occupancy within all 35 first-round clusters across

Fig. 6 SiMCAn-based cluster analysis. (A) Hierarchical clustering of 6079 dynamic single
molecules. Varying the tree cutoff heights upon grouping the cluster occupancy among
the eight experimental conditions leads to distinct numbers of (color-coded) clades of
clusters. smFRET data were collected for each substrate and extract mutant and globally
fit to a 10-state HMM. An FSM was then constructed for each molecule and clustered.
Each colored branch represents a set of molecules that share common FRET transition
probabilities. The dashed line indicates the threshold of 25 clusters used to describe the
data. Molecules with only one state (static) were clustered separately and later incorpo-
rated as separate clusters. Hierarchical clustering was performed utilizing MATLAB rou-
tines by calculating the pairwise Euclidean distance of every single molecule and
building an agglomerative hierarchical cluster tree utilizing the unweighted average
distance to compute distances between clusters. (B) Iterative measurement of inter-
cluster distances using a modified k-means algorithm utilized to determine the number
of clusters that best describes the experimental data. (C) A heat-map representation of
the clustering of clusters for the eight experimental conditions. Clusters are group based
on profiles to identify “clades” of similar abundance patterns. The abundance profiles for
each cluster were constructed and clustered to determine if groups of clusters were
shifting in groups, similar to groups of genes with similar expression profiles. This pro-
cedure was performed using MATLAB’s clustergram function. Reproduced in part with
permission from Blanco, M. R., Martin, J. S., Kahlscheuer, M. L., Krishnan, R., Abelson, J.,
et al. (2015). Single molecule cluster analysis dissects splicing pathway conformational
dynamics. Nature Methods, 12, 1077–1084.
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all conditions was used as a new similarity matrix to compute their distances,

again based on a Euclidean distance measurement. Clades were generated by

the same iterative k-means approach as before, with the aim to generate a

reasonable group of clusters whose occupancy patterns across conditions

are most alike (as measured by the Euclidean distance). For our splicing

dataset, this second level of clustering yielded an optimal tree height of seven

clades that was able to capture the changes in dynamic behavior as the pre-

mRNA progresses through the splicing cycle. For example, conditions that

stall WT substrate splicing at the early A complex (i.e., ΔU6-WCE(WT),

Fig. 1B) show a time-dependent increase in clade I (Fig. 6C; Blanco

et al., 2015). This stable low-FRET conformation suggests that the pre-

mRNA substrate is partially denatured in the A complex compared to

pre-mRNA in the absence of spliceosomal components (Abelson et al.,

2010), keeping the first-step reaction sites at a distance. As another example,

under the ΔPrp2-WCE(WT) and ΔPrp2-WCE(30SS) conditions, which
both should similarly enrich for the activated Bact spliceosome before the first

step of splicing since the 30SS mutation only affects the second step (Fig. 1A

and B), SiMCAn recognizes a pair of dominant low-FRET clusters, 0.25-S

and 0.15-S, that are appropriately grouped into clade II (Fig. 6C). Since

these two clusters are so close in FRET value, they likely represent the same

static low-FRETBact conformation found independently upon biochemical

purification of the Bact complex (Krishnan et al., 2013). Notably, SiMCAn

was able to distinguish these clusters from the similarly static, but even lower

FRET cluster 0.05-S of the A complex, which is not resolvable in an

smFRET histogram (Fig. 4A).

In this way, the second clustering based on SiMCAn can reveal known or

anticipated features of specific spliceosomal intermediates. Significantly,

SiMCAn also identified heretofore undescribed differences in molecular

behavior between theWT and 30SS mutant substrates upon incubation with

WT splicing extract, i.e., comparing conditions WT-WCE(WT) and

WT-WCE(30SS). In particular, both substrates are expected to progress

through most of the splicing cycle until the second chemical step

(Fig. 1B) and accordingly exhibited quite a similar set of pre-mRNA con-

formations (Fig. 6C). However, the 30SS over time additionally adopts a

static 0.05-S cluster, suggesting that the 50SS and BP are far separated in

comparison to their relative proximity in the splicing intermediate prior

to this point in the cycle (Fig. 1B), represented by conditions

Prp16DN-WCE(WT) and Prp16DN-WCE(30SS) (Fig. 6C). This 0.05-S
state is more predominant for the 30SS mutant than the WT substrate,
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consistent with the appearance of a conformation in which the 50SS and BP
become greatly separated only after the first step of splicing when the

mutated 30SS is first detected (Blanco et al., 2015). This discovery of a proof-
reading step, which allows for the selection of alternative 30 splice sites if

the canonical 30SS is removed or damaged through mutation, was subse-

quently confirmed by smFRET probing of biochemically isolated 30SS
mutant complexes (Semlow et al., 2016), demonstrating the power of

SiMCAn in discovery.

2.5 Generalized Application of SiMCAn to Datasets of Varying
Complexity

Generally, experimental sampling ought to scale with the total number of

distinguishable FRET states and kinetics in a dataset to ensure a reasonable

level of convergence of SiMCAn, as with any other analysis approach. We

developed SiMCAn specifically for dealing with very large datasets of high

complexity, where traditional HMM analysis becomes inadequate and

commonalities between single-molecule traces are challenging to identify.

The availability of a dataset with >10,000 smFRET traces as described ear-

lier for the pre-mRNA splicing cycle is, however, still not typical in the

field. An example of a dataset more typically encountered in current single-

molecule studies is that of the Prp2-mediated conformational transition

immediately prior to the first step of splicing (Krishnan et al., 2013). In short,

the immobilized Bact complex containing FRET-labeled pre-mRNA was

monitored as it progresses through the B* to the C complex upon addition

of recombinant proteins Prp2, Spp2, and Cwc25 (Fig. 7A). Notably, SiM-

CAn rapidly (within minutes) identified subpopulations of pre-mRNA

molecules, recapitulating the subpopulations of molecules that had originally

been identified manually by visual inspection (Fig. 7; Krishnan et al., 2013).

More specifically, the HMM-fitted FRET traces under conditions designed

to enrich for the Bact, B*, and C complexes, respectively, were converted

into FSMs and analyzed together using SiMCAn. Again, maximizing the

intercluster distances while minimizing the intracluster distances using

SiMCAn revealed nine dynamic and four static clusters as most consistent

with the data (Fig. 7B). As seen in bar graphs of the fraction of molecules

present in each cluster under each of the three experimental conditions

(Fig. 7C), we found that a cluster of static low-FRET (0.3-S) molecules

dominates the Bact conditions, consistent with our previous observation

of such a dominant state in the Bact spliceosome (Blanco et al., 2015;

Krishnan et al., 2013). By contrast, a static high-FRET cluster (0.7-S) is most
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Fig. 7 Performance of SiMCAn on a previously analyzed smaller dataset describing the
transition from the purified Bact to the C complex (Krishnan et al., 2013). (A) Protein
requirements for the transition from the Bact complex through B* to the C complex.
(B) Hierarchical tree based on hierarchical clustering analysis of the dynamic molecules
refits with FRET states of 0.1, 0.3, 0.5, and 0.7 (Krishnan et al., 2013). Static molecules were
identified and analyzed by SiMCAn separately. (C) Cluster occupancy bar graph showing
the fraction of molecules from each experimental condition that occupy the nine
dynamic and four static clusters found using SiMCAn. Dynamic clusters were labeled
by the weighted average FRET value of the molecules within the cluster (e.g.,
0.2563), while static clusters are labeled by the single state they describe (e.g., 0.1-S).
Gray bars highlight the most populated clusters occupied by each of the complexes.
(D and E) Dynamic clusters enriched in the B* (D, cluster 0.4267) and C (E, cluster
0.6478) complexes. Each representative for the B* and C complex shows the TP matrix
of the cluster (left), the closest (magenta) and several random (black) traces from the
cluster (middle), and the probability of FRET states within the cluster (right). Reproduced
with permission from Blanco, M. R., Martin, J. S., Kahlscheuer, M. L., Krishnan, R., Abelson, J.,
et al. (2015). Single molecule cluster analysis dissects splicing pathway conformational
dynamics. Nature Methods, 12, 1077–1084.
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abundant in the C complex (Fig. 7C), again consistent with manual sorting

(Krishnan et al., 2013). Finally, SiMCAn also identified two dynamic clus-

ters increasingly populated under B* (cluster 0.43, green) and C (cluster 0.66,

red) complex conditions (Fig. 7C). Cluster 0.43 contains molecules with a

short-lived high-FRET state most abundant under B* conditions, whereas

cluster 0.66 contains molecules with a longer-lived high-FRET state that is

enriched once Cwc25 has been added to favor the C complex (Fig. 7C),

together matching our previous manual analysis (Krishnan et al., 2013). These

results demonstrate that, when applied to a more typical experimental dataset,

SiMCAn is able to segregate the data efficiently based on FRET states and

differences in state-to-state interconversion kinetics in a way that derives bio-

logically meaningful results, saves time and avoids potential user bias.

3. CONCLUSIONS AND OUTLOOK

The complex dynamic behavior of the many individual molecules we

observed undergoing the pre-mRNA splicing cycle of budding yeast in vitro

required the development of a novel approach to smFRET analysis. In

recent years, hidden Markov modeling has vastly improved the amount

of information one is able to extract from smFRET data. It is a powerful

tool for the unbiased extraction of FRET states and kinetics from single-

molecule trajectories. To leverage the TP matrix resulting from hidden

Markov modeling, we created an FSM that can be utilized in hierarchical

clustering algorithms. In turn, hierarchical clustering techniques allow us

to group molecules with similar behaviors across conditions by applying

the FSM as a measure of how similar any two molecules are. The FSM

can help distinguish molecules with similar FRET states and rates of inter-

conversion using SiMCAn, a tool available as supplemental MATLAB

scripts associated with our original publication (Blanco et al., 2015). As a first

application, we analyzed single-molecule data from pre-mRNAs labeled at

the 50SS and BP that were exposed to various yeast WCEs competent in

splicing. To enrich for specific points along the splicing cycle, we introduced

substrate mutations and depleted specific splicing factors. Blocking specific

points along the splicing pathway allowed us to focus on dynamics that are

relevant during the early and late stages of assembly, identifying both known

and heretofore undescribed conformational states.

The ultimate goal in studies of any enzyme is to understand the link

between the temporal sequence of conformational fluctuations and the
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chemical transformation(s) throughout a full catalytic cycle; in fact, it can be

argued that the former begets the latter (Hammes-Schiffer & Benkovic, 2006).

So far, this goal has been accomplished mostly for single-chain metabolic

enzymes such as dihydrofolate reductase (Bhabha et al., 2011; Hammes-

Schiffer & Benkovic, 2006) and adenylate kinase (Adk) (Henzler-Wildman

et al., 2007). The overarching hypothesis underlying our work is that, simi-

larly, a characteristic, helicase-directed sequence of stochastic conformational

fluctuations leads to chemical catalysis in the more complex enzymatic

machinery of the spliceosome. The power of SiMCAn-based clustering

analysis lies in its ability to compare datasets efficiently and objectively by

sorting single-molecule time traces with their stochastic idiosyncrasies into

clusters of common FRET state and kinetic behaviors, and assessing the rel-

ative abundance of each cluster across any number of experimental conditions.

SiMCAn thus emerges as a computational approach capable of translating

smFRET data into temporal sequences, or “movies,” of most common

RNA conformational paths through a catalytic cycle that, combined with

high-resolution cryo-EM and crystal structures, footprinting and other

solution data will eventually make the spliceosome as well understood as

single-chain enzymes are today.

Previous work has used clustering algorithms to identify distinct kinetic

behaviors, but focused on small datasets with two or three FRET states and

limited dynamics (Greenfeld, Pavlichin, Mabuchi, & Herschlag, 2012;

Keller, Kobitski, Jaschke, Nienhaus, & Noe, 2014). SiMCAn performs well

with such datasets, as demonstrated when applied to the Bact to B* to

C complex transition, but is adept at handling also more complex systems

with higher numbers of states and complex kinetic networks under non-

equilibrium conditions. That opens the door to more sophisticated exper-

iments, for example, by labeling additional spliceosomal RNA and protein

components. The number of potential targets for single-molecule experi-

ments is great and facilitated by the wealth of genetic and biochemical tools

available in the budding yeast splicing system (Hoskins et al., 2011). As more

high-resolution structures of the spliceosome become available, they will

provide further targets for specific interactions to monitor. The work pres-

ented here therefore presents a framework for further advances in what is

sure to expand into the exciting and fruitful field of single-molecule splicing.

Finally, SiMCAn stands ready to be applied to complex smFRET datasets

that are sure to become more common as we expand the use of single-

molecule tools to many more biomolecular machines.
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