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We report Single Molecule Cluster Analysis (SiMCAn), which 
utilizes hierarchical clustering of hidden Markov modeling–fitted 
single-molecule fluorescence resonance energy transfer (smFRET) 
trajectories to dissect the complex conformational dynamics 
of biomolecular machines. We used this method to study the 
conformational dynamics of a precursor mRNA during the 
splicing cycle as carried out by the spliceosome. By clustering 
common dynamic behaviors derived from selectively blocked 
splicing reactions, SiMCAn was able to identify the signature 
conformations and dynamic behaviors of multiple ATP-dependent 
intermediates. In addition, it identified an open conformation 
adopted late in splicing by a 3′ splice-site mutant, invoking a 
mechanism for substrate proofreading. SiMCAn enables rapid 
interpretation of complex single-molecule behaviors and should 
prove useful for the comprehensive analysis of a plethora of 
dynamic cellular machines.

Conformational dynamics have a key role in every aspect of 
RNA biology, including RNA transcription, splicing and transla-
tion1–3. The quantitative measurement and interpretation of these 
dynamics are of great importance for an understanding of the 
common principles underlying the biological function of RNA2–4. 
Single-molecule fluorescence approaches have recently emerged 
as a powerful toolset for dissecting the structural dynamics that 
form the foundation of biomolecular machines functioning at 
the nanometer scale5–9. For example, smFRET has been used to 
dissect spliceosome dynamics5,6,10. The spliceosome is a multi-
megadalton ribonucleoprotein complex essential for the faithful 
removal of introns from eukaryotic precursor mRNAs (pre-
mRNAs) during the two chemical steps of splicing (Fig. 1a)11. 
The architectural reorganization of the pre-mRNA substrate 
required to accommodate these two catalytic steps in a single 
active site is thought to be accompanied by substantial rearrange-
ments that ensure substrate proofreading12–15. To explore these 
rearrangements, in previous studies6,16 we labeled the efficiently 
splicing yeast pre-mRNA Ubc4 with the FRET pair Cy5 and Cy3 
seven nucleotides upstream of the 5′ splice site (5′SS) and six 
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nucleotides downstream of the branch point (BP), respectively. 
This yielded a substrate capable of detecting changes in intron 
conformation as a result of 5′SS and BP (un)docking (Fig. 1a,b) 
that we used to show that one of several DExD/H-box ATPases, 
Prp2, unlocks intrinsic conformational dynamics in the isolated 
spliceosomal Bact complex, setting the stage for first-step catalysis 
through a biased Brownian ratcheting mechanism5.

The quantitative methods available for an in-depth dissection 
of the dynamics observed in smFRET studies are still limited, 
however. In particular, the multistate, mostly asynchronous and 
often heterogeneous kinetics of many molecular machines, such 
as the spliceosome, mean that even with current state-of-the-art 
analysis, individual state transitions are rendered as independent 
stochastic events insufficient for an in-depth understanding of the 
underlying biological function. To extract additional informa-
tion, several recent studies analyzed common smFRET metrics 
more thoroughly, specifically, FRET probability histograms and 
state-to-state transition kinetics7. For example, it has been dem-
onstrated that in certain favorable cases interstate dynamics can be 
extracted from histograms through an analysis of photon arrival 
times and lifetimes17. In addition, state-to-state transition kinet-
ics have been extracted through the use of clustering algorithms 
to identify distinct kinetic behaviors18,19. All of these approaches 
have focused on small data sets with two or three FRET states and 
limited dynamics; to date they have not been applied to more com-
plex systems with higher numbers of states and complex kinetic 
networks examined under non-equilibrium conditions.

We present here a method, Single Molecule Cluster Analysis 
(SiMCAn), that utilizes hierarchical clustering as a means to 
group, sort and identify commonalities of smFRET trajectories 
fit using hidden Markov modeling (Fig. 1c,d). We used SiMCAn 
to characterize the pre-mRNA dynamics associated with the 
assembly and catalytic steps of the yeast spliceosome. SiMCAn 
reduces every single-molecule trajectory, regardless of its number 
of states, to an easily comparable unit of information that we refer 
to as the FRET similarity matrix (FSM). By leveraging hierarchical 
clustering techniques, we identified common dynamic behaviors 

1Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan, USA. 2Cellular and Molecular Biology, University of 
Michigan, Ann Arbor, Michigan, USA. 3Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA. 4Department of Biochemistry and 
Biophysics, University of California, San Francisco, San Francisco, California, USA. 5Present addresses: Division of Biology and Biological Engineering, California 
Institute of Technology, Pasadena, California, USA (M.R.B.); National Evolutionary Synthesis Center, Durham, North Carolina, USA (J.S.M.). 6These authors contributed 
equally to this work. Correspondence should be addressed to N.G.W. (nwalter@umich.edu).
Received 4 September 2014; accepted 10 August 2015; published online 28 September 2015; doi:10.1038/nmeth.3602

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nmeth.3602


1078  |  VOL.12  NO.11  |  NOVEMBER 2015  |  nature methods

Articles

across 10,680 different Ubc4 pre-mRNA molecules. We accom-
plished unbiased, model-free identification of commonalities 
and differences between splicing complexes through a second 
level of clustering based on the abundance of dynamic behaviors 
exhibited by defined functional intermediates. Applying SiMCAn 
thus allowed us to efficiently assign pre-mRNA FRET states and 
transitions to specific splicing complexes, including a heretofore 
undescribed low-FRET conformation adopted late in splicing by 
a 3′ splice site (3′SS) mutant. Our results establish SiMCAn as an 
effective approach for characterizing complex smFRET behaviors 
of dynamic cellular machines.

RESULTS
Hierarchical clustering of complex smFRET behaviors
State-to-state transitions in single-molecule trajectories report on  
the accessibility of conformational states and their ability to inter-
convert. Hidden Markov models (HMMs) are the most commonly 
used tools for identifying state-to-state transitions in smFRET 
trajectories (Fig. 1c,d). HMM fits create challenges, however, in 
comparisons of trajectories with different states and kinetic prop-
erties across a variety of experimental conditions (Supplementary 
Note 1). Fitting all data with a single HMM, so that consistent 
state values are used across all trajectories, is one way to address 
these challenges6,7. Such an approach effectively imposes a single, 
preordained kinetic model on all molecules and experimental 
conditions, which might not be appropriate for highly complex 
systems such as the spliceosome.

SiMCAn presents a solution for sorting 
and identifying commonalities among 
large numbers of HMM-fitted smFRET 
trajectories by first binning each FRET  
state into one of ten evenly spaced  
FRET values (0.05–0.95, with increments 
of 0.10) (Fig. 2a). This binning enables the 
global analysis of a large data set with FRET 
values that evenly span the viable FRET 
range and are commensurate with typical 
signal-to-noise ratios. The resulting HMMs 
are used to construct transition probabil-
ity (TP) matrices that describe the FRET 
states as well as the kinetics of transition 
between them (Fig. 2a). Each TP matrix 
is then combined with the occupancies  

of the individual FRET states to create an FSM (Fig. 2a). The 
Euclidean (ordinary) distance between FSMs provides a suitable 
weighted, information-rich metric by which to compare thou-
sands of HMM-fitted smFRET trajectories using hierarchical 
clustering analysis (Supplementary Note 1), an agglomerative 
clustering technique that aims to group data of similar charac-
teristics without the need for a preconceived experimental model 
or hypothesis20,21 (Online Methods). The result of this clustering 
is a hierarchical tree, where each leaf on the tree represents the 
dynamics of an individual molecule and BPs indicate a split in 
the dynamic behavior of the group of molecules at a given level 
of coarseness (Fig. 2b). The number of clusters is determined 
using an iterative measurement of the intercluster distances and 
a modified k-means algorithm22. Each cluster will be represented 
using the average TP matrix, a random collection of traces and the 
probability distribution of FRET states in the cluster (Fig. 2c).

Validation of SiMCAn using simulated data sets
To evaluate whether SiMCAn is able to correctly identify and 
segregate HMM-fitted trajectories with known FRET states, we 
applied it first to a simulated data set containing 1,500 trajecto-
ries that reversibly transition from a 0.15 to a 0.45 FRET state 
and an equal number of trajectories that transition from the 
same 0.15 FRET state to a 0.85 state (Supplementary Fig. 1a), 
with average rate constants of k0.15→0.45 = 0.54 s−1, k0.45→0.15 = 
0.54 s−1, k0.15→0.85 = 0.54 s−1 and k0.85→0.15 = 0.54 s−1. Using the 
intercluster distances and modified k-means algorithm, SiMCAn 
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Figure 1 | smFRET analysis of pre-mRNA splicing 
using the HMM. (a) The fluorescent substrate 
used to monitor pre-mRNA dynamics contains 
Cy5 and Cy3 fluorophores seven nucleotides 
upstream of the 5′SS and six nucleotides 
downstream of the BP, respectively. Spliceosome 
assembly and catalysis are thought to progress 
in a stepwise manner, with ATP required at 
several steps of assembly. The biochemical and 
genetic stalls used in this study are indicated 
by orange blocks. (b) Prism-based total internal 
reflection fluorescence microscopy setup for 
smFRET. (c) Raw single-molecule time trace 
showing the anticorrelated donor (green) 
and acceptor (orange) intensities. (d) The 
corresponding FRET trace (purple) and the  
HMM trace as assigned by vbFRET (black).

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature methods  |  VOL.12  NO.11  |  NOVEMBER 2015  |  1079

Articles

properly identified and separated these two molecular behav-
iors (Supplementary Fig. 1b), demonstrating that FSMs can be 
clustered and distinguished on the basis of the identity of their 
FRET states. A second and more important feature of SiMCAn is 
the ability to segregate HMMs on the basis of differing kinetics.  
We analyzed a second set of 3,000 simulated HMMs possessing  
two FRET states of 0.15 and 0.75, with half designed to have iden-
tical interconversion rate constants of 0.54 s−1 and the other half 
transitioning much more slowly, with rate constants of 0.15 s−1  
(Supplementary Fig. 1c). SiMCAn identified two clusters 
with distinct transition rate constants between the two states 
(Supplementary Fig. 1d). These results demonstrate SiMCAn’s 
ability to differentiate HMM-fitted FRET trajectories on the basis 
of their FRET states and kinetics.

Validation of SiMCAn using purified spliceosomal complexes
To benchmark SiMCAn against a more complex experimental 
data set featuring multiple FRET states, numerous transition rate 
constants and the inherent experimental limitations (for example, 
signal noise and premature photobleaching), we chose to analyze  
a previously published data set collected during the Prp2-mediated 
conformational transition immediately before the first step of splic-
ing5. Briefly, immobilized Bact complex containing FRET-labeled  

Ubc4 was monitored as it progressed through the B* to the C 
complex after the addition of recombinant proteins Prp2, Spp2 
and Cwc25 (Fig. 3a). Only after exhaustive manual sorting were 
we able to identify distinct FRET state and kinetic signatures  
for the intermediate Bact, B* and C complexes (Supplementary 
Fig. 2a). In contrast, SiMCAn was able to rapidly (within  
minutes) and correctly identify these previously only manually 
identified5 (Supplementary Fig. 2b) subpopulations of pre-
mRNA molecules as follows.

The HMM-fitted FRET traces under Bact, B* and C complex 
conditions were combined and analyzed using SiMCAn to deter-
mine whether the analysis could recapitulate the manual annota-
tion of these traces. Maximizing the intercluster distances while 
minimizing the intracluster distances using SiMCAn yielded nine 
dynamic and four static clusters that best fit the data (Fig. 3b and 
Supplementary Fig. 3). The data for these clusters were com-
bined into a single bar graph to depict the fraction of molecules 
that occupied each cluster, which allowed for the identification of 
the most populated clusters under each experimental condition 
(Fig. 3c). In results similar to those of our previous analysis, a 
cluster of molecules adopting a static low-FRET state (0.3-S) was 
identified as dominant under Bact complex conditions (Fig. 3c), 
whereas a static high-FRET cluster (0.7-S) was most abundant 
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Figure 2 | SiMCAn workflow for sorting and clustering single-molecule-derived HMMs for common dynamic behaviors. (a) Left, assigned FRET trace before 
(black) and after (blue) reassignment to the closest of ten evenly spaced states (0.05–0.95 in increments of 0.10; gray dashed lines). Center, TP matrix 
corresponding to the re-binned FRET trace in the left-hand panel and occupancy values for each of the ten FRET values for the molecule traced in the 
left-hand panel. Right, FSM containing the TP matrix and FRET occupancies that describe the FRET states and transition kinetics between them for the 
molecule in a. (b) Hierarchical tree resulting from hierarchical clustering analysis using all 6,079 dynamic molecules. Each colored branch represents a 
set of molecules that share common FRET transition probabilities. The dashed line indicates the threshold of 25 clusters used to describe the data. Static 
molecules were identified and analyzed by SiMCAn separately. (c) Cluster description for 2 of the 25 dynamic clusters of the full splicing data set. Each 
representation shows the TP matrix of the cluster, the trace closest to the cluster center (magenta), up to 200 s of random (black) traces from the cluster 
and the probability of FRET states within the cluster. The highlighted blue trace in the top right panel represents the example trace used in a. Gray and 
white shading in backgrounds demarcates individual trajectories in c.
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under C complex conditions (Fig. 3c). In 
addition, SiMCAn identified two dynamic 
clusters that were increasingly populated 
under B* (cluster 0.43) and C (cluster 0.66) 
complex conditions (Fig. 3c). Cluster 0.43 
contained molecules with a short-lived high-FRET state and 
longer dwell times in the low-FRET state that were most abundant 
under B* conditions (Fig. 3d). By contrast, cluster 0.66 contained 
molecules with a longer-lived high-FRET state featuring rapid 
excursions back to a mid-FRET state that were enriched upon 
the addition of Cwc25 to form the C complex (Fig. 3e), matching 
our previous manual analysis5. These results demonstrate that, 
when applied to a complex experimental data set, SiMCAn is 
able to segregate data efficiently on the basis of FRET states and 
differences in state-to-state interconversion kinetics to derive a 
biologically meaningful result.

Stalling of the spliceosome leads to distinct behaviors
Having established that SiMCAn identifies known dynamic 
behaviors in simulated (Supplementary Fig. 1) and experimen-
tal HMM-fitted smFRET trajectories (Fig. 3), we next used it on 
a new data set enriched for specific stages of splicing through 
the use of biochemical and genetic stalls for which no behaviors 
were known. We collected smFRET data after incubating FRET-
labeled wild-type Ubc4 pre-mRNA with wild-type yeast whole-
cell extract (WCE), allowing for spliceosomal assembly on and 
splicing of the fluorescent substrate (condition WT-WCE(WT); 
Fig. 1a). Time-course experiments were performed during which 
smFRET was recorded in time windows 0–8 min (early), 18–23 
min (middle) and 33–40 min (late) after the addition of WCE. 
To assign dynamics to particular splicing intermediates without 
a need for cumbersome biochemical isolation, we chose to utilize 
eight mutations, and combinations thereof, known to allow for 

efficient accumulation of specific splicing intermediates in WCE 
(Fig. 1a and Supplementary Table 1). Blockage and release by 
reconstitution were verified by bulk in vitro splicing assays in 
yeast WCE (Supplementary Fig. 4). smFRET data for each stall 
were then acquired using the same time-lapse approach used for 
the WT-WCE(WT) condition. FRET probability distributions 
and transition occupancy density plots (Supplementary Figs. 5 
and 6) were used to broadly summarize the behavior of hundreds 
of molecule trajectories per condition7, confirming that the blocks 
led to different ensemble and time-averaged behaviors. However, 
this far more complex data set is not amenable to standard analy-
sis techniques, as it includes a large number of traces, FRET states 
and transition-rate constants from splicing complexes stalled by 
mutation throughout the splicing cycle. It thus represents an ideal 
application for SiMCAn.

Identifying biologically defined dynamics using SiMCAn
Application of SiMCAn to this new data set allowed us to  
identify and cluster sets of molecules that shared common 
dynamic behaviors. Each of the 10,680 smFRET trajectories  
was first fit with an HMM using vbFRET23, although any HMM 
fitting tool that satisfies the user’s fitting preferences can be  
used. Prior to clustering, 4,601 static molecules were identified 
and analyzed separately. Hierarchical clustering of the remaining  
6,079 dynamic molecules produced a tree that was pruned to  
a height of 25 distinct clusters (Fig. 2b and Supplementary  
Fig. 7), so that each cluster represented a unique dynamic behav-
ior (Fig. 2c and Supplementary Fig. 8). Static clusters were 
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Figure 3 | Validation of SiMCAn using a 
previously analyzed data set describing the 
transition from the purified Bact complex to the 
C complex5. (a) Protein requirements for the 
transition from the Bact complex through B* to 
the C complex. (b) Hierarchical tree based on 
hierarchical clustering analysis of the dynamic 
molecules re-fit with FRET states of 0.1, 0.3, 
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identified and analyzed by SiMCAn separately. 
(c) Cluster occupancy showing the fraction of 
molecules from each experimental condition 
that occupied the nine dynamic and four static 
clusters found using SiMCAn. Dynamic clusters 
are labeled by the weighted-average FRET value 
of the molecules in the cluster (for example, 
0.2563), and static clusters are labeled 
according to the single state they describe 
(for example, 0.1-S). Gray bars highlight the 
most populated clusters occupied by each of 
the complexes. (d,e) Dynamic clusters enriched 
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named according to their sole FRET state 
(for example, 0.05-S), whereas dynamic 
cluster names were assigned on the basis 
of the first and second most occupied 
FRET states in the cluster (for example, 
cluster 0.65-0.05 primarily occupied 0.65 and 0.05 FRET states). 
Bootstrap analysis based on the 25 SiMCAn-identified clusters 
confirmed the ability to identify input HMMs from increasingly 

complex data sets and showed that the SiMCAn-identified clus-
ters for the large experimental data set captured the molecular 
behaviors exhaustively (Supplementary Fig. 9).

We next sought to identify clus-
ters whose occupancies were similarly 
enriched or depleted for the same group 
of conditions, that is, clusters that followed 
a similar pattern of high and low occu-
pancies across conditions, such that they 
could be grouped into a ‘clade’ through 
a second round of hierarchical cluster-
ing (Fig. 4a). After applying this second 
level of SiMCAn to the full data set, we 
obtained a tree height of seven clades 
(Supplementary Fig. 10) that allowed for 
the identification of clusters representative 
of particular splicing conditions, most nat-
urally capturing the changes in dynamic 
behavior expected to occur as pre-mRNA 
progresses through the splicing cycle  
(Fig. 4b and Supplementary Fig. 11). 
A bar graph of all 35 (25 dynamic and 
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Figure 4 | Clustering of clusters to identify 
‘clades’ of similar behavior. (a) Illustration of 
the second round of clustering to group the 
clusters by common occupancy patterns. In this 
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by six conditions (A–F). Each cluster has an 
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by orange. After a second round of SiMCAn 
clustering, clusters with similar occupancies 
across the six conditions were grouped 
into clades (I–IV). (b) The second round 
of clustering with the 35 clusters from our 
experimental splicing data set revealed seven 
clades (I–VII) of clusters enriched in particular 
splicing complexes. The fraction of molecules 
in each cluster for each experimental condition 
at each time was normalized to a mean of zero 
with unit variance. Green and blue shading 
indicate increased occupancy of a particular 
cluster; orange indicates decreased occupancy. 
Rows identify the clusters and are ordered by 
increasing average FRET of the clade. Columns 
identify the cluster occupancy of each condition 
for the early, middle and late time points.
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10 static) clusters showed the extent to which each cluster  
contributed to the overall dynamics for each condition (Fig. 5  
and Supplementary Figs. 12 and 13). Statistical analysis 
showed that the average length of molecules in each cluster was  
similar, indicating that SiMCAn does not segregate by trace length 
(Supplementary Fig. 14 and Supplementary Table 2).

Characterization of pre– and post–first step blocks
SiMCAn revealed a disperse set of dynamics and cluster  
occupancies in the early splicing conditions ∆ATP-WCE(WT) and 
∆U6-WCE(WT) that stalled at commitment complex 2 and the  
A complex, respectively (Supplementary Figs. 13 and 15). It also 
identified a time-dependent increase in clade I upon A-complex  
formation (Supplementary Note 2). This low-FRET behavior 
has been proposed to be sustained upon incorporation of the 
U5·U4/U6 tri-snRNP (small nuclear ribo-
nucleoprotein) during B complex forma-
tion10 (Fig. 1). In our corresponding data 
sets for conditions ∆Prp2-WCE(WT) and 
∆Prp2-WCE(3SS), known24,25 to enrich 
the activated spliceosome Bact, SiMCAn 
recognized a pair of static clusters, 0.25-S  
and 0.15-S, that were overrepresented  
and thus grouped to form clade II (Figs. 4  
and 5). These clusters represented mol-
ecules that were stalled in a static low-
FRET Bact conformation before activation 
of Prp2’s ATPase activity and were similar 
to those previously determined5 using an 
isolated Bact complex lacking free extract 
(Fig. 3). Notably, SiMCAn was able to dis-
tinguish these clusters from the equally 
static, but even lower FRET, cluster 0.05-S 
of the A complex, which was not resolvable 
in the FRET histograms (Supplementary 
Fig. 5). In addition to the static clusters 
of clade II, the dynamic cluster 0.05-0.25 
(Supplementary Fig. 16a) was moder-
ately enriched in these conditions relative 
to other conditions, suggesting that occa-
sional excursions back into an A or B-like 
conformation occur.

In contrast to the findings under Prp2 
depletion, SiMCAn identified clade VII as 
particularly enriched upon the addition of 

recombinant Prp16 dominant-negative mutant ATPase (condi-
tions Prp16DN-WCE(WT) and Prp16DN-WCE(WT)), known 
to stall splicing in the post–first step C complex5,26,27 (Figs. 4 
and 5 and Supplementary Figs. 16b and 17). In this clade were 
static cluster 0.85-S and three dynamic clusters, all containing the 
0.85 FRET state (Fig. 6), which is distinct from the 0.75-S/0.65-S  
conformational state of clade VI enriched in early splicing  
intermediates (Supplementary Fig. 13). The dynamics of the 
clusters enriched at the Prp16DN stage indicated a preference  
for the 0.85 high-FRET state (Fig. 6b), which suggested that  
we were enriching for and identifying molecules just before 
catalysis or transiently sampling the first catalytic conforma-
tion before proceeding to the 0.85-S cluster characteristic  
of molecules that have undergone first-step splicing5. Although  
the ∆Prp2-WCE(3′SS) stall did show a delay in Bact complex  
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formation (Supplementary Note 3), these observations suggest 
that only faithful spliceosome assembly leads to juxtaposition  
of the 5′SS and BP in a stable fashion, thus favoring first-step 
catalysis independent of the identity of the 3′SS28.

A 3′SS mutant undocks late in spliceosome assembly
Finally, SiMCAn identified differences in smFRET behavior 
between the wild-type and 3′SS mutant substrates after incuba-
tion with wild-type WCE containing no blocks (WT-WCE(WT) 
and WT-WCE(3′SS), respectively), thus allowing for unabated 
assembly toward the final step of splicing. The 3′SS mutant is 
known to assemble in a complex that includes the splicing factors 
responsible for the second step of catalysis, yet the 3′SS mutant is 
not amenable to splicing (Supplementary Fig. 4). As both sub-
strates progressed through most of the splicing cycle, it is not sur-
prising that SiMCAn revealed a similar set of sampled pre-mRNA 
conformations (Fig. 5). However, over time the 3′SS adopted an 
increasingly dominant 0.05-S cluster (Fig. 5 and Supplementary 
Fig. 18), indicating a large separation of the 5′SS and BP not found 
in the Prp16DN-WCE(3′SS) data set. This 0.05-S state was thus 
stabilized to a much greater extent in the 3′SS mutant than in the 
wild-type substrate, supporting the appearance of a conformation 
in which the 5′SS and BP become greatly separated only after 
the first step of splicing when the mutated 3′SS was detected. 
Our data suggest that the 3′SS either is unable to dock into the 
catalytic core or is unable to remain docked in the catalytic core 
after the ATP-dependent action of Prp16. This deficiency in dock-
ing may be a result of second-step factors preventing docking 
into the second-step conformation29,30. Alternatively, this open 
conformation may be caused by Prp22, an ATPase known to be 
involved in proofreading mutant substrates during the second 
step of splicing (Supplementary Note 4)13,31. Taken as a whole, 
our SiMCAn analysis is consistent with the hypothesis that the 
lack of a proper 3′SS sequence marker may trigger proofreading 
against a substrate that is not kinetically competent for the second 
step of splicing by undocking from the active site.

DISCUSSION
We show that SiMCAn reveals unique dynamic properties  
associated with specific splicing-cycle intermediates that cannot be 
identified using classical smFRET analysis (Supplementary Figs. 5  
and 6). Because SiMCAn does not make assumptions about the 
heterogeneity or completeness of the underlying biochemical 
reactions, it allows one to identify consistent molecular behaviors 
in a model-free fashion (Supplementary Note 1). Through such 
unbiased and thorough analysis, we were able to assign dynamic 
FRET states to specific complexes, identify molecules transition-
ing between complexes and demonstrate that the 5′SS and BP 
undock completely after the first step of splicing when the spliceo-
some encounters a 3′SS mutation (Fig. 5). SiMCAn thus can use 
exploratory data sets collected from complex reaction pathways to 
generate testable hypotheses—for example, that the spliceosome 
exploits similar undocked intermediates to proofread substrates 
along the splicing cycle, providing checkpoints that trap subopti-
mal substrates not meeting the criteria for cycle progression.

SiMCAn was born out of the necessity to classify common 
kinetic behaviors over a broad range of experimental states. The 
construction of hierarchical trees from disparate sets of data is the 
basis of most phylogenetic inference, and the methods presented 

here are inspired from evolutionary analysis32. The clades identi-
fied by SiMCAn allowed us to define common subsets of relative 
dynamic behavior occurring at different biochemical blocks of the 
splicing cycle. Building on the phylogenetic analogy, the dynamic 
clades identified represent common kinetic pathways traversing 
the splicing cycle. We thus observed conserved pathways in the 
splicing cycle driven by a limited number of transitions.

A limitation of investigating complex systems, such as the  
spliceosome, is that it does not allow for the unambiguous  
definition of conformations from FRET states. In a simpler  
system, such as the P4–P6 subdomain of the Tetrahymena  
thermophila group I intron, docking and/or undocking of the 
GNRA tetraloop can be assigned to specific FRET values, which 
enables the development of an unambiguous kinetic model19.  
If combined with SiMCAn, emerging approaches involving  
multiple probes, such as coincidence analysis of colocalization 
single-molecule spectroscopy33, could resolve this ambiguity 
and facilitate the development of a complete kinetic model of  
the eukaryotic splicing cycle. Furthermore, as point detector–
mediated photon counting becomes more high-throughput,  
these methods should introduce a substantial improvement  
in time resolution and allow a detailed description of shot- 
noise-limited FRET efficiency distributions17.

In summary, our results demonstrate that SiMCAn is a powerful 
tool for the unbiased extraction of FRET states and kinetics from 
complex smFRET data sets. Beyond the identification of FRET 
states, SiMCAn helps distinguish molecules with similar FRET 
levels but differing rates of interconversion. With an additional 
layer of clustering based on the occupancy of behaviors across a 
systematic set of experimental conditions with known effects, the 
method enables the identification of common and distinct behav-
iors among large numbers of single molecules. Thus SiMCAn 
can help generate hypotheses that drive focused experiments 
on isolated pathway intermediates. We anticipate that SiMCAn  
will be a powerful analysis tool that can be applied to any single-
molecule data set, allowing for unprecedented in-depth analyses 
of the dynamics of complex biomolecular machines.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Synthesis of pre-mRNA substrates. The Ubc4 pre-mRNA  
substrates used in this study (Supplementary Table 3) were 
synthesized as previously described6. Briefly, the 135-nucleotide 
pre-mRNA was ligated from two fragments: a 59-nucleotide  
3′ segment with 5-amino-allyl-uridine at the +6 position relative  
to the BP adenosine, and a 76-nucleotide 5′ segment with  
5-amino-allyl-uridine at the −7 position relative to the 5′SS. 
In the 3′SS mutant, the guanines at positions 115 and 117 on  
the 3′ segment were replaced with cytosines. We coupled the  
5′ and 3′ fragments to Cy5 and Cy3 N-hydroxysuccinimidyl  
ester (GE Healthcare), respectively, by resuspending 4 nmol 
of RNA in 40 µl of 0.1 M sodium bicarbonate buffer, pH 9.0,  
and incubating it for 30 min at 60 °C with the proper dye pack 
dissolved in dimethyl sulfoxide. The conjugated fragments were 
ethanol precipitated and washed with 70% (vol/vol) ethanol  
to remove unconjugated dye. Unlabeled RNA was removed by 
purification on benzoylated naphthoylated DEAE–cellulose 
(Sigma) that was washed with 1 M NaCl containing 5% (vol/vol) 
ethanol. Fully labeled RNA fragments were eluted with 1.5 M 
NaCl containing 20% (vol/vol) ethanol and further precipitated 
to remove excess salt. Labeled fragments were combined with 
an equal molar amount of DNA splint (Supplementary Table 3)  
and ligated by incubation with RNA Ligase 1 (New England 
BioLabs) for 4 h at 37 °C as described6,16. Full-length, labeled 
Ubc4 was then purified on a denaturing 7 M urea, 15% (wt/vol) 
polyacrylamide gel. Incubation of the fluorophore-labeled Ubc4 
substrate with splicing buffer alone and no spliceosomal compo-
nents revealed a dominant high-FRET peak with a smaller low-
FRET population featuring very little zero FRET (Supplementary 
Fig. 19), as expected6,7.

Preparation of yeast whole-cell extract. Splicing active WCE 
was prepared from either yeast strain BJ2168 or a prp2-1 cef1-
TAP yeast strain (ATCC 201388: MATa his3∆1 leu2∆0 met15∆0 
ura3∆0) as previously described6,34. Briefly, cells were grown in 
yeast extract–peptone–dextrose medium to an OD600 of 1.6–2.0 
before they were harvested and washed in AGK buffer (10 mM 
HEPES-KOH, pH 7.9, 1.5 mM MgCl2, 200 mM KCl, 10% (vol/vol) 
glycerol, 0.5 mM DTT, 0.6 mM PMSF, and 1.5 mM benzamidine).  
A thick slurry of cells was dripped into liquid nitrogen to form 
small cell pellets that could be stored at −80 °C. The frozen  
pellets were disrupted by manual grinding with a mortar and 
pestle half-submerged in liquid nitrogen for 30 min. The resulting  
frozen powder was thawed in an ice bath and centrifuged at 
17,000 r.p.m. in a type-45 Ti Beckman rotor. The supernatant 
was then centrifuged at 37,000 r.p.m. in a Ti-70 rotor for 1 h. The 
clear middle layer was removed with a syringe and dialyzed for  
4 h against 20 mM HEPES-KOH, pH 7.9, 0.2 mM EDTA, 0.5 mM 
DTT, 50 mM KCl, 20% (vol/vol) glycerol, 0.1 mM PMSF, and  
0.25 mM benzamidine with one buffer exchange.

Accumulation of splicing complexes. Supplementary Table 1 
describes all experimental conditions by identifying the substrate 
and WCE used along with the complex formed. We confirmed 
all splicing products via in vitro splicing assays by incubating  
4 nM fluorescent Ubc4 in splicing buffer (8 mM HEPES-KOH, 
pH 7.0, 2 mM MgCl2, 0.08 mM EDTA, 60 mM Ki(PO4), 20 mM 
KCl, 8% (vol/vol) glycerol, 3% (wt/vol) PEG, 0.5 mM DTT) and 

40% (vol/vol) WCE at 25 °C for 40 min. Products were analyzed 
by separation on a 7 M urea, 15% (wt/vol) polyacrylamide gel and 
scanned on a Typhoon variable-mode imager (GE Healthcare; 
Supplementary Fig. 4). We performed ATP depletion by pre-
incubating WCE with 1 mM glucose at 25 °C for 10 min before 
incubating it with splicing buffer and substrate. Endogenous U6 
snRNA was depleted by pre-incubation of WCE with 300 nM D1 
oligodeoxynucleotide (Supplementary Table 3) in splicing buffer, 
50% (vol/vol) WCE, and 2 mM ATP at 33 °C for 30 min before 
incubation with substrate. We induced knockdown of endog-
enous Prp2 by heating prp2-1 cef1-TAP WCE to 37 °C for 40 min 
before incubating it with splicing buffer, ATP, and pre-mRNA 
substrate. Endogenous Prp16 was inactivated with 100 nmol  
of a Prp16 dominant-negative mutant (Prp16DN; K379A)  
added to the BJ2168 WCE for 10 min before incubation with splic-
ing buffer, 2mM ATP, and pre-mRNA substrate. On-slide splicing 
assays were performed in the same way as the in vitro splicing 
assays with the exception that all materials were combined before 
reaction mixtures were flowed onto a substrate-coated, PEG- 
passivated slide using established procedures5,6.

Single-molecule FRET. Single-molecule FRET was carried out 
in the same manner as previously described5,6. Using a prism-
based total internal reflection fluorescence microscope8,35,36, we 
collected data from single molecules incubated under the desired 
conditions (Supplementary Table 1). Data were collected from 
two to three fields of view for each time period of 0–8 min (early), 
18–23 min (middle), and 33–40 min (late) after the addition of 
WCE. The donor (Cy3) near the BP adenosine was excited with 
a 532-nm laser for 100 s, and then the Cy5 acceptor near the 5′SS 
was directly excited with a 635-nm laser for another 100 s. The 
resulting emission was recorded at 100-ms time resolution with 
a Princeton Instruments I-PentaMAX intensified CCD (charge-
coupled device) camera. Molecules selected for further analysis 
by SiMCAn were required to last longer than 3 s before photo
bleaching of Cy3, show anti-correlated changes in Cy3 and Cy5 
intensity, undergo single-step photobleaching, and still contain 
active Cy5 fluorophore at the time of their direct excitation. We 
calculated the FRET ratio by dividing the intensity of the accep-
tor emission by the total emission from both donor and acceptor. 
Each individual FRET trace was fitted with an individual HMM 
with up to ten states using vbFRET23 in Mathwork’s Matlab envi-
ronment, with no assumptions about the values or distributions; 
in principle, any HMM-fitted trajectories could be used (gener-
ated by vbFRET, HaMMy, QuB, etc.)7. Regardless of the HMM 
software used, a certain degree of uncertainty in the number of 
FRET states and transitions among those states will be present in 
the data because of the noise associated with smFRET analysis. 
However, improvement of HMM analysis techniques is not the 
focus of this paper.

SiMCAn. The HMM-idealized data were assigned to the closest 
of ten evenly spaced FRET states (0.05–0.95, with an increment of 
0.10 as our resolution limit). Traces of less than 3 s (30 frames) in 
length were discarded, and a TP matrix was constructed for each 
of the remaining molecule traces. Each TP matrix was then com-
bined with the vector describing the percentage of the trace that 
occupied each FRET state to create a FRET similarity matrix (FSM) 
such that FSM(i, j) = (TP(i – 1, j), P(n, j)), where i = 1 . . ., n + 1  
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and j = 1 . . ., n. The FSMs were divided into categories containing 
static traces and dynamic traces, with the dynamic traces identi-
fied and characterized by having at least one FRET transition 
between two FRET states. Static traces were identified automati-
cally on the basis of their unique signatures with just a single 
FRET value and were kept separate for the remaining analysis. 
Static molecules could arise as a result of fluorophores photo
bleaching before a transition took place. Alternatively, formation 
of a particular complex may lead to a very stable, unchanging 
conformation that results in a single (static) FRET state. The FSMs 
corresponding to dynamic traces were used as input for a hierar-
chical clustering analysis performed by Matlab (Supplementary 
Software) that calculates the distance between FSMs using the 
Euclidean (ordinary) distance. The resulting hierarchical tree was 
then used to identify clusters of traces with similar behavior as 
identified from their FSM. The tree was pruned at a height that 
resulted in 25 dynamic clusters and 10 static clusters as assigned 
by their FRET state. The height used to determine the clusters 
in the hierarchical tree was determined using an iterative meas-
urement of the intercluster distances and a modified k-means 
algorithm. The specific cutoff was chosen as the first point where 
randomly assigned traces had a higher intercluster distance than 
the hierarchical clustering, which provided the best option among 
several for determining an optimal cluster selection. The resulting 
clusters were analyzed and labeled according to their occupancy 
in the FRET states. All analysis and descriptions of the clusters  
were performed using Matlab (Supplementary Software).  
For each experimental condition, we calculated the fraction of 

molecules in each SiMCAn-identified cluster by dividing the 
number of molecules in that condition assigned to each cluster  
by the total number of molecules in that condition. We used  
the occupancy in all the clusters as a new similarity matrix to 
compute the distance between each SiMCAn cluster using 
Euclidean-distance measurement. Clades were generated via 
the iterative k-means approach used in SiMCAn, with the aim of 
generating groups of clusters whose occupancy patterns across 
conditions were most alike (as measured by Euclidean distance). 
A detailed description of the mathematical algorithm is provided 
in Supplementary Note 5.

Generation of the simulated data sets. Artificial HMMs  
containing the distinctions of interest were used to generate  
traces of 106 time-step length for each of four clusters. These 
traces were used to generate 1,500 subtraces with the starting 
points uniformly selected along the full trace and the length deter-
mined by a Poisson distribution with a λ of 100. The resulting 
traces were treated exactly like experimentally acquired data fit by 
vbFRET for analysis by SiMCAn. The simulation data are available 
at https://app.box.com/s/v64wet7ixlkr7cb96ky9ij5pzqjlxnj3.
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