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INTRODUCTION

T
he fundamental importance of RNA in a wide variety

of biological contexts is becoming increasingly appa-

rent. Since the discovery that RNA can catalyze

chemical reactions in addition to its ability to carry

genetic information,1,2 it has become clear that RNA

takes on a wide variety of roles in the cell and is involved in

all cellular processing of genetic information, from splicing
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to translation to modification, and particularly regulation,

via RNA interference in eukaryotes and riboswitches in bac-

teria (for review please see, e.g., Refs. 3–21). Understanding

how this central molecule of life is able to accomplish such a

variety of functions will necessarily involve understanding

RNA structure and dynamics at the atomistic level, a

challenge that can be addressed only using a combination

of experimental studies and molecular dynamics (MD)

simulations.22

When planning and conducting MD simulations, the

challenges that must be taken into account are conceptually

very similar to those associated with single molecule experi-

ments. One of the primary limitations of MD simulations is

the insufficient sampling, stemming from the 1 to 100þ ns

time scale of the technique. In single molecule experiments,

likewise, there is concern about collecting large enough data

sets to ensure that the conclusions drawn are generally valid,

rather than true only for a particular molecule. The solutions

to the sampling problem are also similar for in silico and in

vitro approache: increase the time window of interrogation

of a single molecule or perform short observations on many

molecules in parallel. In addition, by combining theoretical

and experimental approaches, each can help to synergisti-

cally explain and verify results from the other. Thus, MD

simulation and single molecule techniques are inherently

complementary, and direct cooperation between theorists

and experimentalists working on related issues will bene-

fit both groups and promote valuable, widely applicable

solutions.

Opinions about MD simulations range from a flat rejec-

tion of everything that is calculated to the indiscriminate

application of computational methods to problems that are

far beyond the applicability of the technique. Both extreme

views are equally unjustified. Modeling, as any other research

method, has its scope, limitations, and error margins. Limi-

tations are significant and need to be carefully evaluated

when planning simulations and interpreting the results.

Computers readily provide numbers and structures, but are

not responsible for the reliability of the results and their

interpretation. Unjustified application of simulations there-

fore provides data of limited value and can be misleading.

Wisely applied simulations, by contrast, can considerably

complement and aid in understanding of experiments and

provide qualified predictions. In fact, experiments often can

only be understood with substantial molecular modeling. In

general, qualitative applications of computational methods

are more appropriate than quantitative studies. This review

provides an overview of MD simulations of RNA, with

examples of successful applications and suggestions for

future use.

GENERAL CONSIDERATIONS
The first simulations on RNA were limited by the resources

available at the time. The force field parameters describing

RNA had not been sufficiently optimized, and the simulation

protocols before 1995 (particularly the treatment of long-

range electrostatic forces) were unable to provide stable tra-

jectories even on the 500 ps time scale due to a drastic accu-

mulation of errors. Another major problem was the scarcity

of crystal structures of RNA, and thus a lack of reliable high-

resolution structures from which to start MD simulations. In

the early 1990s, only a few tRNA crystal structures were avail-

able. By the mid-1990s, several more RNA structures had

been solved, but some turned out to have limited relevance.23

This limitation left early simulations at a distinct disadvant-

age, since the typically limited sampling of MD means that a

simulated structure may be unable to diverge substantially

from its starting structure. (Assuming a Boltzmann distribu-

tion and standard Arrhenius kinetics, 10-ns scale simulations

are only able to overcome free energy barriers that are on the

order of *5–6 kcal/mol.) Thus, a realistic assessment of dy-

namics from a simulation depends on a realistic and accurate

starting structure.

Some of the controversial results from the earliest RNA

simulations were likely due to inadequate or less relevant

starting structures.24,25 For example, several MD simulations

were based on the crystal structure of the minimal hammer-

head ribozyme,26 which was recently shown to be quite dif-

ferent from the active structure.27 Over the last 10 years RNA

crystallography has improved substantially. For example,

Doudna28 discusses the recent successful use of hexammines

to aid in phasing and the importance of chemical modifica-

tions such as 20-O-methyl, 20H, and vanadate in ‘‘trapping’’

various states of ribozyme cleavage reactions. There are now

almost 500 RNA crystal structures in the PDB,29 vastly

increasing the possibilities for both the variety and the size of

simulations. We have reached the point where even all-atom

simulations of the ribosome are becoming feasible,30,31 but

we must keep in mind that simulations are still limited by

the crystal structures they are based on, and that low resolu-

tion in loop regions or uncertainty regarding metal binding

can still contribute to error in simulations.

The force fields for simulating RNA have been refined and

stable simulation protocols for polyanionic RNA molecules

have been introduced, primarily the Particle-Mesh Ewald

(PME) treatment of the strong, long-range electrostatic

forces.32 A broad set of RNA applications has been tested

using the AMBER code and associated force field. This me-

thod matches quantum chemical data for stacking33 and base

pairing34 (including the complex non-Watson Crick interac-

tion patterns) and, perhaps more importantly, has provided
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long stable simulations of numerous complex RNA mole-

cules. We have tested the AMBER force field in a total of

*4 �s of RNA simulations (each 10–200 ns long) and so far

have observed rather satisfactory performance. To the best of

our knowledge, no other force field has been validated in

long stable simulations of complex folded RNA molecules.

By comparison, the CHARMM force field, when applied to

simple duplexes, showed accelerated opening (or breathing)

events of A-helical RNA base pairs that were not observed in

AMBER simulations or in imino proton exchange experi-

ments by 1H-NMR.35,36 This strong foundation, however,

does not imply that AMBER-based MD simulations are

entirely accurate, and it is always important that MD studies

are executed with careful consideration and discussion of

possible simulation artifacts as detailed here.

The computing power available for MD calculations has

increased dramatically in recent years, and strategies for dis-

tributed computing, such as Pande’s Folding@Home,37,38

allow computations that use tens of thousands of processors

in parallel to reach hundreds of microseconds of total simu-

lation time.38 Yet, even if future computers are fast enough to

allow in silico folding of RNAs of unknown structure, there is

no guarantee that the force field will find the correct global

minimum. Thus, MD applications will continue to primarily

provide analytical insights about known RNA structures and

their modest sequence and structural variants, with specific

in-depth insights into the complex roles of dynamic molecu-

lar interactions in nucleic acids. The combination of more

reliable starting structures, improved force fields, and in-

creased computational power make MD a very feasible and

promising technique to study the structure and dynamics of

RNA, especially when MD is used in conjunction with (single

molecule) experiments.

METHODS
The goal of MD simulations is to mimic the real-time dynamics of

single solvated biomolecules in order to elucidate atomic-resolution

details of their structural dynamics and eventually estimate the free

energies of specific conformations. Simulated RNA molecules are

immersed in a sufficiently large (extending at least 10 Å from the

RNA) box of water molecules and ions that is periodically extended

in all directions (periodic boundary condition). The molecules are

described by simple pair additive atomistic potentials (force fields)

that treat atoms as van der Waals spheres with partial, constant,

point charges localized at the individual atomic centers, linked by

harmonic springs mimicking covalent structure and supplemented

by simple torsion profiles.

The main limitations of MD simulations stem from: (i) the time-

scale of simulations (trajectories are typically 1–100þ ns) and (ii)

force field inaccuracies. The calculation of long-range electrostatics

has previously been described as a major limitation,39 but introduc-

tion of the PME treatment of electrostatics appears to remove all

major drawbacks in these calculations.32 It has been suggested that

PME can overstabilize simulated systems,40,41 but this has not yet

been clearly shown, and the problem should be rather marginal

compared to sampling and force field limitations.

Sampling Limitations
The short timescale and resulting limited conformational sampling

are often discussed, frequently with the conclusion that faster com-

puters would lead to better results. However, longer simulations

may also expose force field deficiencies that have cumulative effects

over time, which will become a significant problem once computers

can routinely produce microsecond-long trajectories. Additionally,

the timescale of real events is of course still much longer than

affordable simulation timescales. However, this limitation can

sometimes be overcome by running multiple simulations with

distinct starting structures or by using enhanced sampling MDmethods

(see Enhanced Sampling section). Furthermore, a simulated RNA con-

formation is typically not fully equilibrated as the simulation begins so

that the probability to capture structural changes is initially higher than

for real systems, facilitating sampling.

Force Field Approximations
Force field deficiencies are often not discussed, although they are

potentially more serious than sampling limitations. The force field

is (remain in the future for a variety of reasons) so simple that it

cannot capture accurately all force contributions simultaneously,

especially when using multipurpose biomolecular force fields. One

can tune the force field to reproduce experimental data for one aspect

of the simulated system, but this tends to increase errors elsewhere.

For example, polar hydrogens have small van der Waals radii when

interacting with polar groups but quite large ones when they are in

contact with nonpolar groups, and so the fixed radii in a simulation

must be a compromise.42

Force field deviations from reality are not random. For the

AMBER force field, rigorous comparison with quantum mechanical

electronic structure calculations has revealed that base stacking and

hydrogen bonding parameters are described surprisingly well,

including those of base pairs that utilize the 20-OH group.33,34

AMBER uses atomic charges that were derived to reproduce the

electrostatic field around the monomers, which turns out to

describe the molecular interactions of nucleobases quite well. The

van der Waals term derived from Lennard–Jones potentials is also

well balanced. The sugar–phosphate backbone, however, is consid-

erably more difficult to deal with for two reasons: (i) it is flexible

and thus the constant point charges do not reproduce the electro-

static potential equally well for distinct backbone conformational

classes43,44 and; (ii) the phosphodiester represents a highly polariz-

able anion, with a complicated electronic structure that changes

with solvation. These contributions are neglected by the force field.

Despite these problems, the behavior of the backbone in RNA simu-

lations has been quite realistic (see, for example, Refs. 45 and 46).

A significant deficiency of the force field is the description of

divalent cations. The Mg2þ. . .N7(guanine) interaction energy term is

*210 kcal/mol, while the force field accounts for only *150 kcal/

mol. This discrepancy is due to an interaction energy of *70 kcal/

mol contributed by nonadditive effects (neglected by the purely

additive force field) in the first ligand shell of Mg2þ, mainly inter-
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ligand polarization repulsion.47 In reality, the first-shell water mole-

cules are heavily polarized by the ion, and their properties are very

different from those of bulk water molecules (for example, they

have the capacity to form strong, low-barrier hydrogen bonds with

large bathochromic infrared absorption shifts, where the hydrogen

can easily jump between heteroatoms or may even be delocalized48).

Additionally, simulations are unable to provide a well-equilibrated

distribution for multivalent ions. Present force fields are biased

towards direct (inner-shell) binding of Mg2þ to solute and require

careful initial equilibration, since divalent cations consequently

sample very poorly.49 Although the overall artifacts in simulations

that include divalents are reduced through partial error compensa-

tion, divalent ions should be included in simulations only when

absolutely necessary. It is not necessary to include divalents in simu-

lations even when complex tertiary structured RNAs require them

for folding in experiments, since the timescale of MD is typically

too short to result in unfolding due to the absence of divalent

ions.50

The description of anions is also quite challenging, since they

have electrons localized far from their atomic centers and are typi-

cally highly polarizable. A comprehensive description would require

the use of a polarizable force field.51 In addition, high-salt simu-

lations that include anions can cause new artifacts, such as the

formation of KCl clusters when using standard AMBER force field

parameters.52,53

Force field errors are considerably smaller for monovalent cati-

ons, which also sample quite well in 25þ ns simulations.45,54–56

Analysis of the residence times and locations of monovalent cations

can confidently predict binding sites with occupancies of >50%,

though studies of weaker binding sites, such as those in B-DNA

minor grooves, are less straightforward. Taking all these observa-

tions into consideration, the common approach of running simula-

tions containing only neutralizing monovalent cations (*0.2M) is

well justified.

Currently, MD simulations are not capable of predicting three-

dimensional structures of RNA molecules on their own but rather

require meaningful starting geometries, preferably high-resolution

X-ray crystal structures. If major structural rearrangements occur

during the equilibration or the initial stages of a simulation (which

is commonly observed when starting from modeled and some

NMR-derived structures) they almost always indicate inaccuracies

of the starting conformations and not of the force field.57

When assessing the outcome of simulations, it is important to

consider all of the aforementioned limitations. The force field may

be sufficient for some applications and fail for others. It is prudent

to study scientific questions where stacking and base pairing are

important and complementary experimental data are available for

reference, as such problems are more likely to be properly addressed

by contemporary MD simulations. It may even happen that, in a

given simulation, different aspects of the simulated molecule(s) are

described at different levels of accuracy. For example, simulations

have been found to realistically reflect the overall dynamics of gua-

nine quadruplex (G-DNA) stems and the overall electrostatic role of

cations in their stabilization, yet the direct, local interactions of the

G-quartets with cations are imperfectly described.58,59 In the latter

studies, minor distortions of quartet geometries were observed and

the radius of the cations appeared oversized (see Figure 1). The

force field also fails to properly describe some properties of the flexi-

ble single-stranded connecting loops of the G-DNA (i.e., the pre-

dicted global minimum does not conform to experiment), and it

falls short of predicting the experimentally observed cation binding

sites at the stem–loop junctions.58 These observations should be

taken into consideration for RNA simulations as well, where it is

likely that simulations of, for example, the structural dynamics of

hairpin loops or bulged bases are more susceptible to force field

imbalances than are simulations of compact stem structures.

Enhanced Sampling
Explicit solvent MD simulations represent the gold standard in con-

temporary modeling of the structural dynamics of nucleic acids in

the context of their aqueous environment, which often plays impor-

tant structural and functional roles. These studies can be further

complemented by enhanced sampling techniques. However, such

enhancement necessarily introduces additional, quite substantial,

approximations. Locally Enhanced Sampling (LES), replica exchange

MD (REMD) and targeted MD techniques aim to address the limited

sampling problem.

LES splits a selected small part of the molecule (e.g., a loop) into

N (3–5) copies that move independently. Although the method does

not use a proper Boltzmann distribution, the height of conforma-

tional free energy barriers between distinct substates is reduced

roughly by 1/N.60 We have successfully applied LES to studies of the

single-stranded loops of G-DNA.58 During our studies of the hepati-

tis delta virus (HDV) ribozyme, however, LES applied to loop 3 and

the catalytically involved trefoil turn motif did not converge.61 LES

has also been applied to different regions of RNA Kink-turns,

although the results were clearly dependent on the number of simu-

lated copies.62

FIGURE 1 Limited accuracy of a nonpolarizable force field for

cation–solute interactions. The dependence of the interaction

energy between O6(G) and Kþ in a G-DNA like geometry. Black,

reference QM data; blue and red, standard CHARMM (radius

1.76375 A and well depth 0.087 kcal/mol�1) and AMBER (radius

2.6580 A and well depth 0.000328 kcal/mol�1) parameters, respec-

tively. The cation in this particular interaction appears too large

while the binding energy is clearly underestimated. Note that the

discrepancy originates from the lack of polarization in the force field

and cannot be fully overcome within the framework of pair additive

(nonpolarizable) potentials. For example, reduction of the cation

radius could worsen the calculated ion solvation energy.
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In REMD, several noninteracting copies (replicas) are simu-

lated independently at different temperatures (e.g., 300–500 K). In

contrast to LES, each replica is a copy of the whole system.

Conformations of the individual simulated systems are exchanged

during simulations using Metropolis-like algorithms that consider

the probability of sampling each conformation at the alternate tem-

perature.38,63

In targeted MD, force restraints drive the simulated molecule

swiftly from a starting to a final conformation. This approach ac-

celerates the simulation timescale, but also introduces a major

sampling bias along the route.31 Finally, elevating the temperature

(to, e.g., 400 K instead of 300 K) is another crude way to destabilize

the simulated molecules and overcome conformational free energy

barriers. However, raising the temperature will not produce sam-

pling equivalent to that of a prolonged simulation, and since the

pair additive potential is tuned for room temperature simulations,

adverse effects such as empty cavities in the bulk solvent may occur

at higher temperatures.

Continuum Solvent Methods
The costly explicit solvent can be replaced by a continuum solvent

using Poisson Boltzmann (PB) or more approximate Generalized

Born (GB) approaches, along with a Surface Area (SA) term. A fun-

damental advantage of continuum solvent methods is the assess-

ment of hydration and free energies that cannot be derived from

explicit solvent models. However, these approaches are based on

additional substantial approximations, require parameterization,

and their results are very sensitive to the atomic radii used to define

the solute cavity. The GB/SA approach can be used to run MD sim-

ulations, but there is limited experience with this approach on RNA,

and the range of its applicability has yet to be established. GB/SA

dynamics show faster sampling because of the absence of friction

between solute and solvent, but the method may significantly over-

stabilize folded structures. Continuum solvent methods can also

be applied to systematic molecular mechanical conformational

searches (as done recently for kink-turns64). It should be noted that

the simplest electrostatic models in vacuo or based on a distance

dependent permittivity provide an incorrect (reversed) order of sta-

bility for different conformations of a given molecule, while GB/SA

is thought to perform better.65

A more accurate alternative is to perform standard explicit

solvent MD simulations and subsequently apply the continuum sol-

vent method, by stripping the explicit solvent and averaging free

energies over a sufficient number of snapshots (referred to as MM-

GBSA or MM-PBSA methods). Since free energy is a state function,

one can evaluate free energy differences between distinct substates

without simulating the transition. We found this MM-PBSA

method to be very instructive in comparing different substates of

guanine quadruplex DNA,66 while it failed to predict the absolute

values of DAPI binding to B-DNA. In the latter case, the computed

results were *0 or �20 kcal/mol, depending on whether the solute

entropy was considered, while the experimental values are �10 to

�12 kcal.67 This study also demonstrated that careful parameteriza-

tion with the aid of quantum chemical calculations is required to

obtain a meaningful force field for a drug, while ad hoc force fields

(based on analogy with existing atom types or obtained via auto-

mated parameterization procedures) can be quite inaccurate, espe-

cially regarding torsion profiles between distinct ligand segments.

Unfortunately, few MD studies of nucleic acid–drug complexes pay

sufficiently close attention to the drug force field parameterization.

We have recently applied the MM-GBSA and MM-PBSA

methods to estimate binding energies of ribosomal packing interac-

tions,68 RNA kissing complexes (unpublished), and to monitor the

free energy changes along Kink-turn simulation trajectories.64 The

calculations, however, were not sufficiently accurate to achieve con-

clusive results. Zacharias applied such calculations quite successfully

to investigate the context dependence of the structure of G/A base

pairs in internal RNA loops, though large error margins in the cal-

culations were reported.69

Among the other applications of continuum solvent methods,

PB theory was used to roughly estimate binding affinities for several

antibiotics to the ribosome,70 and Brooks and coworkers used PB

methods to qualitatively look at the assembly of the ribosome. As

expected, the results are quite sensitive to parameters such as dielec-

tric constant, dielectric boundaries, and partial charges.71 GB/SA

dynamics were also applied to assess the dynamic behavior of the

16S rRNA central domain in the presence and absence of the ribo-

somal protein S15.72 Finally, Barthel and Zacharias found qualita-

tive (but not quantitative) correspondence between potential-of-

mean-force explicit solvent free energy calculation and implicit sol-

vent GB model conformational transitions of single nucleotide RNA

bulges.73

In summary, continuum solvent approaches can provide useful

insights into the molecular interactions but one should keep in

mind that the accuracy of such calculations is rather modest.

REPRESENTATIVE MD SIMULATIONS OF
RNA AND THEIR RESULTS
In the following sections we describe recent representative

simulations of single- and double-stranded RNAs, catalytic

RNA molecules, small molecules binding to RNA, and increas-

ingly large RNA–protein complexes. Some studies represent a

synergistic interaction between simulation and experiment.

While we cannot possibly discuss every publication describing

RNA MD simulations (of which there are now several hun-

dred), these examples give a sense of the variety in systems and

techniques, and the vast scope of information available from

MD simulations.

Structured RNA Molecules, Isostericity,

Long-Residency Waters, and Ion Binding

Much work has been done to model the behavior of various

configurations of single-74 and double-stranded75,76 RNA

molecules, including simulations focusing on the flexibility of

the RNA,35,49,77–81 and the effects that noncanonical base

pairs54,68,69,82–84 and modifications85–90 have on RNA struc-

ture and dynamics. The stability and dynamics of various

RNA structures have been studied, including bulges73 and

stem-loop structures,87,90–98 which are often used as model

systems to test enhanced MD methods,99,100 as well as more

complex structures such as entire tRNA molecules.101 Specific
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RNA motifs observed in the ribosome such as kink

turns,50,62,64,102 the sarcin-ricin loop,103 and loop E54,104–106

have been studied separately, assuming that the modular orga-

nization of complex RNA molecules makes an isolated module

a good model. Additionally, MD has been used to investigate

RNA–RNA interactions, such as HIV-1 dimerization,57,107–112

as well as the interaction of RNA with solvent and

ions.45,46,54,57,64,84,104,105,113,114 MD simulation is even being

used to study the diffusion and electrophoretic mobility of

single-stranded RNA115,116 and the folding of a small RNA

hairpin.37

tRNA has been studied using MD techniques for more

than 20 years. It was the first RNA molecule to have an X-ray

structure and consequently was the first RNA molecule to be

studied computationally.117 The MD techniques available for

this first simulation of tRNAPhe were very limited, with no

explicit treatment of solvent, counterions, or even the hydro-

gen atoms of the RNA molecule, and a poor treatment of

electrostatics. Thus, many tertiary interactions seen in the

crystal structure were lost during the simulation. Neverthe-

less, the simulation maintained important features of the sec-

ondary structure, and represented a first step toward using

MD techniques to study the motions of RNA molecules.

More recent studies have demonstrated stable simulations of

fully neutralized and solvated tRNA molecules101 (see Figure

2), and have continued to use tRNA as a model system for

MD simulations on large structured RNA molecules.118

Loop E of 5S rRNA is a unique RNA motif that consists of

seven consecutive non-Watson–Crick base pairs and binds to

the L25 protein in the E. coli ribosome (see Figure 3). MD

simulations, along with phylogenetic analyses and isostericity

considerations, were used to predict the structure of spinach

chloroplast loop E, based on the structure of loop E from E.

coli.54 The sequences have only 60% identity, but simulations

predicted a nearly identical three-dimensional structure,

since changes to the non-Watson–Crick base pairs (including

four G-to-A substitutions) preserved the overall shape and

unique pockets of negative electrostatic potential. This pre-

diction was confirmed by solution NMR experiments.123 MD

simulations of the loop E motif also showed long residency

water molecules bound to specific hydration sites in the RNA

molecule for up to 5 ns,54 much longer than the 50–500 ps

water binding times typically observed in nucleic acid simula-

tions. Some static long residency water molecules remain

bound even longer (up to 25 ns, the entire simulation) in the

loop E–L25 protein complex, suggesting that specific hydra-

tion sites are probably important in structural stabilization of

RNA–protein interactions in the ribosome.122 MD simulation

is one of the only methods able to probe detailed solvent

dynamics and identify specific long-residency hydration sites.

An entirely different, dynamical long-residency hydration

site was identified in ribosomal Kink-turns,50,64 where it par-

ticipates in the A-minor interaction mediating the tertiary

contact between the C and NC stems of these recurrent struc-

tural motifs. This hydration site provides an unprecedented

flexibility to Kink-turns, allowing them to act as unique mo-

lecular elbows during, for example, the elongation cycle.

FIGURE 2 Stability of a 500 ps simulation of a fully neutralized

and solvated tRNA molecule. (A) Yeast tRNAAsp secondary struc-

ture. (B) Stereo view of snapshots of the tRNA backbone, taken at

20 ps intervals. (C) Time course of RMS deviations from the start-

ing structure. Reproduced with permission from Auffinger, P.;

Louise-May, S.; Westhof, E. Biophys J 1999, 76, 50–64, �C Biophysi-

cal Society.
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Such dynamics of Kink-turns have been implicated in large

scale motions in the ribosome during protein synthesis (see

Figure 4).50,64,102

Complex RNA folds are also associated with major cation

binding sites that are not typically found around standard A-

form RNA helices. For example, the loop E motif and RNA

kissing complexes form unique ion binding pockets that are

continuously occupied by 2–3 monovalent cations in simula-

tions.54,57,104,105 Despite this high occupancy, the kissing

complex ions are delocalized and smoothly exchange with

bulk solvent (see Figure 5). Such dynamic monovalent ion

binding pockets are unlikely to be detected in X-ray diffrac-

tion experiments due to dynamical disorder.

Finally, with recent advances in distributed computing,

MD simulations can be used to examine not only dynamics

in a defined fold, but also the folding of RNA molecules into

known structures. Pande and coworkers have developed a

Folding@Home distributed computing network, which approx-

imates the computational power of a 150,000 CPU cluster,

allowing the cumulative simulation of hundreds of microsec-

onds of explicit solvent MD on small RNA molecules. A recent

study investigating the role of solvent molecules in the folding

of a 12-nucleotide RNA hairpin (see Figure 6) found an extrap-

olated folding time of 8.8 �s that matches experimental val-

ues.37 Additionally, a comparison of this study with a previous

study using implicit solvent showed that water-mediated inter-

actions were important in hydrophobic collapse of the RNA

and in mediating long-range nucleation events, suggesting that

water molecules, more so than counterions, play a crucial role

in RNA folding.

Catalytic RNAs

MD simulations have been applied to ribozymes—small RNA

molecules that catalyze chemical reactions. While an accurate

view of the chemistry itself requires quantum mechanical cal-

culations, standard MD techniques can shed light on molecu-

lar interactions that affect the structure and dynamics globally

as well as locally at the active sites of ribozymes. The hepatitis

delta virus (HDV),45,61,126 hairpin,46,127 and hammerhead

ribozymes128,129 have all been studied using MD.

The HDV ribozyme catalyzes the self-cleavage of a specific

phosphodiester bond by a transesterification reaction. This

activity requires the presence of the C75 nucleotide, which is

in close proximity to the active site and cannot be mutated

without decreasing activity by more than 100-fold, suggest-

ing its direct involvement in chemistry. The exact role of C75

remains unclear, however, with biochemical and structural

evidence supporting both general acid and general base

FIGURE 3 Structural and dynamic signatures of 5S ribosomal (r)RNA loop E. (A) Base pairing

pattern (using classification from Ref. 119) of (left) the bacterial Loop E X-ray structure120 and

(right) the spinach chloroplast Loop E architecture predicted from isostericity rules121 and MD

simulations.54 The mutations from one sequence to the other are highlighted by red boxes. (B) MD

simulations of Helix IV Loop E 5S rRNA in complex with ribosomal protein L25 reveal unique

hydration sites with single water molecules bound throughout 25 ns trajectories.122 (C) The deep

major groove of Loop E forms a unique pocket of negative electrostatic potential heavily occupied

by monovalent cations (green balls).54 In summary, MD characterizes Loop E as a rigid RNA seg-

ment with unique shape and prominent ion-binding properties.
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models.130–135 MD simulations of pre- and post-cleavage

HDV ribozyme constructs show hydrogen bonding patterns

consistent with a general base mechanism.126 An unproto-

nated C75 transiently forms a hydrogen bond necessary for

general base activity, while a protonated C75 does not form

the hydrogen bond required in the general acid mechanism.

Thus, assuming that the precursor X-ray crystal structure is

sufficiently close to the transition state, the results from MD

simulations suggest that C75 acts as the general base rather

than the general acid in catalysis (see Figure 7).

The hairpin ribozyme also catalyzes self-cleavage via a

transesterification reaction where the details of the catalytic

FIGURE 4 V-shaped Kink-turns (K-turns) are among the most recurrent RNA motifs.124 MD

simulations predict (top) that K-turns are uniquely flexible elbow-like RNA building blocks, where

subtle local conformational changes in the kink area propagate as large scale motions towards the

attached helical stems.102 The local dynamics associated with K-turn flexibility are due to dynamical

insertion of long-residency waters between the C and A nucleotides of the A-minor type I interaction

between the two helical arms (middle).50 Large-scale elbow-like dynamics are observed in a simula-

tion of the Helix 42–44 RNA portion of the large ribosomal subunit upon dynamical water insertion

into the A-minor interaction in the universally conserved K-turn 42 of Helix 42 (bottom).64 The MD

results appear to agree with cryo-EM data that show large-scale dynamics of this rRNA segment (the

RNA part of the L7/L12 stalk) during the elongation cycle.125 Reproduced with permission from

Razga, F.; Zacharias, M.; Reblova, K.; Koca, J.; Sponer, J. Structure 2006, 14, 825–835, �C Cell Press.
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mechanism remain unclear. Our recent study combined MD

and single molecule fluorescence techniques to explore the

role of water molecules in the catalytic core of the hairpin

ribozyme.46 When comparing the wild-type ribozyme to sev-

eral mutants, a linear relationship was observed between the

number of hydrogen bonds lost in the MD simulations and

the loss of docking free energy calculated from single mole-

cule fluorescence data, revealing a quantitative agreement

between simulation and experiment. Analysis of the MD tra-

jectories showed that a network of hydrogen bonds in the

catalytic core of the ribozyme involves several long-residency,

trapped water molecules. These water molecules are in a

position where they could plausibly be involved in reaction

chemistry (see Figure 8), suggesting that interactions with

solvent are important not only for structure, flexibility, and

folding of RNA molecules as described earlier, but also

potentially for catalytic activity. These observations under-

score that an analysis of specific hydration sites should

probably be done for all explicit solvent MD simulations of

RNA.

RNA Binding to Small Molecules

Understanding how RNA interacts with small molecules is

crucial in drug design, where small molecules are optimized

to bind a target RNA, and in characterizing natural and

in vitro selected RNA riboswitches (aptamers) that bind

specific small molecules. Obtaining a high-quality force field

for small molecules can be difficult, since specialized parame-

terization based on quantum chemical data is necessary

unless the ligand is rigid.67 Nevertheless, these types of MD

simulations can elucidate details of small molecule binding

to RNA, and can provide information, often missing from

other techniques, on the role(s) of dynamics and solvent

FIGURE 5 The central pocket of the HIV-1 DIS RNA kissing

complex is permanently occupied by 2–3 delocalized monovalent

cations (green), smoothly exchanging with bulk solvent on a time-

scale of a few nanoseconds.57

FIGURE 6 An example trajectory showing diverse conforma-

tional sampling in the folding of a small RNA hairpin. Naþ ions are

shown in green, blue and red arrows indicate native and non-native

base pairing. The black arrow in the last frame shows a hydrated ion

bound to a site also seen in simulations of the native structure.

Reproduced with permission from Sorin, E. J.; Rhee, Y. M.; Pande,

V. S. Biophys J 2005, 88, 2516–2524, �C Biophysical Society.
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molecules in these interactions. Several studies have exam-

ined the binding of antibiotics to the hammerhead ribo-

zyme137 and to various sites in the ribosome,53,138 while

others have examined small molecule–RNA interactions such

as pyrene binding to RNA duplexes139 and ligands such as

FMN140 binding to their RNA aptamers.

The interaction between aminoglycoside antibiotics and

the A-site of the ribosome has been well studied as a model

system for small molecule binding to RNA, with a wealth of

available crystal structures and biochemical data. A recent

MD study53 on a paromomycin–A-site complex analyzed the

hydrogen bonding network connecting the antibiotic to the

RNA and verified that the conserved neamine portion of

paromomycin was most stably bound to the RNA, with both

more numerous and longer-lived hydrogen bonds than are

established by rings III and IV of paromomycin. An analysis

FIGURE 7 MD simulations of pre- and post-cleavage HDV ribozyme constructs showing hydro-

gen bonding patterns consistent with a general base mechanism. (A) Sequence and secondary struc-

ture of the simulated genomic HDV ribozyme with structural elements color-coded. The product

form lacks U-1. The open arrow indicates the cleavage site. (B) Overlap of the crystal structures of

the precursor134 (color-coded as in A) and product136 (silver) with key nucleotides indicated. Bot-

tom panels: Overlay of representative averaged structures of the catalytic pocket from precursor

simulations (color-coded as in A; cyan spheres, Naþ ions; broken lines, hydrogen bonds and inner-

sphere ion contacts) with the precursor crystal structure (gray; yellow sphere, crystallographically

resolved Mg ion). (C) Simulation with an unprotonated C75, where the U-1(O20)–C75(N3) hydro-
gen bond necessary for general base activity forms. (D) Simulation with a protonated C75, where

the C75Hþ(N3)–G1(O50) hydrogen bond necessary for general acid activity does not form. Repro-

duced with permission from Krasovska, M. V.; Sefcikova, J.; Spackova, N.; Sponer, J.; Walter, N. G.

J Mol Biol 2005, 351, 731–748, �C Academic Press.
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FIGURE 8 Possible catalytic role of intracavity water in the hairpin ribozyme. (a) The initial active

site geometry is that of the crystal structure (gray), but over the course of the MD simulations, the

20OH shifts from bulk solvent to the site of chemistry and forms a hydrogen bond with the asterisked

water molecule (color). (b) The electrostatic potential map shows a minimum of �51 kT/e near the

asterisked water molecule. Reproduced with permission from Rhodes, M.M., Reblova, K., Sponer, J.,

Walter, N.G. Proc Natl Acad Sci USA 103, 2006, 13381–13385, �C National Academy of Sciences.

FIGURE 9 (A) Experimental and calculated hydration sites in the binding of paromomycin to the

rRNA A-site. Red sites are found in both the crystal structure and the simulation, while gray sites are

found only in the simulation. Sites are numbered according to the peak height of the calculated den-

sity, with 1 as the highest peak. (B) Stereo view of the experimental hydration sites (red) and the clos-

est corresponding sites from the simulation (gray). Reproduced with permission from Vaiana, A. C.;

Westhof, E.; Auffinger, P. Biochimie 2006, 88, 1061–1073, �C Editions Scientifiques Elsevier.
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of hydration patterns reproduced crystallographic water

binding sites and suggested additional long-residency sites

that are thought to play a key role in mediating antibiotic–

RNA interactions (see Figure 9).

RNA–Protein Complexes

RNA–protein interactions are ubiquitous and play a key role

in cellular regulation. MD simulations of RNA–protein inter-

actions have dramatically increased in recent years, especially

since high-resolution crystal structures of the ribosome

became available.141 The large variety in RNA–protein simu-

lations now includes proteins binding RNA fragments,142–147

HIV RNA–protein interactions,148–151 RNase–RNA interac-

tions,144 various ribosomal protein–ribosomal RNA interac-

tions,72,122,152,153 simulations of peptide bond formation,154

coarse-grained155 and all-atom30,31 simulations of the com-

plete ribosome, and even an all-atom simulation of the entire

satellite tobacco mosaic virus.156 One protein–RNA interac-

tion that has been studied in great detail using MD simula-

tions is the U1A–RNA complex,157–164 discussed later.

The U1A protein, part of the U1 small nuclear ribonu-

cleoprotein (snRNP) complex, is a well-studied RNA-binding

protein that contains RNA recognition motifs (RRMs) and

binds to both a hairpin in U1 RNA and its own 30-UTR with

picomolar affinities. Such U1A–RNA complexes were among

the first protein–RNA interactions to be studied using MD

techniques, and simulations of U1A–RNA complexes con-

FIGURE 10 Structures from MD simulations investigating the role of conserved aromatic amino

acids in U1A–RNA binding. These simulations provide a model to explain the stabilization of a phe-

nylalanine to alanine mutant protein by a modified base (A-4CPh). This study predicts an extended

conformation for the modified base when bound to the WT protein, and a folded conformation

when bound to the mutant protein. (A) WT protein and WT RNA show stacking. (B) WT protein

with a folded modified base interrupts stacking. (C) WT protein with an extended modified base

preserves stacking. (D) Mutant protein with a folded modified RNA preserves stacking. (E) Mutant

protein with an extended modified base interrupts stacking. Reproduced with permission from

Zhao, Y.; Kormos, B. L.; Beveridge, D. L.; Baranger, A. M. Biopolymers 2006, 81, 256–269, �C Wiley

Interscience.
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tinue to enrich understanding of RNA binding proteins.

Initial studies of the U1A protein bound to either RNA bind-

ing site158 were consistent with experimental data, showing

stable hydrogen bonding between the protein and a loop con-

tained in both RNAs, while the limited flexibility of the RNA–

protein interface agreed with experimental thermodynamic

data. This agreement established the validity of using MD to

study protein–RNA complexes. Since then, this technique

has been used alongside experiment to probe the U1A–RNA

interaction in much greater detail, with recent studies focus-

ing on the roles of specific residues. One simulation, for

example, showed substantial variation in the time three

lysine residues spend near the RNA backbone,163 explaining

differences in their experimentally observed effects on com-

plex stability. A second study, probing the effects of compen-

satory mutations in RNA and protein residues,164 used free

energy and hydrogen bonding analyses to show that two

induced fit processes affect binding. This approach explained

experimental affinity data on several mutants (see Figure 10),

providing information important for future rational design

of RNA–protein interactions. Additionally, recent cross-

correlation analysis of a U1A–RNA MD simulation162 was

consistent with experimentally observed cooperativity and a

statistical covariance analysis, and also made predictions

about the roles of individual residues that can be further

tested experimentally.

The range of RNA–protein complexes accessible to MD

simulations is continually increasing, and now even all-atom

simulations of the ribosome are becoming possible. Sanbon-

matsu has used targeted MD techniques on the entire ribo-

some31 to investigate the process of message decoding, where

the tRNA molecule moves from the ‘‘A/T’’ to the ‘‘A/A’’ site in

response to a match between mRNA codon and tRNA antico-

don. While targeted MD simulations represent unrealistic

sampling, they do suggest possible pathways between an initial

and final structure than can be tested experimentally. The ribo-

some study suggested that highly conserved residues in the A

loop and Helix 89 interact with the tRNA molecule as it moves

to the A/A state (see Figure 11). This observation generally

agrees with biochemical data, providing evidence that MD

simulations on large systems can aid in understanding the bio-

logical function of very complex RNA–protein complexes.

FIGURE 11 Four stages of accommodation during tRNA movement from the A/T to the A/A

site in a targeted all-atom MD simulation. (a) tRNA interaction regions colored by accommodation

stage. (b) Time evolution of parameters describing tRNA deformation. (c) Snapshots from each

stage of accommodation. Reproduced with permission from Sanbonmatsu, K. Y.; Joseph, S.; Tung,

C. S. Proc Natl Acad Sci USA 2005, 102, 15854–15859, �C National Academy of Sciences.
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SUMMARY, CONCLUSIONS, OUTLOOK
MD simulations of RNA have reached a point where they can

be used in a wide variety of systems to complement experi-

ment and verify or explain experimental results. There are a

number of limitations in the use and interpretation of simu-

lation data, including the short time scale and force field

inaccuracies of MD simulations. However, the timescales of

experiment and simulation are getting closer, with experi-

ments able to access faster and faster dynamics and with

more computational power leading to longer simulations.

The future progress of MD simulations will critically depend

on further tuning of the force fields (including development

of polarization potentials), development of better methods

to estimate free energies (in order to directly link molecular

structures and free energies), and integration of molecular

mechanics with quantum mechanical treatments (in order to

deal with enzymatic reactions). All three tasks are formida-

ble, but will allow MD simulations to address an even wider

variety of biologically relevant questions in the future. The

gap between theory and experiment is closing, and it is

becoming clear that computational methods and particularly

single molecule experiments are often highly complementary

and synergistic. Collaborations between theorists and experi-

mentalists can therefore be very productive and mutually

beneficial. Increased cooperation, facilitated by learning each

other’s scientific language, will greatly aid in understanding

the structure–function relationships of diverse and complex

RNA molecules in our newly discovered post-genomic RNA

World. This review shares a snapshot of the current state-of-

the-art and hopes to inspire increased, yet prudent, use of

MD tools in the ever-expanding RNA field.

We thank Jana Sefcikova for critical reading of the manuscript and

Martin Zacharias for helpful discussion.
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