Supplementary material: ## Single VS ribozyme molecules reveal dynamic and hierarchical folding toward catalysis Miguel J. B. Pereira¹, Evgenia N. Nikolova^{1,2}, Shawna L. Hiley³, Dominic Jaikaran³, Richard A. Collins³, and Nils G. Walter^{1,*} ¹Department of Chemistry, Single Molecule Analysis Group, 930 N. University Ave., University of Michigan, Ann Arbor, MI 48109-1055, USA ²Chemical Biology Doctoral Program, 930 N. University Ave., University of Michigan, Ann Arbor, MI 48109-1055, USA ³Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada ^{*}Corresponding author. Department of Chemistry, Single Molecule Analysis Group, 930 N. University Ave., University of Michigan, Ann Arbor, MI 48109-1055, USA. E-mail address: nwalter@umich.edu. **Figure S1:** Raw fluorescence and FRET signals of a misfolded wild-type VS ribozyme molecule; the catalytically competent H state of FRET ≈ 0.76 is never occupied. 10% of all WT time traces show this behavior, at least partially explaining the typically $\sim 30\%$ of inactive ribozyme in our ensemble cleavage assays (Fig. 1c).