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Synonyms

HMM; Markov model

Definition

A hidden Markov model (HMM) is a probabilistic

model in which the system being modeled is assumed

to be aMarkov process with unobserved (hidden) states.

Introduction

The development of ▶ single-molecule spectroscopy

has allowed for the investigation of a variety of bio-

logical questions previously inaccessible by ensemble

techniques. The strength of single-molecule tools

comes from the high-resolution data extracted from

such experiments. Proper interpretation of these

data requires efficient, unbiased analysis routines that

are able to distinguish relevant signals from the

intrinsically noisy measurements. The hidden Markov

model, a statistical algorithm initially developed for

speech recognition, has been adapted for the analysis

of a variety of single-molecule signals. In this article,

we will give a general introduction to the theoretical

basis of hidden Markov modeling and the various

single-molecule techniques in which they have been

co-opted for signal analysis.

Basic Characteristics

Signals collected from single-molecule experiments

can be described as a series of discrete states governed

by an underlying physical property of the molecule(s)

being interrogated. The discrete states are often

obscured (hidden) by noise that is inherent to the

experimental technique, making the identification and

characterization of these states difficult. The hidden

states are no longer efficiently detected by visual

inspection or simple algorithms and doing so can intro-

duce bias and an incomplete characterization of

the underlying behavior(s). Probabilistic maximum-

likelihood algorithms, like a hidden Markov model

(HMM), have become the preferred method of analy-

sis; they provide a mathematically derived routine that

limits the possibility of user bias as well as providing

a theoretical framework with which to interpret the

quantitative results extracted from single-molecule

experiments. A HMM describes a stochastic progres-

sion through a series of discrete states, where the

likelihood of the next event in a series of observations

can be predicted upon knowledge of the immediately

preceding event and does not depend on knowledge

of any of the prior events; that is, the process is

Markovian (Fraser 2008). The main model assumptions

of a HMM are as follows:

1. Given the current state, the probability of the cur-

rent observation is independent of states and obser-

vations at all earlier times.

2. Given the current state, the probability of the next

observed state occurring is independent of earlier

states. More simply put, the future does not depend

on the past.

HMMs are well suited for single-molecule analysis

because of their ability to find discrete states, usually

stable, biologically relevant conformations, within

noisy time series data, and to reliably find the most

probable path through these states. As a molecule
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transitions from one stable conformation to another it

is often the case that the process is Markovian and

therefore governed by single exponential kinetics.

Through the iterative optimization of the HMMparam-

eters – the probability matrices of transition, emission,

and initiation – a model is derived that best approxi-

mates the data. The transition probability matrix

describes the probability of any one state changing to

any other state or staying in the same state in the

subsequent time step (Fig. 1). The emission probability

distribution contains the probabilities of a specific sig-

nal value being emitted by each discrete state. Calcu-

lating an emission probability often requires an

assumption of the noise in the system, usually shot

noise that is efficiently approximated by simple Gauss-

ian distributions (Fig. 2). The initiation probability

matrix gives the probabilities of starting at each of

the possible discrete states.

During the evaluation of single-molecule data

one does not usually know what the idealized values

of the states A and B or their probability matrices are.
To begin the analysis, a Markov model is estimated

with a given number of states and a probability tran-

sition matrix. The model is then optimized by deter-

mining the parameters that yield the maximum

likelihood for the given trace. If the number of states

has been determined, then the appropriate number of

states can be entered and the rest of the parameters

optimized. It is often the case that the number of states

is also unknown, but can be determined by optimiza-

tion of various Markov models with differing num-

bers of states and the results compared through

a criterion such as the Akaike Information Criterion

(AIC) or the Bayesian Information Criterion (BIC)

(Blanco and Walter 2010). Due to the iterative

process required to find the most probable model

parameters and sequence of states, HMMs are com-

putationally expensive. The availability of a family of

algorithms whose complexity scales only linearly

with the length of the trajectory makes it possible to

apply HMMs to time series that reach biologically

relevant long time scales. The algorithms most com-

monly used include:

1. The forward algorithm, which calculates the condi-

tional probability of being in a state s at time t given
all of the observations up to that time. It also calcu-

lates the conditional probability of each observation

given previous observations. Using these terms

it calculates the probability of the entire data

sequence given the model. This is also the first

phase of the Baum–Welch algorithm (below).

2. The Viterbi algorithm, used when one needs to

estimate a sequence of states from a sequence
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Fig. 1 Simple hiddenMarkov model (a) An example of a hidden

Markov model with two states with the transition probabilities

presented above individual arrows to represent the likelihood of

transiting from one state to another or staying in the same state

within the next time step. (b) The transition probability matrix of

the Markov model from (a). (c) A simulated single-molecule

FRET trajectory using the two-state model with states A
(FRET ¼ 0.8) and B (FRET ¼ 0.2)
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Fig. 2 Emission probabilities for the Markov process. The
emission probability distributions of the two states A and B
from the simulated single-molecule FRET trajectory in Fig. 1

are plotted. Here the emission probabilities are calculated by

assuming Gaussian noise distributions around the discrete mean

FRET values (A ¼ 0.8, B ¼ 0.2), modeling the shot noise of the

signal collection instrumentation
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of observations. It finds the most probable state

sequence.

3. The Baum–Welch algorithm (forward-backward

algorithm) calculates, given a given sequence of

observations and an initial set of model parameters,

in a single pass based on the forward algorithm

a new set of parameters that has higher likelihood

of being correct. Running many iterations of the

Baum–Welch algorithm yields a sequence that

approaches a local maximum of the likelihood.

Although HMMs provide an excellent tool for ana-

lyzing single-molecule data it must be noted that not

all data fulfill the assumptions of a Markov process.

For example, the changes of biomolecules can exhibit

time-dependent transition probabilities due to

molecular memory effects. In these cases HMMs

can still approximate the data but care must be taken

in the interpretation of the results. For an in-depth

discussion of the mathematical foundations underly-

ing HMM, we refer the reader to Rabiner (1989) and

Fraser (2008).

Applications of Hidden Markov Models in
Single-Molecule Biophysics

The general framework of HMMs has been adapted to

a variety of single-molecule techniques. Due to the

differing character of the signals acquired from these

techniques there is not a single HMM that can be

utilized for the analysis of all types of data collection.

However, HMMs have been modified and improved in

the various fields to better model the data and noise of

each particular field.

Ion Channel Recordings

Among some of the earliest single-molecule experi-

ments came from the electrophysiology field, where

the action potential across a single ion channel can be

recorded over time with the use of ▶ patch clamp

techniques. These techniques allow for the direct mea-

surement of ionic currents through a single channel

protein molecule. The amplitude of the signal collected

describes the permeability of ions through the channel

and the change in this permeability can be recorded in

real time. HMMs can approximate the open and closed

states of these pores effectively. This HMM imple-

mentation assumes the underlying signal is a Markov

process whose noise is assumed to be Gaussian. QuB

(available at http://www.qub.buffalo.edu/wiki/index.

php/Main_Page) is a readily available software pack-

age routinely used for the analysis of ion channel

recordings (Qin et al. 2000).

Fluorescence Microscopy

Single-molecule fluorescence microscopy has

become one of the most popular single-molecule

techniques due to the wide range of biomolecules

that can be studied with this technique. HMMs have

been adapted for various types of fluorescence

microscopy to better model the different forms of

intensity time traces collected.

Single-Molecule Fluorescence Resonance Energy

Transfer (smFRET)

▶ smFRET can provide a real-time view of dynamics

of biomolecules ranging from small catalytic RNAs

(ribozymes) to large RNA-protein complexes such as

the ribosome. The distance-dependent interaction

between two fluorophores can report on intra- and

intermolecular conformational changes. The applica-

tion of HMM to the analysis of smFRET data became

more accessible after the release of HaMMy, a user-

friendly analysis software specifically designed for the

analysis of smFRET data (McKinney et al. 2006).

Previously, less sophisticated algorithms such as

thresholding techniques were used that could often

not handle complicated trajectories. The adaptation

of HMM to smFRET has been advantageous for the

field and the tool continues to be developed for the

analysis of systems with more complicated behaviors.

An example of the power of HMM analysis of

smFRET trajectories is the trajectory of a single pre-

mRNA molecule imaged under splicing conditions

(Fig. 3) (Blanco and Walter 2010). The large number

of states and rapid kinetics of transitions makes this

type of trace difficult to analyze without the use of

HMMs. In addition to HaMMy, programs such as

QuB and vbFRET (Bronson et al. 2010) (available at

http://vbfret.sourceforge.net) are available for

smFRET analysis with advantages for more complex

trajectories (Blanco and Walter 2010).

Switchable FRET

Switchable FRET is a combination of two techniques:

smFRET and photoswitching, the reversible activa-

tion and deactivation of fluorophores commonly

used in super-resolution imaging techniques such as
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▶ stochastic optical reconstruction microscopy

(STORM). This technique utilizes multiple donor–

acceptor fluorophore pairs to sequentially probe and

obtain multiple distances within a single molecule.

Traditional HMMs for smFRET cannot incorporate

the stochastic photoswitching of the acceptor dye and

therefore a linked hidden Markov model was devel-

oped where FRET and donor–acceptor stoichiometry

are tracked (Uphoff et al. 2010). The linked HMM

allows for the proper identification of states and deter-

mination of their transitions.

Multi-fluorophore Bleaching

Some single-molecule experiments utilize multiple

fluorophores to help determine the number of subunits

assembled in a particular biological complex. The

sudden drops in intensity when single fluorophores

each undergo an irreversible ▶ photobleaching event

can be used as a measure of the number of particles

present. HMMs have been developed for the unbiased

determination of the discrete steps in the fluorescence

intensity traces. Up to 30 fluorophores can be reliably

detected through the use of HMMs (Messina et al.

2006). The ability to reliably visualize and count

the number of single molecules present has applica-

tions ranging from self-assembly of biomolecules to

tracking the assembly of trans factors in multi-

component systems.

Molecular Motor Step Size

HMMs have been developed for the case of fluorescent

measurements of molecular motors. An HMM variant,

the variable-stepsize HMM (vsHMM) where the posi-

tion of the motor is modeled as a large number of

states, has been developed to more accurately track

the movement of these motors as a result of their

reaction cycle. This model differs in that it allows

for an arbitrary distribution of step sizes that allows

it to run as a robust algorithm with little user input.

The algorithm has also been extended to the variable-

stepsize integrating-detector HMM (VSI-HMM)

which serves to better model the variation in signals

during data acquisition such as random baseline fluc-

tuations. Together, these HMMs have been utilized to

characterize the movement of a myosin motor both

in vitro and in vivo (Syed et al. 2010).

Single-Particle Tracking

▶ Single-particle tracking can be used to extract

modes of diffusion for a single molecule. In the case

of biomolecules diffusing through a cell this approach

can provide insight into the regions of localized activ-

ity, concentration gradients, or sites of modification.

A single-particle track, with certain assumptions, can

be modeled with a two-state HMM. The two-state

HMM is optimized through the diffusion coefficients

of the states and the rates of transition between them. It

has been shown that this HMM is sufficient to extract

multiple states of diffusion within a single trajectory in

a practical manner (Das et al. 2009).

Tethered Particle Microscopy (TPM)

▶TPM experiments use light microscopy to measure

the position of a bead tethered to a microscope slide via

a polymer to infer the behavior of the polymer. An

example is the use of DNA as the tether to measure

DNA folding/unfolding dynamics and the effects of

DNA-binding proteins on those dynamics. HMM anal-

ysis algorithms have been used to track the subtle

changes in bead position and determine the relevant

changes from those induced by Brownian motion by

incorporating factors for the diffusive motion of the

bead (Beausang et al. 2007). This approach has

allowed for data analysis without the need for filtering.

Another improvement to the HMM algorithms used for

these experiments introduced factors to account for the

nonlinear extension of DNA, allowing for a more accu-

rate, quantitative assessment of the kinetics.
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Fig. 3 A complex smFRET trajectory analyzed with HMM.

HMM can be utilized to characterize the dynamics of single

pre-mRNA molecules during splicing that exhibit rapid kinetics

and a large number of states without the need for smoothing

which would eliminate these small rapid conformational

changes. In black is the raw FRET trajectory, and in magenta

the five-state HMM idealized fit. In this particular case, the

QuB ion channel analysis software was utilized for the HMM

analysis
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Limitations of Hidden Markov Models

HMMs can be a powerful tool for the unbiased analysis

of single-molecule data, but the resulting models need

to be carefully inspected. As noted previously, not all

biological processes studied under single-molecule

conditions fulfill the Markov property, thus violating

one of the assumptions of HMMs. This can affect the

ability of the model to fully recapitulate the underlying

behaviors. Additionally, as can be seen by the various

adaptations of HMMs, it is necessary to define the right

set of parameters to properly simulate the noise present

in the system as well as the discrete number of states of

interest. Finally, as with any fitting technique, when

using HMM a rigorous test for model selection is

required. This testing is often complicated by the lack

of a clear and decisive way of selecting the proper

number of states for the model. Although several

methods have been presented for an unbiased approach

at state selection, there is little consensus regarding

which is best.
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Synonyms

Lipid phase equilibria; Lipid self-organization; Lipid

superstructures; Multiscale structural ordering of

lipids

Definition

Amphiphilic lipids self-assemble into various thermo-

dynamically stable nanostructures in the presence of

water, which can be kinetically stabilized into hierar-

chically ordered lipid systems exhibiting multiple

structural length scales.

Introduction

Amphiphilic molecules such as lipids have the inherent

tendency of self-assembling in an aqueous environ-

ment. The hydrophobic effect acts upon minimizing

interactions between the water and hydrophobic parts

of lipid molecules, thus having a prime contribution
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