Astronomically forced climate change in the Kenyan Rift Valley 2.7–2.55 Ma: implications for the evolution of early hominin ecosystems

John D. Kingston*a,*, Alan L. Deino b, Robert K. Edgar c, Andrew Hill d

a Department of Anthropology, Emory University, Atlanta, GA 30322, USA
b Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA
c Farlow Herbarium of Cryptogamic Botany, Harvard University, Cambridge, MA 02138, USA
d Department of Anthropology, Yale University, New Haven, CT 06520, USA

Received 4 November 2005; accepted 12 December 2006

Abstract

Global climate change, linked to astronomical forcing factors, has been implicated in faunal evolutionary change in equatorial Africa, including the origin and diversification of hominin lineages. Empirical terrestrial data demonstrating that orbital forcing has a significant effect, or is detectable, at early hominin sites in equatorial continental interiors during the Pliocene, however, remain limited. Sedimentation patterns in the Baringo Basin within the Central Kenyan Rift Valley between ca. 2.7 and 2.55 Ma, controlled by climatic factors, provide a detailed paleoenvironmental record spanning 35 fossil vertebrate localities, including three hominin sites. The succession includes a sequence of diatomites that record rhythmic cycling of major freshwater lake systems consistent with 23-kyr Milankovitch precessional periodicity. The temporal framework of shifting precipitation patterns, relative to Pliocene insolation curves, implicate African monsoonal climatic control and indicate that climatic fluctuations in Rift Valley ecosystems were paced by global climatic change documented in marine cores. These data provide direct evidence of orbitally mediated environmental change at Pliocene Rift Valley hominin fossil localities, providing a unique opportunity to assess the evolutionary effect of short-term climatic flux on late Pliocene East African terrestrial communities.

Keywords: Hominin evolution; Pliocene; East Africa; Baringo; Tugen Hills; Precession; Orbitally forced climate change; Diatoms

Introduction

The 3–2 Ma interval represents a threshold period in early hominin evolution. Significant expansion of the cerebral cortex (Tobias, 1995; Holloway, 2000), major cladogenic events resulting in the Homo and Paranthropus lineages (Walker et al., 1986; Hill et al., 1992; Bromage et al., 1995; Kimbel et al., 1996; Suwa et al., 1996; Harrison, 2002), first manufacture of lithic artifacts (Semaw et al., 2003), and the oldest butchery sites (Asfaw et al., 1999) have all been documented in this interval. Although the specifics of hominin phylogeny are currently debated (e.g., Wood, 1992, 1994, 2002; Suwa et al., 1996; Tattersall and Schwartz, 2000; Wood and Richmond, 2000; White, 2003), the Plio-Pleistocene hominin fossil record of Africa indicates an adaptive radiation of forms, with possibly four australopithecines, three paranthropines, and up to three species of the genus Homo occupying the equatorial African landscape during this time, several potentially sympatric. Much research has focused on exploring environmental factors that may be linked to or directly driving these evolutionary transitions (e.g., Brain, 1981; Grine, 1986; Vrba et al., 1989; deMenocal, 1995; Stanley, 1995; Vrba et al., 1995; Bromage and Schrenk, 1999; Bobe et al., in press). During the last decade, views on the environmental context of early hominin evolution have shifted away from...
interpretations based uniquely on long-term trends or major events towards the notion that in the past local hominin ecosystems fluctuated on short timescales, primarily in response to astronomically-forced global climate change. These oscillations, Milankovitch cycles, result from the interaction of regional climatic systems and shifting patterns of insolation (solar radiation arriving at the top of the Earth’s atmosphere), driven by changes in the geometry of the Earth’s orbit. The primary orbital cycles invoked include precession (≈23 kyr), eccentricity (≈100 kyr, 400 kyr), and obliquity (≈41 kyr).

Potential links between climate and orbital cycles were recognized (Adhemar, 1842; Croll, 1864) and linked to biotic evolution (Wallace, 1876) as early as the mid-19th century, but a lack of chronologic control hampered attempts to verify any correlations. These ideas were later revived when astronomical signals were experimentally found in geochemical climatic data obtained from a suite of deep-sea cores (Emiliani, 1966; Shackleton, 1967; Hays et al., 1976; Berger, 1977). Data retrieved in these studies revealed the occurrence of numerous, quasi-periodic variations in isotopic parameters with almost constant amplitudes, which could be related directly to orbitally forced climatic cycles using chronometric dating techniques. Since then, periodicities associated with orbital variations have been identified in many paleoclimatic records, and it is clear that orbital forcing is an important factor in climatic fluctuations on the timescale of 10 ka to 1 Ma throughout most of the Earth’s history.

Recognizing potential implications for human evolution, a number of researchers suggested that human evolution might be tethered to these quasi-periodic variations logged in marine isotopic records (Brain, 1981; Boaz and Burckle, 1984; Vrba, 1985; Pilbeam, 1989). More recently, specific links between orbitally forced climate change and human evolution have been explored (Potts, 1998; Bonnefille et al., 2004; deMenocal, 2004; Richerson et al., 2005). Empirical evidence of environmental fluctuations at Pliocene hominin localities that can be directly linked to these cycles is limited, however, hampering attempts to develop causal relationships. Pronounced cyclical deposition or evidence of short-term climatic change in the Shungura Formation (Brown, 1969), the Turkana Basin (Brown and Feibel, 1986; Feibel et al., 1989; Brown, 1995; Bobe and Behrensmeier, 2004; Lepre et al., 2007), at Olduvai Gorge (Hay, 1976; Liutkus et al., 2000; Ashley and Driese, 2003), at Hadar (Bonnefille et al., 2004; Campisano and Feibel, 2007), and Olorgesailie (Potts et al., 1999; Behrensmeier et al., 2002) have tentatively been linked to orbitally forced climate change. Unequivocal correlation with astronomically mediated insolation patterns remains difficult due to limited chronological control and the confounding effects of tectonic control on sedimentation patterns within Rift Valley settings.

African climate and Milankovitch cycling

Climatic and atmospheric circulation patterns of modern Africa have in general been used to model and interpret conditions during the Pliocene with the assumption that these patterns have remained generally consistent over the last 5 Ma. Equatorial African climate is currently controlled by the intersection of three major convergence zones, superimposed on and influenced by regional factors associated with rift-related topography, coastal currents and upwelling, and sea surface temperature fluctuations in the Indian and Atlantic Oceans (Nicholson, 1996, 2000). As a result, climatic patterns are markedly complex and highly variable. Latitudinal position and seasonal migration of the Intertropical Convergence Zone exert a significant influence on precipitation patterns, resulting in a general bimodal seasonal distribution of rainfall in equatorial regions with maxima occurring in the two transitional seasons (April-May and October-November). Solar radiation is significant in sustaining tropical convergence, and studies of shifts in equatorial African paleoenvironments and paleoclimate have implicated orbitally forced changes in insolation. Although obliquity, eccentricity, and precession signals have all been identified in paleoclimatic proxies, Pliocene and Pleistocene circulation in the tropics appears to have been paced primarily by precessional variation in insolation (Pokras and Mix, 1985, 1987; Bloemendal and deMenocal, 1989; Molino and McIntyre, 1990; Tiedemann et al., 1994). Strong eccentricity and obliquity amplitude signals have also been identified (deMenocal, 1995; Lourens et al., 1996; D’Argenio et al., 1998; Moreno et al., 2001; Gorgas and Wilkens, 2002; Jahn et al., 2003). The coexistence of all main Milankovitch cycles in spectra data may provide evidence for a complex interdependence and influence of high- and low-latitude orbital parameters influencing climatic regimes in equatorial Africa. El Nino-Southern Oscillation linked fluctuations in precipitation (Verschuren et al., 2000a), threshold effects resulting in abrupt transitions (deMenocal et al., 2000; Thompson et al., 2002), provisional correlations with Heinrich events and Dansgaard-Oeschger cycles (Stager et al., 2002), and linear and nonlinear Earth-intrinsic feedback mechanisms of the climatic system (Kutzbach et al., 1996; Gorgas and Wilkens, 2002) further complicate simple interpretations of external forcing of tropical African paleoclimates.

Tugen Hills geology and paleontology

The Tugen Hills is a complex fault block uplifted along a synthetic fault (Saimo Fault) between the Elgeyo Escarpment and the axial Baringo-Suguta trench within the central Kenyan Rift (Fig. 1a). The rift in this area was initiated as a down-warped trough in the early to middle Miocene and has served as a depositional basin for thick and widespread sedimentary sequences over the past 16 Ma (Chapman et al., 1978; King, 1978). Subsequent structural deformation, uplift, and erosion have exposed extensive Miocene and Pliocene fossiliferous strata over an area of >2,400 km2 along the eastern foothills, the crest of the Tugen Hills, and to the west of the Tugen Hills in the Kerio Valley (Figs. 1b, 2). Sediments within the succession have yielded abundant and diverse faunal assemblages (Bishop et al., 1971; Bishop and Pickford, 1975;
Pickford, 1975a,b, 1978a,b; Hill, 1985; Hill et al., 1985; Hill, 1995), including a number of hominid and hominin specimens (Pickford, 1978b; Pickford et al., 1983; Hill, 1985, 1994; Hill and Ward, 1988; Hill et al., 1992, 2002; Ward et al., 1999; Senut et al., 2001; Sherwood et al., 2002a, 2002b). Much research has also focused on documenting the paleoecology throughout the succession through analyses of fossil floral (Jacobs and Kabuye, 1987, 1989; Jacobs and Winkler, 1992; Jacobs and Deino, 1996; Jacobs, 1999; Kingston et al., 2002) and biogeochemical proxies (Kingston et al., 1994; Morgan et al., 1994; Kingston, 1999). These data are unique in providing a framework in which hominin evolutionary and environmental change can be assessed locally through the late Neogene without the need to create a long-term ecological composite based on evidence gathered from geographically distant sites.

Data from the Tugen Hills have revealed a complex evolutionary history of ecosystems characterized by spatial and temporal heterogeneity with no clear evidence of any long-term trends. While these studies suggest that the patterns of heterogeneity may be shifting at short timescales (10^4–10^5 kyr), limited temporal resolution has until now precluded assessments of environmental change at these scales.

Chemeron Formation

Within the succession, the Chemeron Formation encompasses a series of discontinuous exposures of Pliocene and Pleistocene sediments and tuffs along the eastern foothills of the Tugen Hills (Fig. 1b). Strata in the formation span approximately 3.7 million years, from about 5.3 Ma at the base to 1.6 Ma near the top (Fig. 2; Deino and Hill, 2002; Deino et al.,
Sedimentary and tuffaceous rocks of the Chemeron Formation, formally designated by McCall et al. (1967), were deposited disconformably on the Kaparaina Basalts and are overlain unconformably by the middle Pleistocene Kapthurin Formation (Pickford, 1975a, 1975b; Chapman et al., 1978; Pickford et al., 1983; Hill et al., 1986; Williams and Chapman, 1986). At least two distinct Chemeron depositional basins have been recognized (Martyn, 1967, 1969; Chapman et al., 1978; Hill, 1985) and there has been considerable debate on the nomenclature of sediments to be included or excluded from the Chemeron Formation (Chapman, 1971; Pickford, 1975b; Chapman et al., 1978; Hill et al., 1986). In general, two areas of major outcrop have been identified: the Chemeron Basin in the south, currently dissected by the modern Chemeron, Ndau, Barsemoi, and Kapthurin Rivers, and the Kipcherere Basin along the zone of the Saimo Escarpment. Thickness of specific diatomite units is highly variable within the southern Chemeron Depositional Basin. Depicted are locations of vertebrate fossil localities and stratigraphic sections shown in Fig. 4. See Fig. 1b for map location.

Chemeron paleolakes

Within the southern depositional basin, Chemeron sediments are exposed as an eastward-dipping structural block (~20–30°), highly disrupted by ~north-south (N-S) normal faults (Fig. 3). This sequence consists primarily of terrigenous and lacustrine sediments—primarily mudstone, siltstone, and sandstone with intercalations of tuff, diatomite, and conglomerate. Within this general succession, a distinctive lithologic package characterized by a series of diatomite units and interbedded fluvial and alluvial fan detritus and tuffs can be traced >5–6 km N-S along strike (Figs. 1b, 3, 4). Diatomites, ~3–7 m thick, consist exclusively of freshwater lacustrine diatom frustules and document significant, intermittent lake systems within the axial portion of the rift. Thickness of specific diatomite units is highly variable between sections, indicating irregular lake bathymetry, differential deposition due to bottom currents, or variable diatom production. While there is no consistent N-S trend in diatomite thickness variability, multiple repetition of the section by N-S normal faults provides an east-west (E-W) dimension for sequence, revealing a slight eastward thickening.

Fig. 2. Generalized composite stratigraphic framework of the Tugen Hills Succession, depicting the interval of Chemeron Formation analyzed in this study.

Fig. 3. Geologic map of Chemeron Formation exposed in the Barsemoi, Ndau, and Kapthurin Rivers and associated drainages, comprising the core study area within the southern Chemeron Depositional Basin. Depicted are locations of vertebrate fossil localities and stratigraphic sections shown in Fig. 4. See Fig. 1b for map location.
trend. This may reflect sediment focusing (Lehman, 1975; Hilton, 1985), suggesting that deeper portions of the paleolakes were located towards the axes of the rift. Ongoing reconnaissance of Chemeron Formation exposures south of the Ndau River and north of the Kapthurin River has so far failed to reveal margins of the paleolakes.

Regression/transgression considerations

Assuming that the western paleolake margins were controlled by the north-south tectonic rift fabric, the current north-south orientation of diatomite exposures roughly parallel paleoshorelines. As such, these exposures essentially represent...
a single point on the regression-transgression continuum as lake levels shift in response to climatic control. The Barsemoi diatomites represent primarily deep lake facies as lake levels rose rapidly, inundating an extensive portion of the Baringo Basin. In this respect, alternation of aquatic and subaerial facies in the Barsemoi sequence depict shifting lake levels at a specific elevation and do not necessarily indicate a lack of paleolakes in deeper or more axial portions of the rift lake(s) during non-diatomite deposition locally.

Depositional transitions between the diatomites and stratigraphically adjacent fluvial and alluvial fan sediments are characterized by relatively abrupt transgressive and regressive sequences. Diatomites are typically bracketed by 20–30 cm fine sand and silt horizons containing fish fossils, which grade into high-energy terrestrial facies indicating relatively rapid cycling between deep lake and fully subaerial conditions. The rarity of littoral diatoms within these transitions (see below) also indicates rapid shifts in lake levels.

Extent of paleolakes

A variety of features of the Barsemoi diatomites indicates that they are the products of large paleolakes, which were probably moderately deep (>30–40 m), areally significant (at least several hundred km²), and stable (ca. 5–10 kyr) features of the Pliocene landscape, with central basins isolated from fringing littoral zones and terrigeneous input. The diatomites are purely diatomaceous (*sensu* Owen, 2002), being composed almost entirely (>90% by volume) of the intact and fragmented siliceous cell walls of planktonic species of two diatom genera, *Aulacoseira* and *Stephanodiscus* (Fig. 5). Within the five diatomites, there is no hiatus in diatom deposition and no significant dilution of the diatoms by fluviatile clastic detritus. A lack of mixing with terrigeneous input suggests that deposition of the Barsemoi diatomites was on the order of at least 5 km from a shoreline based on modern East African lake analogs (Owen and Crossley, 1992). Quantitative examination of samples from Chemeron Formation diatomite strata (*n* = 488) indicate that >90% of all diatoms in each sample, at virtually all levels in each diatomite unit, are euplanktonic species of the genera *Aulacoseira* [e.g., *A. granulata* (Ehr.) Simonsen; *A. agassizi* (Ostenf.) Simonsen] and *Stephanodiscus* [e.g., *S. cf. astrea* (Ehr.) Grun.; *S. cf. hantzschii* Grun.; *S. cf. subtransylvanicus* Gasse]. These species are also part of the present-day and Holocene diatom record of large lakes from which paleoenvironmental inferences are

![Diatomite #4](image1)

Fig. 5. Diatomites 3 and 4, bracketed by subaerial sediments, exposed in the main Barsemoi river channel. A.H. for scale. Diatomites are comprised almost exclusively of the genera *Stephanodiscus* and *Aulacoseira*.
derived. Samples with a similar high dominance of these combined genera characterize the present-day phytoplankton and sediments of some of the large lakes of the Western and Southern Rift Valley, such as Lake Malawi, Tanganyika, and Rukwa (Talling, 1986; Haberyan and Hecky, 1987; Hecky and Kling, 1987; Pilskahn and Johnson, 1991; Owen and Crossley, 1992; Gasse et al., 2002), the late Pleistocene-Holocene diatom record of these large lakes (Haberyan, 1987; Haberyan and Hecky, 1987; Owen and Crossley, 1992), and that of Lake Victoria (Stager, 1984; Stager et al., 1997), and the diatomites resulting from the large Ethiopian Pliocene Lake Gadeb (Gasse, 1980). The samples display a marked rarity of periphytic and facultatively planktonic diatoms (Gasse, 1980) derived from littoral regions. The relative abundance of littoral diatoms, which are produced in the sunlit shallows of a lake, is characteristically <5% in samples from these diatomites, with a mode of 1–2%. This low fraction is characteristic of offshore plankton samples from southern Lake Malawi (Haberyan and Mhone, 1991) and is markedly low compared to the 10–80% littoral diatoms characteristic of the present-day Holocene sediments of the shallow Lakes Naivasha (Verschuren et al., 2000a; Trauth et al., 2003) and Magadi (Barker et al., 1990) and the shallower regions or low-stand stages of large lakes (Gasse, 1980; Haberyan, 1987; Gasse and van Campo, 1998; Telford and Lamb, 1999). The diatom flora of the shallow aquatic ecosystems, such as ponds, swamps, and springs of the Borgoria-Baringo region of Kenya (Owen et al., 2004), has virtually no taxonomic similarity to the Barsemoi diatomites. [Planktonic/(periphytic + facultative planktonic)] ratios of > 100 generally indicate deep lakes (Trauth et al., 2005). Using this criterion, the Barsemoi paleolake depths would be on the order of > 150 m. Shallow lakes during periods of sustained low precipitation and high evaporation, which are common in East African climatic history, or of mineral-laden groundwater input, can evolve to become ‘soda’ or saline lakes, which are characteristic of the present-day and Holocene lakes in the Eastern Rift Valley. Under such ecological conditions, saline or hypersaline diatoms are strongly represented in the sediments (Haberyan, 1987; Barker et al., 1990; Telford and Lamb, 1999; Verschuren et al., 2000a,b). No such highly alkaline or saline flora has been observed in the Barsemoi diatomites. Lastly, in examining about 10% of the total samples (selected either randomly or based on an explosion when immersed in water), a majority of these exhibited light microscopic evidence of intact *Aulacoseira* filaments of 5–10 cells and, in some, an apparent segregation of *Aulacoseira* and *Stephanodiscus* into fine laminae, indicating an anoxic hypolimnion in the lakes in which these diatomaceous sediments were formed (Pilskahn and Johnson, 1991; Pilskahn, 2004). Lake stratification, by limiting the depth of turbulent mixing and anoxia and preventing the feeding and burrowing by in-sediment animals, dampens those processes primarily responsible for the fragmentation of *Aulacoseira* filaments and homogenization of their benthic temporal layering. Fossil records of such diatom laminae have been reported primarily from large lakes (Haberyan and Hecky, 1987; Owen and Crossley, 1992; Owen and Utha-aro, 1999). East African lakes, except for the very largest ones, seasonally mix to about 20–40 m (Baxter et al., 1965; Haberyan, 1987; Hecky and Kling, 1987), or to their bottoms if they are shallower, suggesting that the Barsemoi paleolakes were at least this deep.

Intra- and inter diatomite variability

There is substantial and significant nonrandom variation in the relative abundances of *Aulacoseira* and *Stephanodiscus* at 10-cm intervals within and among diatomites (Fig. 6). The relative abundance of *Aulacoseira* ranges from ≈ 0% to 100%, whereas *Stephanodiscus* ranges from 0% to ≈ 100%. The temporal and spatial abundances of the species of these two genera present in East African lakes and Pliocene-Recent deposits are thought to be causally determined primarily by their resource requirements for silicon and phosphorus (as an Si:P ratio) and light (Kilham, 1971; Tilman et al., 1982; Gasse et al., 1983; Kilham et al., 1986; Kilham, 1990). *Aulacoseira* requires a relatively high Si:P and is adapted to low light conditions. In contrast, *Stephanodiscus* is a successful competitor when Si:P is low, but requires both high phosphorus and high light levels. The distribution of these nutrients with respect to light is largely under the control of a lake’s hydrodynamics (Talling, 1986; Haberyan and Hecky, 1987; Kilham, 1990; Gasse et al., 2002; Owen, 2002). When lakes mix deeply, especially to or near their bottoms, *Aulacoseira* predominates. However, when lakes thermally stratify, restricting the depth of mixing, the euphotic zone is more conducive to the growth of *Stephanodiscus*. The mixing regime is largely determined by the intensity of upwelling, by the wind’s intensity, duration, and direction (fetch), and by the heat balance of the lake as reflected in its temperature, its thermal stratification gradients, and its conductive, convective, and radiative interactions with the atmosphere (Lehman et al., 1998; Lehman, 2002). Thus, the present interpretation of *Aulacoseira* (A)-*Stephanodiscus* (S) variation rests on the causal connections among changes in mixing regimes and specific nutrient resource distributions. Ultimately, these factors are controlled by climate (Owen and Crossley, 1992; Stager et al., 2002, 2003), with the proportion of *Stephanodiscus* \[S/(A+S)\] varying directly with atmospheric temperature and inversely with windiness. *Aulacoseira* predominates under cool windy conditions; *Stephanodiscus* under warmer, less windy conditions (Gasse et al., 2002).

The pattern of diatom distribution indicates a maximum relative abundance of *Stephanodiscus* in diatomites 2 and 3, the minima in bracketing diatomites 1 and 5 (Fig. 6). Differences in the proportions of *Stephanodiscus* among adjacent diatomites are statistically significant (Kolmogorov-Smirnov and Mann Whitney \(p < 0.001\) for all pairs, except between diatomites 2 and 3, where \(p < 0.05\)). Median \[S/(A+S)\] ratios range from 0.11 and 0.07 for the earliest and latest diatomites to 0.69, 0.57, and 0.31 for diatomites 2, 3, and 4, respectively. These data indicate a cycling trend within the 2.58–2.7 Ma interval of maximum amplitude of insolation resulting from eccentricity modulation of precessional shifts during this interval.
Fig. 6. The distribution of the relative abundance of *Stephanodiscus* across the five diatomites as shown by 388 samples taken at 10-cm intervals within each diatomite. No macroscopic layering of the diatomites was evident in the field, so samples were chosen based on position along the ‘vertical’ transect alone, where a roughly 1 × 2 × 2 cm³ block of diatomite was collected. The 1 cm dimension more-or-less paralleled the line of transect. Examination of each block was based on an approximately 3 × 3 × 3 mm³ subsample, dispersed vigorously in distilled water and then strewn on a coverglass and mounted in 10% Hyrax for a light microscope (LM) census of taxa. The proportion of *Stephanodiscus* \(\frac{S}{A+S} \) is based on a valve count of *Stephanodiscus* (S) plus *Aulacoseira* (A), which was effectively the sum of all diatoms counted in a sample. The sample size for each proportion was 100–500 valves, with the size being sufficient to provide a 95% confidence interval for each proportion estimate of ±0.05, with the exception of the basal sample in diatomite 5, where the interval is probably twice as large. *Stephanodiscus* dominance is interpreted as indicating less windy and warmer climatic conditions; *Aulacoseira* dominance windier and cooler conditions. Box and Whisker plots based on collective data from each of the diatomites, indicating the median, interquartile range, and overall range of data. Preliminary stable carbon isotopic analyses of organic matrix, sequestered within the diatom biosilica, is shown for diatomites 2 and 3. The data suggest 13C enrichment upsection within these two horizons, possibly linked to changes in the A/(A + S) ratio related to climatic conditions.
(Fig. 7d, see discussion below). The maximum insolation values associated with each of the diatomites are similar (520, 520, 519, 520, and 525 W/m² for diatomites 1–5, respectively) suggesting that this cycling is not simply a function of shifting insolation values and perhaps involves threshold effects or involvement of regional or global climatic response to orbital forcing. These cycles documented in the Barsemoi diatomites result in hydrological changes stemming from changes in the precipitation and evaporation balance in the Baringo Basin and in the hydrographical mixing dynamics in its paleolakes. Overall, proportions of *Stephanodiscus* indicate an increase in temperature and less windy conditions as the diatomites develop in the sequence and then a return to original conditions by the last diatomite.

Relative proportions of the two dominant genera of diatoms also vary considerably and significantly within each of the Barsemoi diatomites. Diatom samples at 10-cm intervals reflect timescales on the order of 10³ years, and it remains unclear as to whether these fluctuations occur at this scale or shorter time intervals. In some of the samples, the apparent segregation of *Aulacoseira* and *Stephanodiscus* into subtle layers on a scale of <100 μm and the presence of microlaminae on a scale of one hundred to a few hundred microns suggest cyclic variation in a time frame of one to a few years. These laminae are reminiscent of seasonal couplets and annual to multiannual cycles for these taxa, or processes affecting their abundance, reported in Holocene and recent East African lakes (Haberyan, 1987; Haberyan and Hecky, 1987; Pilskah and Johnson, 1991; Owen and Crossley, 1992; Pilskahn, 2004). Cumulatively, these observations indicate that although the large Barsemoi paleolakes persisted for thousands of years in response to intensified monsoonal systems, each of the diatomites exhibits evidence of lower-order cycling.

Links between paleolakes and orbitally forced climatic change

A high-resolution chronostratigraphic framework has been developed for the sequence based on series of ⁴⁰Ar/³⁹Ar ages analyses from eight primary, anorthoclase-bearing tephas units from stratigraphic sections measured in the Barsemoi Tributary and adjacent drainages (Fig. 4; Hill et al., 1992; Deino et al., 2002, 2006). Tuffs were dated in replicate from samples collected in parallel sections. The local stratigraphic sequence ranges from 3.1–2.35 Ma with five diatomites confined to the 2.69–2.58 Ma interval. Based on ⁴⁰Ar/³⁹Ar ages of intercalated tuffs, a uniform sediment accumulation rate (16 cm/kyr) was calculated for the sequence and used to interpolate the ages for the upper and lower contacts of each of the five diatomites (Deino et al., 2006). These data indicate that the median time interval between the onset of the diatomite sedimentation cycles is 23.2 kyr (range 22–27 kyr) and 23.4 kyr between their termination (range 22–27 kyr), suggesting that the lake cycling is controlled or heavily influenced by precessional insolation forcing. For the precessional parameter, the most important terms in the series expansion of the equation correspond to periods of 23,700 years and 22,400 years; the next three terms are close to 19,000 years.

Intercalibration of the astronomical timescale with carefully determined ⁴⁰Ar/³⁹Ar ages (Kuiper, 2003; Kuiper et al., 2004; Deino et al., 2006) provides a means of orbitally tuning the Barsemoi sequence. Uncertainties in the astronomical polarity timescale (APTS) adjusted diatomite ages are on the order of ±0.3% (or ±8 kyr) sufficiently precise to tune the Barsemoi sequence uniquely to the APTS. In addition, identification of the Gauss/Matuyama paleomagnetic polarity transition in the Barsemoi within the upper part of one of the diatomites (Fig. 4.) independently leads to the same tuning by reference to this boundary’s position in open-ocean marine cores (Lisiecki and Raymo, 2005; Deino et al., 2006). This makes it possible to directly compare the age of the Barsemoi paleolakes with a series of theoretically calculated insolation curves and potentially identify specific climatic components controlling lake levels in the Rift Valley during the middle Pleistocene. Humidity/aridity cycles in equatorial Africa have been linked to changes in insolation at various latitudes and cycle frequencies. Available data have been variously interpreted to support three general models of control of low-latitude African aridity patterns and direct the selection of appropriate insolation curves to consider for correlation with the Barsemoi diatomites (Fig. 7h–j).

One model implicates insolation forcing of the African monsoon via heating of North Africa and resulting land-sea pressure contrasts (Kutzbach, 1981). Increasing insolation at approximately 30°N during boreal summer intensifies the southwest African monsoon and the penetration of moist air masses into equatorial Africa from the Atlantic Ocean (Fig. 7h). These cycles occur primarily at the 23-kyr tempo of Earth-orbital precession. Monsoonal control is supported by records of shifting Quaternary lake levels in North Africa (Street-Perrott and Harrison, 1984; Kutzbach and Street-Perrott, 1985; Pokras and Mix, 1985, 1987; Gasse et al., 1989; Lamb et al., 1995) and by formation of sapropelitic muds in the Eastern Mediterranean Basin. Formation of these sapropels is linked to high freshwater and organic discharge from the Nile, whose headwaters drain East African highlands, therefore reflecting northern East African precipitation patterns (Rossignol-Strick et al., 1982; Rossignol-Strick, 1983).

More recently, a second model has been proposed based on investigations in the Naivasha Basin, Central Kenyan Rift Valley. These studies suggest that seasonal rains in East Africa are in part triggered by increased March or September insolation on the equator at half-precession cycles. High insolation intensifies the intertropical convergence and convective rainfall in the region (Fig. 7i, j. 2003). These patterns also operate at 23-kyr precessional frequencies. This model also challenges the notion that the terrestrial tropics play a passive role in global climate linkages, instead suggesting that the terrestrial tropics and surrounding oceans may generate higher-latitude changes (Leuschner and Sirocko, 2003; Trauth et al., 2003; Barker et al., 2004).
HUMID PERIODS
Prominent lake beds in eastern branch of East African Rift System

Precessional Index (\text{sin}^2 \text{Obliquity})

Eccentricity (\text{a})

Obliquity

Insolation (W/m²)
30°N June-July

Range of sediments in the southern Chemeron Formation Basin

Range of Barsemoi Diatomites

% Terrigenous Dust
ODP 721/722

Obliquity (°)

Eccentricity (\text{a})

Insolation (W/m²)
30°N June/July

0°N March/April

0°N Sept/Oct

Barseomoi Diatomites

Mid-Pleistocene Revolution

Development of Walker Circulation

Onset of Northern Hemisphere glaciation
A third model advocates that sub-Saharan moisture patterns are linked to northern latitude glacial/interglacial cycling at eccentricity and obliquity amplitudes or timing (Fig. 7f,g). Evidence for this view includes regional eolian and biogenic dust transport patterns (deMenocal, 1995; Moreno et al., 2001), upwelling patterns adjacent to or near the African coast (Gorgas and Wilkens, 2002), biochemical and biotic bedding patterns in coastal sediments (D’Argenio et al., 1998), and rhythmic stratification patterns in subtropical African lakes (Scholz, 2000; Ficken et al., 2002; Johnson et al., 2002).

Cycles of increased lake levels in Baringo 2.7–2.5 Ma, as recorded by diatomites, are most consistent with the first model, implicating intensification of the monsoonal system as the main control on precipitation patterns during this interval in the Baringo Basin. Absolute ages of the diatomites relative to calculated ETP (eccentricity/tilt/precession) insolation curves most closely correspond to insolation maxima at 30°N in June/July (Fig. 7h; Deino et al., 2006). Although cycling of the Barsemoi diatomites is precessionally driven at 23-kyr intervals, this series of paleolakes coincides with a period of high insolation linked to high eccentricity modulation of insolation between ~2.5–2.8 Ma. These data suggest a threshold effect, whereby formation and persistence of deep perennial lake systems within the axial rift are contingent on achieving and maintaining a minimum level of low-latitude insolation above which the monsoonal system provides sufficient precipitation for the formation of rift lakes.

Under- and overlying Chemeron strata within the sequence, correlating to lower insolation maxima, are essentially devoid of diatomites or other significant lacustrine facies. Temporally adjacent envelopes of maximum eccentricity modulated precession at ~2.9–3.1 Ma and ~2.1–2.35 Ma did not apparently result in the development of a series of significant lake systems in this portion of the rift, despite greater relative insolation amplitude for these flanking intervals (Fig. 7a,b,d). A single diatomite at ~3.1 Ma in the Barsemoi section hints at higher lake levels during the earlier maximum insolation envelope (Fig. 7h). Unlike the younger diatomites, the age of this paleolake or lake high-stand is imprecisely known as it is based on an extended extrapolation of sedimentation rates. Control of lake formation in this portion of the rift may typically be dominated by tectonic processes, with the Barsemoi diatomites representing a window of tectonic quiescence or stability during which pervasive climatic patterns could be recorded. Alternatively, isolated development of paleolake systems in the Baringo Basin 2.7–2.55 Ma may reflect a unique combination of interactions between global climate boundary conditions and shifts in the African monsoon intensity related to orbital forcing. The Barsemoi paleolakes coincide with the onset and intensification of the Northern Hemisphere Glaciation at ~2.75 Ma. This event marks one of the critical climate thresholds in the Cenozoic, marked by a progressive 18O enrichment in benthic foraminifera between 3.1 and 2.5 Ma and the massive appearance of ice-rafted debris in northern high-latitude oceans (Shackleton et al., 1984). Analyses of marine records of eolian dust contributions indicate a dominance shift from 23-kyr precessional periodicity to 41-kyr obliquity variability at about this time as well, suggesting that the African climate became more arid and sensitive to high-latitude climatic forcing (deMenocal and Bloemendal, 1995; Maslin et al., 1998; Trauth et al., 2005). Comparison of Barsemoi paleolake cycling with the orbitally tuned climate proxy dust record from ODP site 721/722 in the Arabian Sea (deMenocal and Bloemendal, 1995) indicates synchronicity at the precessional phase in the two climatic records. The timing of Barsemoi diatomites correlates with terrigeneous input minima into the Arabian Sea, which are interpreted to reflect more humid conditions in subtropical Africa (Fig. 7e). Within the Barsemoi succession, it remains difficult to evaluate the effects of obliquity or the relative dominance of obliquity or precession in controlling East African precipitation patterns during this time.

Ecological response of Rift Valley ecosystems

Having documented significant orbitally forced climate change within the Rift Valley, how do organisms respond to these oscillations and what, if any, are the evolutionary consequences? Milankovitch cycles operate at timescales much greater than the generation times of mammals but significantly shorter than most species durations (~2.5 Ma (Stanley, 1985; Alroy, 2000]). The overall frequency of evolutionary response to precessional cycling is so low that evolutionary stasis dominates the adaptive landscape for most species at this scale. In addition, the resolution of the Pliocene terrestrial fossil record is currently far too coarse to detect or assess biological
response at a timescale of 10^4–10^5 yrs. It has been suggested that changes in the amplitude and periodicity of orbitally forced climatic variability may have contributed to faunal turnovers (Vrba, 1995; Dynesius and Jansson, 2000; deMenocal, 2004). Late Neogene turnover cycles in micromammal lineages in Spain have been correlated with low-frequency modulation of Milankovitch oscillations (2.4–2.5 and 1.0 Myr), implicating astronomical climate forcing as a major determinant in rodent lineage turnover (van Dam et al., 2006).

Within the local Barsemoi sequence, 35 vertebrate fossil localities have been documented and ten sites have so far been tied directly into the stratigraphic sections exhibiting cycling (Figs. 3, 4). Preliminary assessments of mammalian faunal communities in the sequence indicate that there are no macroevolutionary shifts that can be specifically linked with lake cycling and that major lineages are continuous through the diatomaceous interval where significant environmental fluctuation is evident.

Three sites have yielded hominin fragments, including a temporal bone attributed to Homo sp. indet. at 2.43 Ma (Hill et al., 1992; Deino and Hill, 2002; Sherwood et al., 2002b), a molar fragment with affinities to Paranthropus at ca. 2.9 Ma, and a premolar fragment identified as Hominini gen. et sp. indet. (but distinct from Homo) also at ca. 2.9 Ma (Fig. 4). As with most of the vertebrate fossil material, the hominins are associated with terrestrial horizons bracketing lacustrine deposits, and it is currently difficult to assess any specific shifts in faunal communities that might be associated with ‘wet’ and ‘arid’ phases. Fossils of colobines and Theropithecus—typically interpreted as forest and open woodland/grassland primates, respectively—have been recovered from isochronous horizons at several localities throughout the sequence, suggesting habitat heterogeneity. Representative taxa of suids, rhinocerotids, hippos, bovids, and giraffids have consistently been identified at scattered Chemeron horizons through the 2.8–2.4 Ma interval, indicating lineage persistence and relative long-term community stability despite environmental flux. Ongoing studies are examining vertebrate faunal distribution in the succession.

While it may not be appropriate or possible to link macroevolutionary change with short-term Milankovitch cycling, orbitally forced climatic oscillations have significant effects on biota that cumulatively may pace speciation and extinction events. Precession modulated cycling of precipitation and seasonality patterns in the Rift Valley during the Pliocene and Pleistocene presumably resulted in dynamic fluctuations in the physiognomy and taxonomic representation of flora in the region, with more arid and seasonal climatic regimes generally associated with more widespread open woodland and grassland habitats. The immediate response of vegetation to this short-term climatic variability would likely have involved a reshuffling of the relative coverage of different plant communities rather than whole-scale extinction or speciation events. Studies of Quaternary paleovegetation records indicate that equatorial African ecosystems are highly sensitive to orbitally forced climate change, associated atmospheric CO$_2$ shifts, and vegetation-soil feedbacks, resulting in rapid shifts in pollen assemblage indices (Lézine, 1991; Bonnefille and Mohammed, 1994; Elenga et al., 1994, 2004), charcoal-fluxes (Verardo and Ruddiman, 1996), and relative proportions of C$_3$ (trees, shrubs, cold-season grasses and sedges) and C$_4$ (warm-season grasses and sedges) biomarkers (Huang et al., 1999; Ficken et al., 2002; Schefuß et al., 2003). These studies also indicate that vegetation is responding to environmental change at scales significantly shorter than precessional cycles, probably related to the complex interaction of the many factors controlling precipitation, temperature, and seasonality patterns.

Specific response of Rift Valley plant paleocommunities to precessional cycling of Barsemoi paleolake systems is difficult to predict or model, primarily as the configuration of climatic parameters responsible for the hydrological cycling remain unknown. The simplest interpretation would be to assume that high lake levels, correlated to maximum insolation at 30°N latitude, reflect increasing total annual precipitation resulting from intensification of African monsoonal systems. These conditions would be associated with more wooded or forested ecosystems. Climatic controls on lake levels, however, are contingent on overall precipitation/evaporation regimes, which in turn are based on seasonal distribution of rainfall and temperature ranges. Lake transgressions may be due to cooler temperatures and decreased evaporation at key intervals in annual or biannual seasonal patterns of rainfall rather than strictly to increased precipitation.

The primary response of terrestrial fauna to these oscillations would likely be through changes in the size and location of species’ geographic distribution (Bennett, 1997). Rather than directing the relocation of entire communities, environmental change more likely causes species to respond individually, to migrate in different directions and at different times, and to reassemble in new species associations, resulting in repeated fragmentation and rearrangement of communities (Graham, 1986; Huntley and Webb, 1989; Bennett, 1990). Dispersal of species into novel, variable environments and communities can cumulatively lead to microevolutionary change in isolated populations and ultimately increase the potential for speciation or extinction events (Barnosky, 2005).

In addition to habitat tracking, various adaptive strategies have been proposed as options for terrestrial taxa faced with environmental instability including phenotypic plasticity, developmental plasticity, or behavioral flexibility (Bennett, 1997; Dynesius and Jansson, 2000; Jansson and Dynesius, 2002; Barnosky and Bell, 2003). It has been argued that recurrent and rapid climatic oscillations favor speciation resulting in higher taxonomic diversity and phenotypic disparity (Valentine, 1984; Vrba, 1992; Moritz et al., 2000). Shifting periodicities can affect the duration of phases during which species’ geographic distributions remain continuously fragmented and organisms must exist beyond vicariance thresholds (outside optimal range), increasing the incidence of speciation and extinction (Vrba, 1995). Others have suggested that orbitally forced climatic shifts generally increase gene flow directly by reshuffling gene pools, and that any microevolutionary change that accumulates on a timescale of thousands of years.
is consequently lost as communities reorganize following climate change (Bennett, 1990). Oscillations indirectly select for vagility (dispersal ability and propensity) and generalism that can reduce extinction in the long run and also slow speciation rates (Dynesius and Jansson, 2000; Jansson and Dynesius, 2002). According to the variability selection hypothesis (Potts, 1996, 1998), complex intersection of orbitally forced changes in insolation and Earth-intrinsic feedback mechanisms results in extreme, inconsistent environmental variability selecting for behavioral and morphological mechanisms that enhance adaptive variability. Assessing the relative validity of these evolutionary models ultimately hinges on developing a level of temporal and spatial resolution in the faunal record to anchor micro- and macroevolutionary events in the context of short-term environment shifts. This also requires documenting and assessing the relative magnitude and significance of environmental variability occurring at various orbital and submillennial scales.

Conclusions

Rift-related ecosystems of East Africa are unique in tropical Africa in their topographically mediated habitat heterogeneity, localized climatic patterns, and perennial lake systems. While early stages of human evolution were not confined to Rift Valley ecosystems, early hominins utilized these distinctive biomes. Reconstructing environmental flux in these habitats has significance for interpreting selective pressures faced by our ancestral populations. Climatically controlled shifts in paleohydrological patterns in the Baringo Basin evident between 2.5 and 2.7 Ma represent a window on a much more pervasive pattern of environmental change that is generally obscured locally and regionally by rifting activity. Dramatic oscillations in lake levels in the Baringo Basin, as indicated by the cycling of diatomites, occur at 23-kyr intervals that can be linked to precessional insolation. The timing of the paleolakes most closely approximates insolation maximum for the June/July 30°N insolation curve, suggesting that precipitation patterns in the region were controlled by the African monsoon system in the middle Pliocene. Significant taxonomic variation in diatoms within each of the diatomites imply lower-order cycling, some reminiscent of seasonal couplets and annual to multiannual cycles. The Baringo data reinforce the perspective that hominin evolution in the Rift Valley, and in tropical Africa in general, should be evaluated more in the context of shifting patterns of precessional-scale and lower-order environmental flux rather than long-term (>10^3) trends. Climatic and geological instability combined with habitat heterogeneity result in highly dynamic selective forces on early hominins and their communities. These oscillations cause repeated fragmentation and alteration of early hominin communities, resulting in the dispersal of populations to highly variable regional ecosystems and potential peripatric or allopatric speciation events. The challenge remains to identify and link specific shifts in ecological paleocommunities, intraspecific diversity, phenotypic variability, and biogeographic patterns in early hominin evolution at the temporal scale of shifting patterns of precessionaly forced and submillennial climatic change.

Acknowledgments

We would like to thank Beth Christensen and Mark Maslin for inviting us to contribute to this special Journal of Human Evolution volume on African paleoclimate and human evolution. We are grateful to the logistical and intellectual support of various members of the Baringo Paleontological Research Project. Boniface Kimeu, in particular, provided invaluable field assistance. This work was supported by an Emory University ERC grant to J.K., NSF grants 9405347 and 9903078 to A.D., and grants to A.H. from Clayton Stephenson and from the Schwartz Family Foundation. This work forms part of the research of the Baringo Paleontological Research Project directed by A.H. based at Yale University and undertaken in collaboration with the National Museums of Kenya (NMK). Authorization for research and excavation comes in the form of permits to A.H. (OP/13/001/C 1391) from the Government of the Republic of Kenya. Thanks also to two anonymous reviewers whose comments greatly improved the clarity of this paper.

References

183, 169–178.

Kenne, J., Stanley, S.M. (Eds.), Effects of past global change on life. National
Academy of Sciences, Studies in Geophysics. National Academy

since 30,000 yr BP — an index of the global hydrological cycle. In:
Hansen, J.E., Takahashi, T. (Eds.), Climate Processes and Sensitivity. AGU,
Washington, DC, pp. 118–129.

from the Shungura Formation, Ethiopia: crown morphology, taxonomic allo-
101, 247–282.

Talling, J.F., 1986. The seasonality of phytoplankton in African lakes. Hydro-
biologia 138, 139–160.

climatic change recorded in the diatom stratigraphy of an Ethiopian crater
lake. Quatern. Res. 52, 63–75.

Thompson, L.G., Mosley-Thompson, E., Davis, M., Henderson, K.A.,
Brecher, H.A., Zagorodnov, V.S., Mashiotta, T.A., Lin, P.-N.,
Mikhalenko, V.N., Hardy, D.R., Beer, J., 2002. Kilimanjaro ice core re-
cords: evidence of Holocene climate change in tropical Africa. Science
298, 589–593.

for the Pliocene Atlantic δ18O and dust flux record of Ocean Drilling Pro-
gram Site 659. Paleocenography 9, 619–638.

Tilman, D., Kilham, S.S., Kilham, P., 1982. Phytoplankton community ecol-

pp. 61–81.

can climate change and orbital forcing during the last 175 kyr BP. Earth

Trauth, M.H., Maslin, M.A., Deino, A., Streck, M., 2005. Late Cenozoic

biogeography and evolution of the shallow-sea biota. Geology 12,
647–659.

den Hock, Lourens, L.J., Mein, P., van der Meulen, A.J.,
Pelaer-Campomanes, P., 2006. Long-period astronomical forcing of

Vezzard, D.J., Ruddiman, W.G., 1996. Late Pleistocene charcoal in tropical At-
lanic deep-sea sediments: climatic and geochemical significance. Geology
24, 855–857.

east Africa during the past 1,100 years. Nature 403, 410–414.

Verschuren, V., Tibby, J., Sabbe, K., Roberts, N., 2000b. Effects of depth, sa-
linity, and substrate on the invertebrate community of a fluctuating tropical

Vir, E.S., 1985. Ecological and adaptive changes associated with early hom-

Vir, E.S., 1992. Mammals as key to evolutionary theory. J. Mammal. 73,
1–28.

Vir, E.S., 1995. On the connections between paleoclimate and evolution. In:
Vir, E.S., Denton, G.H., Partridge, T.C., Burckle, L.H. (Eds.), Paleo-
climate and Evolution, with Emphasis on Human Origins. Yale University

Vir, E.S., Denton, G.H., Partridge, T.C., Burckle, L.H. (Eds.), 1995. Paleo-
climate and Evolution, with Emphasis on Human Origins. Yale University
Press, New Haven.

hominid behavior. OSSA 14, 127–156.

Walker, A.C., Leakey, R.E., Harris, J.M., Brown, F.H., 1986. 2.5 Myr Austral-

Wallace, A.R., 1876. The Geographical Distribution of Animals. With a Study
of the Relations of Living and Extinct Faunas as Elucidating the Past

hominoid genus from the Middle Miocene of Kenya. Science 285, 1382–
1386.

1997.

Williams, L.A.J., Chapman, G.R., 1986. Relationships between major struc-
tures, salic volcanism and sedimentation in the Kenya Rift from the equa-
tor northwards to Lake Turkana. In: Frostick, L.E., Renaut, R.W., Reid, I.,
Tiercelin, J.J. (Eds.), Sedimentation in the African Rifts. Geol. Soc. Lon-

783–798.

