1. Introduction

- The 2-torus \(T^2 \), familiarly known as a donut, is the 2-dimensional manifold formed by gluing opposite sides of a parallelogram together. Mathematically, we define it by \(T^2 = \mathbb{R}^2 / \mathbb{Z}^2 \).

- One can measure the distance between two points \(p, q \) on \(T^2 \) by first "unrolling" the torus, then measuring the Euclidean distance between \(p \) and \(q \) in the resulting parallelogram. This method of measuring distance gives \(T^2 \) a flat metric, essentially meaning that locally the geometry of the torus looks like the geometry of the familiar euclidean plane.

- Say two tori are "equivalent" if one can be smoothly transformed into the other while preserving the distances between points. How many different unmarked lattices, hence nonisometric tori, are there?

- In this project, we studied the connections between two methods of parametrizing all lattice bases \(\{ \text{are spanned by} \} \) lattices determined by \(\tau \), and lattices in \(\mathbb{R}^2 \) that are identical up to rotation and uniform scaling.

2. The Upper Half Plane and Euclidean Lattices

The upper half plane \(\mathbb{H}^2 \) is defined to be \(\{ z \in \mathbb{C} : \text{Re}(z) > 0 \} \). The group \(\text{SL}_2(\mathbb{R}) = \{ M \in \text{GL}_2(\mathbb{R}) : \det(M) = 1 \} \) acts on \(\mathbb{H}^2 \) via fractional linear transformations

\[
\begin{pmatrix} u & \overline{v} \\ v & \overline{u} \end{pmatrix} : z \mapsto \frac{az + b}{cz + d},
\]

This action is transitive: for any point \(\tau = x + iy \in \mathbb{H}^2 \), the transformation

\[
M_\tau = \begin{pmatrix} \sqrt{y} & -1 \\ 0 & \sqrt{y} \end{pmatrix}
\]

maps the point \(\tau \) to the point \(\iota \). The columns of \(M_\tau \) determine a lattice in \(\mathbb{R}^2 \). As \(\det M_\tau = 1 \), the fundamental parallelogram \(\mathbb{P} \) of the resulting lattice will have area 1. Thus, we identify \(\tau \) with the torus that results from gluing the opposite sides of \(\mathbb{P} \).

Example 1: \(i \) versus \(1 + i \). The lattices determined by \(i \) and \(1 + i \) are spanned by \(\{(1,0)^t, (0,1)^t\} \) and \(\{(1,0)^t, (1,1)^t\} \), respectively. While the lattice bases are different, the lattice points they determine are identical. We conclude that \(i \) and \(i + 1 \) determine the same torus up to isometry.

To handle this double-counting, we identify points \(\tau, p \in \mathbb{H}^2 \) if they determine the same lattice up to choice of basis. The action of \(\text{SL}_2(\mathbb{Z}) \) sends lattice bases to lattice bases of the same lattice. So, we map a point \(\tau \) by the action of \(\text{SL}_2(\mathbb{Z}) \) to find a sole representative for each unmarked lattice, hence nonisometric torus.

3. Results

How our program works:

- The user clicks a point \(p \) in the upper half-plane. Using the \(\text{SL}_2(\mathbb{Z}) \) action, a shadow point \(q \) is generated in the fundamental domain \(\mathcal{F} = \{ z \in \mathbb{C} : -1/2 \leq \text{Re}(z) \leq 1/2, |z| \geq 1 \} \).

Generation of the shadow point

It is well-known that \(\text{SL}_2(\mathbb{Z}) = \langle S, T \rangle \) where \(S \) and \(T \) are the fractional linear transformations

\[
S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

These transformations can be combined to build all elements of \(\text{SL}_2(\mathbb{Z}) \). We use an algorithm similar to the Euclidean algorithm for division to reverse-engineer the decomposition of the \(A \in \text{SL}_2(\mathbb{Z}) \) such that \(AP = q \).

Theorem. The following procedure, given \(p \in \mathbb{H}^2 \), will return \(A \in \text{SL}_2(\mathbb{Z}) \) such that \(Ap = q \):

1. Apply \(T \) to \(p \) until \(-1/2 \leq W(p) \leq 1/2 \). Update the value of \(p \).
2. Apply \(S \) to invert \(p \) about the unit circle. Update the value of \(p \). Note that \(3p \) strictly increases under this inversion.
3. Repeat (1) and (2) until the \(|z| \) moves \(p \) above the unit circle.
4. Apply \(T \) until \(p \) sits in \(\mathcal{F} \).

As there are only finitely many regions in the tiling with real part between \(-1/2 \) and \(1/2 \) and imaginary part bounded below by some \(k > 0 \), this procedure will terminate.

4. Visualizing Other Spaces of Geometric Structures

The ideas used in this project can be used to parametrize non-Euclidean metrics on a variety of genus \(g \) surfaces. For example, how many hyperbolic metrics exist on a sphere with three disks removed, commonly referred to as a pair of pants? We are not restricted to hyperbolic geometry: we can consider convex projective structures as well. In this setting, cut a pair of pants into two triangles and unfold it onto a convex subset of the projective plane in a way analogous to unrolling a torus. We can then define a metric on this convex subset of the projective plane to define a metric on the pair of pants. William Goldman has come up with a system of 8 coordinates which completely parametrizes the space of all convex projective structures on a pair of pants. In order to better understand these coordinates, we created a visualization tool which generates tilings of a convex subset of the projective plane given a choice of these coordinates. These tilings allow us to visualize the metric induced on the pair of pants (see Figure 4). Because this space has 8 parameters, convex projective structures can vary in complicated ways (see Figure 5), offering many opportunities for further investigation.

Visualizing Structures on the Torus and Pair of Pants.

Samuel Freedman, Jacob Shulkin, Eric Winsor, Feng Zhu, Dr. Caleb Ashley, Dr. Anton Lukyanenko

Laboratory of Geometry at Michigan

Although \(p \) and the shadow point \(q \) are in the same \(\text{SL}_2(\mathbb{Z}) \)-orbit, their associated lattices are only equivalent up to rotation. Why? The action of changing bases via \(\text{SL}_2(\mathbb{Z}) \) induces a rotation on the tangent space to the point \(p \). As we think of two lattices to be equivalent if they differ by rotation, we apply a rotation \(R \) which fixes \(A \) so that \(\det(A) = \pm 1 \). See Figure 2.

Explicitly, we have the equation

\[
M_\tau(p) = (R \circ M_q \circ A)(p),
\]

and we wish to solve for \(R \) such that we may correct the incidental rotation. An application of the chain rule yields

\[
R(p) = \frac{1}{|z|^2} \text{ad}(A(p)),
\]

so we can make the proper adjustment to the lattice associated with \(M_q \).

Figure 3: Rotation is introduced by the \(L \) transformation, which we cancel by post-composing with \(R \) so that the diagram "commutes."

Figure 4: A convex subset of the projective plane can be tiled by triangles parameterized by Goldman’s coordinates.

Figure 5: Choosing different values for the parameters can result in significant distortions of the tiling.

References