Probing RNA-Protein Interactions Using Pyrene-labeled Oligodeoxynucleotides: Qβ Replicase Efficiently Binds Small RNAs by Recognizing Pyrimidine Residues

Regine Preuß, Johannes Dapprich and Nils G. Walter*

Max-Planck-Institute for Biophysical Chemistry
Department of Biochemical Kinetics, Am Fassberg
D-37077, Göttingen, Germany

Binding of small RNAs by the RNA-dependent RNA polymerase of coliphage Qβ was studied utilizing a fluorometric assay. A DNA oligonucleotide probe of sequence 5'-d(TTTTCC) was 5'-end-labeled with pyrene. In this construct, the proximal thymine residues efficiently quench the fluorophore emission in solution. Upon stoichiometric binding of one probe per polymerase molecule, the pyrene steady-state fluorescence increases by two orders of magnitude, the fluorescence anisotropy increases, and a long fluorescence lifetime component of 140 ns appears. With addition of replicable RNA, steady-state fluorescence decreases in a concentration dependent manner and the long lifetime component is lost. This observation most likely reflects displacement of the pyrene-labeled probe from the proposed nucleic acid binding site II of Qβ replicase. The effect was utilized to access binding affinities of different RNAs to this site in a reverse titration assay format. In 10 mM sodium phosphate (pH 7.0), 100 mM NaCl, at 16°C, equilibrium dissociation constants for different template mini- and minivariant RNAs were calculated to be in the nanomolar range. In general, the minus and plus strands, concomitantly synthesized by Qβ replicase during replication, exhibited discriminative affinities, while their hybrid bound less efficiently than either of the single strands. Different non-replicable tRNAs also bound to the polymerase with comparable dissociation constants. By titration with DNA homo-oligonucleotides it was shown that the probed site on Qβ replicase does not require a 2'-hydroxyl group for binding nucleic acids, but recognizes pyrimidine residues. Its interaction with thymine is lost in an A-T base-pair, while that with cytosine is retained after Watson-Crick base-pairing. These findings can explain the affinities of RNA-Qβ replicase interactions reported here and in earlier investigations. The sensitivity of the described fluorometric assay allows detection of RNA amplification by Qβ replicase in real-time.

© 1997 Academic Press Limited

Keywords: fluorescence lifetime; fluorometry; MDV; real-time detection; RNA-dependent RNA polymerase

Introduction

Qβ replicase is the RNA-dependent RNA polymerase responsible for replication of the single-stranded RNA genome of coliphage Qβ. As in other viral RNA polymerases (isolated, e.g., from phages MS2 (Fedoroff, 1975), GA (Yonesaki & Haruna, 1981), or SP (Miyake et al., 1971)), only one subunit of the heterotetrameric enzyme is phage encoded (Kamen, 1970; Kondo et al., 1970). This subunit renders replication by the enzyme...
specific to its own genome in the context of the host’s cellular RNA. The other three components are host encoded nucleic acid binding proteins, namely the ribosomal protein S1 (Wahba et al., 1974) as well as the elongation factors EF Tu and EF Ts (Blumenthal et al., 1972).

The exact roles of the host proteins for replication of viral RNA by Qβ replicase are yet to be defined. In Escherichia coli, EF Tu binds the 3’ end of aminoacylated tRNAs to transfer them to the ribosome for protein biosynthesis (Chinali et al., 1974). Hydrolysis of a bound GTP provides the energy necessary for this process to take place. As a subunit in Qβ replicase, EF Tu seems to be necessary for RNA replication initiation only (Carmichael et al., 1976). Since replication initiates with joining two molecules of GTP complementary to the 3’ end of the template, it has been suggested that EF Tu has similar roles both in protein biosynthesis and RNA replication: binding and bringing together GTP and the 3’ end of an RNA molecule (Biebricher, 1983, 1987a). However, EF Tu has to be complexed with EF Ts for full functionality in both processes (Blumenthal & Carmichael, 1979).

The role of the protein S1 subunit of Qβ replicase is also obscure. During RNA replication, the plus strand of the viral genome is bound by the polymerase and used as a template for synthesis of the complementary minus strand, and vice versa. The strong secondary structure of the single-strands impairs double-strand formation, so that each replicative cycle roughly doubles the previous amount of single-stranded templates. The result is an exponential enrichment of replicated genomic and antigenomic RNAs (Dobkin et al., 1979; Biebricher et al., 1983, 1984). Ribosomal protein S1 is necessary only for the synthesis of the minus strand of the Qβ genome. Another host factor is also necessary for this step (Spiegelman et al., 1968), that binds the 3’ end of the plus strand to enable replication initiation (Barrera et al., 1993). Thus, protein S1 might mediate the interaction of Qβ replicase with this additional host factor (Biebricher, 1987a). Additionally, S1 has been shown to bind two sites on the plus strand essential for replication, prompting the notion of S1 providing template recognition prior to complementary strand synthesis (Senear & Steitz, 1976; Meyer et al., 1981). In contrast, the minus strand of Qβ-RNA can be copied in vitro using a polymerase preparation lacking both protein S1 and the host factor (Kamen et al., 1972). This observation suggests that minus strand recognition is accomplished by the three other subunits of the Qβ replicase complex alone.

More recently, a model for the nucleic acid binding properties of the different subunits has been proposed, based on in vitro selection of RNA ligands and their UV-crosslinking to Qβ replicase (Brown & Gold, 1995a, 1996). According to this model, the S1 protein binds a class I of RNA ligands, including the plus strand of Qβ-RNA, that exhibits a high fraction of unpaired A and C bases. A second binding site is located on EF Tu and interacts with class II ligands with polypyrimidine stretches. This combination of two independent binding sites would have the benefit of facilitating replication by Qβ replicase, since the polymerase could stay in contact with both the template and the product strand for a fast reinitiation of synthesis (Brown & Gold, 1996).

Apart from viral RNA (4217 nucleotides long), Qβ replicase can utilize a number of short-chained (30 to 250 nt) templates for replication. In Qβ phage infected Escherichia coli cells, a variety of RNA variants summed up as “6 S RNA” is generated in conjunction with Qβ-RNA (Banerjee et al., 1969). Spiegelman (1971) and co-workers selected some efficiently replicated variants in in vitro evolution experiments starting from Qβ-RNA. Numerous mid-, mini-, and novanvariants were generated in vitro without the addition of an exogenous template (Kacian et al., 1972; Sump & Luce, 1975; Mills et al., 1975; Schaffner et al., 1977; Biebricher et al., 1981, 1982; Biebricher, 1987b; Munishkin et al., 1988, 1991; Biebricher & Luce, 1993; Moody et al., 1994). While Qβ-RNA and the midvariant RNA share a common internal sequence motif that is recognized by the replicase (Nishihara et al., 1983), most replicable RNA variants do not show large sequence similarities. Therefore, considerable efforts have been made to find a general basis for specific RNA recognition by Qβ replicase. Imaging by electron microscopy (Vollenweider et al., 1976; Barrera et al., 1993), footprinting experiments with RNases (Schaffner et al., 1977; Meyer et al., 1981), gel-retardation and filter retention assays (Werner, 1991), deletion analyses (Schuppli et al., 1994), and in vitro selection for RNAs being bound (Brown & Gold, 1995a) or replicated by the enzyme (Zambon et al., 1995; Brown & Gold, 1995b) have been utilized to characterize the RNA-protein interactions in this model system.

We have devised a fluorometric assay employing a 5’-pyrene labeled DNA probe to study interactions of Qβ replicase with various nucleic acids. By considering the probe sequence and length of the attachment linker, we were able to observe fluorescence quenching through fluorophore-nucleo base interactions in the free probe. Despite its deoxyribose backbone, the probe is readily bound by the RNA-dependent RNA polymerase, as observed through a profound fluorescence increase upon addition of Qβ replicase. With addition of replicable RNA to the probe-enzyme complex, the fluorescence decreases again. Apparently, the binding site on the enzyme is the same for both DNA probe and RNA, resulting in displacement of the probe from its shielding environment in the complex. This effect was used to access equilibrium dissociation constants of different RNAs and DNAs to Qβ replicase in a reverse titration assay. The resulting data on affinities of nucleic acid-Qβ replicase interactions provide insights into sequence specific recognition by this RNA polymerase.
Results

A 5'-pyrene labeled DNA probe is bound and becomes dequenched by Qβ replicase

Pyrene-labeled DNA or RNA probes previously have been used for studying nucleic acid interactions. For example, the formation of hybrids between complementary RNAs or DNAs could be monitored by exploiting a change in quenching efficiency of the attached pyrene (Koenig et al., 1977; Yamana et al., 1992a,b; Mann et al., 1992; Bevilacqua et al., 1992; Kierzek et al., 1993; Turner et al., 1996; Daprnick et al., 1997). The fluorophore is specifically quenched through (possibly proton-coupled) electron-transfer interactions with proximal pyrimidine residues, that are altered upon base-pair formation (Kierzek et al., 1993; Manoharan et al., 1995; Daprnick et al., 1997).

We have utilized this effect to design a readily available DNA probe in which an attached pyrene moiety is highly quenched (Figure 1(a)). We coupled a pyrene butyric acid moiety via an amionopropyl linker to the 5' end of the DNA sequence 5'-d(TTTTTCC), using standard synthesis chemistry (see Materials and Methods). The pyrimidine-rich sequence and the medium length linker favor quenching of the fluorophore by electron transfer from the excited pyrene to the adjacent bases (J.D., N.G.W. & C. Seidel, unpublished results). We found the probe steady-state fluorescence decreased by about 180-fold as compared to uncoupled pyrene butyric acid in aqueous solution (data not shown).

The chosen probe is complementary to an internal loop of the minus strand of MNV-11 RNA (MNV-11(−)), a short and highly structured variant replicated by Qβ replicase (Figure 5). Surprisingly, addition of this RNA to the probe under various conditions did not result in a change of the observed fluorescence signal (data not shown). Apparently, either the formation of probe-RNA complex does not interfere with pyrene quenching or the complex does not form because of occlusion of the probe’s potential binding site through the tight secondary and tertiary structure of the target RNA. However, when Qβ replicase was added to the probe, the steady-state fluorescence of pyrene increased by about 180-fold as compared to uncoupled pyrene butyric acid in aqueous solution (data not shown).

The chosen probe is complementary to an internal loop of the minus strand of MNV-11 RNA (MNV-11(−)), a short and highly structured variant replicated by Qβ replicase (Figure 5). Surprisingly, addition of this RNA to the probe under various conditions did not result in a change of the observed fluorescence signal (data not shown). Apparently, either the formation of probe-RNA complex does not interfere with pyrene quenching or the complex does not form because of occlusion of the probe’s potential binding site through the tight secondary and tertiary structure of the target RNA. However, when Qβ replicase was added to the probe, the steady-state fluorescence of pyrene increased by about 180-fold as compared to uncoupled pyrene butyric acid in aqueous solution (data not shown).

The chosen probe is complementary to an internal loop of the minus strand of MNV-11 RNA (MNV-11(−)), a short and highly structured variant replicated by Qβ replicase (Figure 5). Surprisingly, addition of this RNA to the probe under various conditions did not result in a change of the observed fluorescence signal (data not shown). Apparently, either the formation of probe-RNA complex does not interfere with pyrene quenching or the complex does not form because of occlusion of the probe’s potential binding site through the tight secondary and tertiary structure of the target RNA. However, when Qβ replicase was added to the probe, the steady-state fluorescence of pyrene increased by about 180-fold as compared to uncoupled pyrene butyric acid in aqueous solution (data not shown).

The chosen probe is complementary to an internal loop of the minus strand of MNV-11 RNA (MNV-11(−)), a short and highly structured variant replicated by Qβ replicase (Figure 5). Surprisingly, addition of this RNA to the probe under various conditions did not result in a change of the observed fluorescence signal (data not shown). Apparently, either the formation of probe-RNA complex does not interfere with pyrene quenching or the complex does not form because of occlusion of the probe’s potential binding site through the tight secondary and tertiary structure of the target RNA. However, when Qβ replicase was added to the probe, the steady-state fluorescence of pyrene increased by about 180-fold as compared to uncoupled pyrene butyric acid in aqueous solution (data not shown).
Probe and Qβ replicase form a stable stoichiometric complex, from which the probe can be displaced by replicable RNA

When an excess of double-stranded MNV-11 RNA (MNV-11(ds)) was added to the mixture of probe with Qβ replicase (Figure 1(b)), the enhanced pyrene steady-state fluorescence decreased again and its long fluorescence lifetime component was suppressed (Table 1 and Figure 2(b)). MNV-11(ds) is known to bind to a site on the polymerase essential for RNA replication, thereby inhibiting synthesis of the single-strands in late stages of in vitro replication (Biebricher et al., 1984; Biebricher 1987a).

Figure 1(b) offers an explanation for the observed reversal of dequenching of the probe-Qβ replicase complex by addition of minivariant RNA (see Discussion). The pyrimidine-rich DNA probe is assumed to bind reversibly to Qβ replicase at a site also utilized for binding replicable RNA. Through complex formation, the pyrene fluorophore is shielded from quenching interactions with the probe’s pyrimidine residues, resulting in a fluorescence increase. Upon addition of replicable RNA, the probe is displaced from its binding site by competition with the RNA, and it becomes quenched again.

To analyze the probe-Qβ replicase interaction in a more quantitative way, we performed two titration assays. First, 0.25 μM Qβ replicase were titrated with a stock solution of pyrene-labeled probe. Fluorescence intensity was monitored as a function of probe concentration to extract the equilibrium dissociation constant of the probe-enzyme complex (Figure 3). Second, a reverse titration of probe-Qβ replicase complex with MNV-11(ds) (Figure 5) was performed. The resulting fluorescence decrease was used in a Scatchard plot to infer the stoichiometry of RNA molecules required for displacing the probe from the complex (Figure 4).

Equation (2) (see Materials and Methods) was used to fit the data points from the forward titration of Qβ replicase with probe in Figure 3 to yield an equilibrium dissociation constant for the enzyme/probe complex of 11 (±2) nM (Table 2). This value was reproducible in several titrations monitored either at an emission wavelength of 385 nm or 416 nm. Noteworthy, the fluorescence increase in Figure 3 starts to level off at approximately stoichiometric concentrations of probe and enzyme (0.25 μM each). This observation suggests a 1:1 ratio of probe binding to Qβ replicase.

Analyzing the fluorescence data from reverse titration of probe/Qβ replicase complex with MNV-11(ds) in a Scatchard plot as described in equation (11) (see Materials and Methods) yielded a linear regression line with a y-intercept of 0.93 (Figure 4). This figure corresponds to the inverse of the number of binding sites on Qβ replicase from which MNV-11 is displacing a pyrene-labeled probe. Finding this number to be 0.93 strongly argues for the scheme in Figure 1(b), where one probe molecule becomes bound per Qβ replicase molecule and can be displaced reversibly by replicable RNA.

Equilibrium dissociation constants of nucleic acid-Qβ replicase complexes from reverse titration assays

Using the difference in fluorescence of free 5′-pyrene-labeled probe versus probe bound to Qβ replicase, we were able to perform reverse titration assays for a variety of RNAs and DNAs that would displace probe from its complex with Qβ replicase (Figure 1(b)). The most important of the employed replicable RNAs are depicted in Figure 5. Equation (9) (see Materials and Methods) was used to analyze the fluorescence titration curves by non-linear least-squares regression, as exemplified in Figure 6. The resulting dissociation constants are listed in Table 2.

The dissociation constants (Kd) vary from 1.8 nM to 1200 nM, indicating a wide range of affinities between nucleic acids and Qβ replicase. Alongside replicable RNA, a variety of non-template nucleic acids, such as tRNAs or DNAs, are bound with considerable affinity. The DNA probe binds to the enzyme with an intermediate Kd of 11 nM. This finding is a prerequisite for accurately measuring

<table>
<thead>
<tr>
<th>Sample*</th>
<th>Relative intensity at 385 [416] nm</th>
<th>Anisotropy*</th>
<th>Lifetimes (ns) (rel. amplitudes)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe</td>
<td>1 [1]</td>
<td>-0.061</td>
<td>0.73 [0.68], 6.39 [0.32]</td>
</tr>
<tr>
<td>Probe + Qβ replicase</td>
<td>121 [155]</td>
<td>-0.044</td>
<td>5.03 [0.07], 139 [0.93]</td>
</tr>
<tr>
<td>Probe + Qβ replicase + MDV(ds)</td>
<td>—</td>
<td>-0.039</td>
<td>0.30 [0.48], 8.23 [0.09], 142 [0.43]</td>
</tr>
</tbody>
</table>

* All measurements were performed in standard buffer (10 mM sodium phosphate, pH 7.0, 100 mM NaCl) at 16°C as described in Materials and Methods. Concentrations were 1.5 μM probe and 1.0 μM Qβ replicase for the intensity measurements, 5 μM probe for anisotropy and lifetime measurement of the probe alone, and 0.25 μM probe, 0.25 μM Qβ replicase, and 1.0 μM MDV(ds) for the other anisotropy and lifetime measurements, respectively.

‡ A more detailed description of fluorescence intensities upon reverse titration of probe/Qβ replicase complex with MDV(ds) is given in Figure 6.

§ Fluorescence anisotropies were calculated from intensity measurements with polarized light as described in Materials and Methods.

¶ Data sets were fitted as described in Materials and Methods to yield exponential decay components. Their amplitudes were normalized to add up to 1.

Table 1. Fluorescence intensities, anisotropies, and lifetimes of 5′-pyrene-labeled probe 5′-d(TTTTTCC), before and after addition of Qβ replicase and dsMDV-1 RNA

<table>
<thead>
<tr>
<th>Sample*</th>
<th>Relative intensity at 385 [416] nm</th>
<th>Anisotropy*</th>
<th>Lifetimes (ns) (rel. amplitudes)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe</td>
<td>1 [1]</td>
<td>-0.061</td>
<td>0.73 [0.68], 6.39 [0.32]</td>
</tr>
<tr>
<td>Probe + Qβ replicase</td>
<td>121 [155]</td>
<td>-0.044</td>
<td>5.03 [0.07], 139 [0.93]</td>
</tr>
<tr>
<td>Probe + Qβ replicase + MDV(ds)</td>
<td>—</td>
<td>-0.039</td>
<td>0.30 [0.48], 8.23 [0.09], 142 [0.43]</td>
</tr>
</tbody>
</table>

* All measurements were performed in standard buffer (10 mM sodium phosphate, pH 7.0, 100 mM NaCl) at 16°C as described in Materials and Methods. Concentrations were 1.5 μM probe and 1.0 μM Qβ replicase for the intensity measurements, 5 μM probe for anisotropy and lifetime measurement of the probe alone, and 0.25 μM probe, 0.25 μM Qβ replicase, and 1.0 μM MDV(ds) for the other anisotropy and lifetime measurements, respectively.

‡ A more detailed description of fluorescence intensities upon reverse titration of probe/Qβ replicase complex with MDV(ds) is given in Figure 6.

§ Fluorescence anisotropies were calculated from intensity measurements with polarized light as described in Materials and Methods.

¶ Data sets were fitted as described in Materials and Methods to yield exponential decay components. Their amplitudes were normalized to add up to 1.
dissociation constants of other nucleic acids in a reverse titration or displacement assay format. If the probe bound too weakly to Qβ replicase, the reverse titration curves would not change with nucleic acids of different affinities, and a calculated K_d would not reflect a valid estimate for the dissociation constant. Alternatively, if the probe bound too tightly, it could not be displaced efficiently by other nucleic acids. Thus, the short DNA probe chosen here is not only favorable for analyses of nucleic acid/Qβ replicase interactions due to its fluorescence quenching properties, but also because of a well suited dissociation constant.

Replication of RNA by Qβ replicase can be monitored in real-time by fluorescence decrease of a pyrene-labeled DNA probe

Recently, Qβ replicase has been suggested for exponential amplification of reporter RNAs in diagnostic clinical assays (Chu et al., 1986; Kramer & Lizardi, 1989; Burg et al., 1995, 1996; Tyagi et al., 1996; Stone et al., 1996). The observation that a sensitive, easily synthesizable 5'-pyrene-labeled DNA probe can be used to detect binding of replicable RNAs to Qβ replicase prompts a novel type of fluorescence detection for these assays. We supplemented a standard amplification reaction of MNV-11 by Qβ replicase with 0.25 mM pyrene-probe (see Materials and Methods). Upon addition of the probe, fluorescence increased as observed before, due to probe binding to the polymerase. With exponential amplification of MNV-11 RNA, the probe is increasingly displaced due to competition for the binding site of Qβ replicase. Consequently, the pyrene fluorescence decreases significantly by about 60% (Figure 7). The time trace of fluorescence thus shows an inverted profile as compared to detection by a free fluorophore such as ethidium bromide or propidium iodide,
which exhibits fluorescence enhancement upon intercalation into amplified RNA (Schober et al., 1995; Burg et al., 1995).

Discussion

Fluorophore-labeled nucleotides and nucleic acids recently have found increasing interest for studying nucleic acid/protein interactions (e.g. Allen et al., 1989; Giedroc et al., 1991; Guest et al., 1991; Delahunty et al., 1994; Carver et al., 1994; Huang & Klingenberg, 1995; Jezewska & Bujalowski, 1996; Thrall et al., 1996). We have devised an assay in which the fluorescence of a 5’-pyrene-labeled DNA probe is enhanced upon 1:1 stoichiometric binding to the RNA-dependent RNA polymerase of coliphage Qβ. This effect seems to stem from the shielding of the fluorophore from quenching effects by the pyrimidine residues of the probe nucleic acid sequence (Manoharan et al., 1995; Dapprich et al., 1997). If nucleic acids are added that compete for the same binding site on Qβ replicase, the probe fluorescence decreases again.

Upon combining probe and Qβ replicase, the anisotropy of pyrene fluorescence increases from −0.061 to −0.044 (Table 1). This change is consistent with a probe/enzyme complex forming, that can be expected to result in a slower rotational diffusion and higher anisotropy of the dye on the probe (Lakowicz, 1983). Moreover, a fast (<1 ns) lifetime component of the free probe is lost with addition of enzyme, while a long (∼140 ns) lifetime component appears. Upon addition of a fourfold excess of MDV(ds) RNA, the relative amplitude of the short lifetime component increases again, while that of the long lifetime component decreases (Table 1). Higher concentrations of competing RNA enhance this reversal (data not shown), resulting in the fluorescence decrease upon titration presented here. A reversible exchange of competing nucleic acids on a single site of Qβ replicase (Figure 1(b)) seems the most likely interpretation of these findings.

The probe fluorescence signal quickly (<5 minutes) stabilizes after addition of Qβ replicase, and again after addition of competing unlabeled nucleic acids. Apparently, equilibrium adjustment between free and Qβ replicase-bound nucleic acids occurs rapidly. This finding is in agreement with the fast association and dissociation rates previously observed for MDV and Qβ genomic RNAs binding to the polymerase (Werner, 1991). With Qβ replicase binding a variety of different nucleic acids, including tRNA and DNA, this fast

![Figure 4. Scatchard plot of the fluorescence decrease upon titration of probe/Qβ replicase complex with MNV-11(−) RNA. Equation (2) (see Materials and Methods) was used to calculate the parameters characterizing the interaction of MNV-11(−) with polymerase. The slope of the linear regression line (continuous line, represented by the given equation with a correlation coefficient of r = 0.999) yields a dissociation constant of \(K_d = 4.5 \text{ nM} \), while the y-intercept defines the number of probe binding sites to \(n = 1/0.93 \approx 1 \).](image-url)

| Table 2. Dissociation constants \((K_d) \) of nucleic acid/Qβ replicase complexes, as derived from forward and reverse titrations of 5’-pyrene-labeled probe/enzyme complex. |
|-----------------|----------------|
| Nucleic acid | \(K_d \) (nM) |
| Probe 5’-dT(TTTTCC) | (11 ± 2) |
| MDV(−) | (3.3 ± 0.7) |
| MDV(+) | (10 ± 2) |
| MDV(ds) | (23 ± 5) |
| MNV-11(−) | (4.3 ± 0.8) |
| MNV-11(+) | (17 ± 5) |
| MNV-11(ds) | (24 ± 8) |
| SN0706 | (5.1 ± 0.9) |
| SN0709 | (5.2 ± 0.9) |
| DN3 | (6.6 ± 1.2) |
| Total tRNA (E. coli) | (38 ± 7) |
| Total tRNA (yeast)| (20 ± 4) |
| Total tRNA (wheat germ) | (10 ± 2) |
| tRNAPro+E. coli | (360 ± 65) |
| tRNAPro+E. coli | (31 ± 6) |
| tRNAPro+E. coli | (14 ± 3) |
| Synthetic tRNAPro+E. coli | (11 ± 2) |
| Synthetic tRNAPro+E. coli | (10 ± 2) |
| dC20 | (1.8 ± 1.2) |
| dC20 | (2.3 ± 1.0) |
| dC20 | (1000 ± 250) |
| dG20 | (1200 ± 300) |
| dG20/dA20(ds) | (2.9 ± 0.8) |
| dT20/dA20(ds) | (480 ± 150) |

*All measurements were performed in standard buffer (10 mM sodium phosphate, pH 7.0, 100 mM NaCl) at 16 °C as described in Materials and Methods. Concentrations for the forward titration were 0.25 μM Qβ replicase in buffer titrated with a 7 μM probe stock solution. For the reverse titration, a 17.5 μM RNA or DNA stock solution was added gradually to buffer containing 0.25 μM Qβ replicase and 0.38 μM probe.

\(K_d \) values were derived from non-linear fitting of titration curves as described in Materials and Methods. The given deviations reflect errors from at least two separate titrations, each analyzed at two emission wavelengths (385 and 416 nm). They also take into account the error from determination of \(K_d \) for the probe/enzyme complex. To obtain valid \(K_d \) values for double-stranded RNA or DNA, it was ensured that the excess of one of the single strands was less than 5% by purification of double-strands on non-denaturing gels.
Figure 5. Replicable RNA variants utilized in this study. MDV(+) is a naturally occurring RNA (Mills et al., 1973). Its structure is adapted from Nishihara et al. (1983). Bold letters indicate nucleotides that are identical with Qb minus strand RNA. MNV-11 is a species that evolved in in vitro evolution experiments. Its plus and minus strands are amplified concomitantly by Qb replicase and can be replicated indefinitely without selection of other variants (Biebricher, 1987b). SN0706 and SN0709 were derived from transcribed precursors after limited incubation with Qb replicase (Zamora et al., 1995). DN3 evolved in an early stage of apparently template-free replication with Qb replicase (Biebricher & Luce, 1993). The indicated secondary structures for MNV-11, SN0706, SN0709, and DN3 are predicted by folding algorithms and were verified by structure probing techniques (R. P. & C. K. Biebricher, unpublished results). However, it has to be emphasized that they represent only one of typically several alternative structures, and that other structures might be prevalent in RNA preparations.
exchange of bound nucleic acids might help the enzyme to screen for Qb genomic RNA in the cellular environment of infected E. coli. Of the many individual nucleic acid molecules encountering an interaction with the polymerase, only those exhibiting additional properties such as a 5′ leader stem and an unpaired C-tract on the 3′ terminus will eventually be replicated (Zamora et al., 1995; Brown & Gold, 1995b).

On the basis of the recently proposed model for nucleic acid binding and replication by Qb replicase, it seems reasonable to assume that the probe binds to the proposed RNA binding site II, presumably located on subunit EF Tu (Brown & Gold, 1996). This site has been shown to bind pyrimidine tracts of in vitro selected RNA ligands and assist in complementary strand initiation (Brown & Gold, 1995a, 1996). Despite its lack of 2′-hydroxyl groups, the hepta-pyrimidine sequence of the probe (5′-d(TTTTTCC)) appears to be sufficient for binding to this site with a nanomolar dissociation constant (Kd = 11 nM). All nucleic acids with pyrimidines employed in the reverse titration assay were able to displace the probe from this site on Qb replicase. This observation is consistent with the fact that most replicable RNAs preferably interact with binding site II, except for the Qb genomic plus strand (Brown & Gold, 1996).

Since only the binding of one probe molecule per Qb replicase was detected by an increase in pyrene fluorescence, and since this molecule most probably binds to RNA binding site II, the equilibrium dissociation constant measured for the probe/enzyme complex also reflects binding to site II only. If more probe molecules bind to Qb replicase, e.g. to site I, these additional molecules do not change their fluorescence signal upon binding. The same line of argumentation holds for the reverse titration assays, where the displacement of only one probe molecule per Qb replicase was detected by fluorescence quenching (Figure 4). Consequently, the equilibrium dissociation con-

Figure 6. Reverse titration of probe/Qb replicase complex with (a) single and double-stranded MDV RNAs, (b) single and double-stranded MNV-11 RNAs, (c) short replicable variants, and (d) homo-oligodeoxynucleotides. For (a) to (c), both the data points for the fluorescence decrease with increasing RNA content as well as the curve fits using equation (9) (see Materials and Methods) are shown. In (d), titration data points are connected for better visibility.
Figure 7. Real-time monitoring of RNA amplification by Qβ replicase. A standard replication reaction of MNV-11 RNA was supplemented with 0.25 μM 5’-pyrene labeled DNA probe as described in Materials and Methods. A subsequent increase in amplified RNA concentration resulted in a decrease in fluorescence upon competition of probe with MNV-11 RNA for binding sites on Qβ replicase.

Nanomolar equilibrium dissociation constants for replicable RNAs, as derived from pyrene quenching experiments, generally are consistent with values obtained through gel-retardation or filter binding assays (Werner, 1991; Brown & Gold, 1995a). However, MDV(+) has been described earlier to bind to Qβ replicase with higher affinity than MDV(−) (Werner, 1991), while in our study they behaved the opposite under fairly similar conditions (Table 2). This discrepancy might relate to the fact that binding RNA to all accesssible sites on Qβ replicase as during gel-shifts or filter retention can only yield an average binding constant for all available sites, such as the suggested sites I and II. As described above, the fluorescence assay can be expected to be more specific for site II binding. MDV(+) has been shown to bind to Qβ replicase through interactions with nucleotide sequences near the middle of the RNA, that are almost identical to an internal region of Qβ antigenomic minus strand (Figure 5; Nishihara et al., 1983). Though Qβ(−) RNA appears to be a site II binder (Brown & Gold, 1996), it cannot be excluded that MDV(+) interacts with other regions as well. Another reason for the observed discrepancy in MDV binding could be that the preparations used here and in the earlier study displayed alternative secondary structures depending on their thermal history. Indeed, different secondary structures have been proposed for MDV(+) RNA (Nishihara et al., 1983; Chu et al., 1986). The observation that base-pair formation has a large impact on binding affinities of pyrimidines, especially thymine or uracil, could then explain differences in performance of independent RNA preparations.

It has been known for some time that a broad class of replicable RNAs exhibit pyrimidine-rich tracts (Schaffner et al., 1977; Biebricher, 1987b; Munishkin et al., 1988, 1991; Moody et al., 1994). These sequence elements have been proposed to enable binding to Qβ replicase (Sumper & Luce, 1975) and more recently have been identified as characteristic for site II ligands (Brown & Gold, 1995a). The replicable RNAs employed in our study all contain one or more such C/U-rich domains (Figure 5). The abundancy of these elements and their accessibility for the enzyme in the secondary and tertiary structure context of individual RNAs will determine their distinct K_s. Discriminative binding affinities for plus and minus strands, as synthesized concomitantly during replication (Biebricher et al., 1983, 1984) might then help in separation of the template from the product strands onto binding sites I and II, or in asymmetric amplification. Interestingly, all three small RNAs derived from early stages of selection experiments (namely SN0706, SN0709, DN3; Figure 5), are binding with comparably high affinities. Efficient binding to Qβ replicase therefore appears to be an integral feature at this stage, before better replicable variants with additional qualities like MNV-11 evolve.

Total tRNA from E. coli binds to Qβ replicase with lower affinity than tRNA from eukaryotic sources (K_d = 38 nM versus 10 to 20 nM, respectively; Table 2). Individual tRNAs that are abundant in E. coli, such as tRNA^His, bind with even higher K_d (360 nM for tRNA^His). In addition, post-transcriptional modifications might play a role in determining binding affinities, since the two tRNAs used as unmodified synthetic transcripts exhibited higher affinities than the natural tRNA utilized in this study (Table 2). Freshly synthesized Qβ RNA will be unmodified. It seems therefore plausible that discriminative K_s may be an adaptation of phage Qβ to E. coli preventing excessive binding to host tRNAs, which do contain a protruding C-rich 3' terminus, one of the prerequisites for binding and replication. Strikingly, tRNA^Asp and tRNA^Val show significantly higher binding affinities (K_d = 11 nM in the case of synthetic tRNA^Asp, K_d = 14 nM with tRNA^Val), and have both been suggested to act as templates in evolution of replicable RNAs from apparently template-free reactions. It was assumed that they are introduced into these reactions as tightly binding contaminations of Qβ replicase preparations (Munishkin et al., 1988; Moody et al., 1994).

Double-stranded replicable RNAs such as MDV and MNV bind significantly weaker than their
...is essentially as described previously (Sumper & Luce, 1975) with minor modifications (Bauer, 1990). Replicable strand encoding the gene from Escherichia coli. 20mer oligodeoxynucleotides were synthesized on a Millipore Expedite Synthesizer using standard phosphoramidite chemistry from Glen Research and deprotected according to the manufacturer’s instructions. The DNA probe of sequence 5'-(TTTGCCTT) was accordingly synthesized on an Applied Biosystems 392 DNA/RNA Synthesizer with a 5’-aminopropyl linker attached. After deprotection and HPLC purification, the probe was coupled with pyrene butyric acid succinimidyl ester (Molecular Probes, Eugene, OR) according to the manufacturer’s instructions, and again purified by reverse phase HPLC to remove uncoupled DNA from the preparation. The concentration of the 5’ pyrene-labeled probe was determined using an extinction coefficient of 29,000 at a wavelength of 346 nm, as found for pyrene attached to pyrimidine bases (Kierzek et al., 1993).

Steady-state fluorescence measurements

Steady-state fluorescence spectra, intensities, and time traces were recorded on a Perkin-Elmer LS5B spectrofluorometer in a thermostated quartz microcuvette (cross section 3 mm x 3 mm). All measurements were performed in 10 mM sodium phosphate (pH 7.0), 100 mM NaCl as the standard buffer, at a solution temperature of 16(±0.5)°C. Pyrene was excited at 340 nm (band width 5 nm), and fluorescence emission for titration assays was monitored at both 385 nm and 416 nm (band width 10 nm). Photobleaching of the fluorophore under these conditions was found to be negligible.

Forward titration of Qb replicase with a 7-μM stock solution of pyrene-labeled probe was performed with 0.25 mM polymerase in 70 μM NaCl as standard buffer. After each addition of probe, the solution was mixed gently to avoid denaturation of Qb replicase. Then the solution was incubated in the cuvette for five minutes to ensure equilibrium adjustment before reading the fluorescence intensity. At this point, the probe fluorescence had become constant. The equilibrium dissociation constant for the complex formation between enzyme (E) and pyrene-labeled probe (P), K_{E·P}, is then defined as:

\[
K_{E·P} = \frac{[E][P]}{[E·P] - ([E·P]_0 - [E·P])} = \frac{[E][P]}{[E·P] - [E·P]_0}
\]

with [E], [P], and [E·P] being the concentrations of free enzyme, free probe, and the formed enzyme/probe complex, respectively. These concentrations can be derived from the initial enzyme concentration [E]₀ and the added total probe concentration [P]₀, as indicated. Equation (1) directly translates into:

\[
\]

To infer the enzyme/probe complex concentration [E·P] from the fluorescence measurements, we assumed that during the initial steps of titration (with enzyme still in excess over probe) the probe is virtually quantitatively converted into the complex. Moreover, a fluorescence contribution of probe not bound to enzyme was assumed to be negligible. Thus, a linear regression line for the initial titration steps will link the measured fluorescence to the corresponding concentration of enzyme/probe complex [E·P] (Figure 3). The data points for the...
titration could then be fitted with equation (2), varying only parameter $K_{d,P}$.

Reverse titrations of the Qb replicase-probe complex with different RNAs or DNAs was performed as described above in 70 µl standard buffer with 0.25 µM polymerase preincubated for 15 minutes with 0.38 µM pyrene-labeled probe. In the forward titration, this probe concentration was high enough to saturate the fluorescence signal (Figure 5). Typically, the RNA or DNA stock solutions employed for titration had a concentration of 17.5 µM, so that addition of 1 µl stock solution would correspond to one equivalent of Qb replicase. After gentle mixing and equilibrium adjustment for five minutes, the fluorescence emission was measured. A titration with the same volume of water devoid of nucleic acids was performed in parallel as a measure for signal changes induced just by the mixing process.

The fluorescence of the reference decreased slightly just through titration with water, most probably due to denaturation and adsorptive losses of Qb replicase. Its fluorescence value, $I_{ref,0}$, can be expected to correspond to the total enzyme/probe complex concentration, $[E \cdot P]$, that is available for complex formation in any given step of titration. Moreover, during reverse titration with RNA (or DNA), this total enzyme concentration will be distributed into complexes with both probe (E-P) and RNA (E-RNA), so that:

$$[E \cdot RNA] = [E \cdot P]_0 - [E \cdot P]$$ \hspace{1cm} (3)

In the forward titration of enzyme with probe, the fluorescence increase with enzyme excess is linear and becomes saturated with 0.38 µM probe, the concentration utilized in the reverse titrations. The first observation suggests a linear relation between measured fluorescence intensity I and the enzyme/probe complex concentration (presumably both in the reference and the RNA-terminated sample), while the second argues for full saturation of the enzyme with probe before reverse titration starts. These two assumptions enable us to form equation (3) into:

$$[E \cdot RNA] = \frac{I_{ref}}{I_{ref,0}} \times [E \cdot P]_0 - \frac{I}{I_0} [E \cdot P] = (I_{ref,0} - I) [E \cdot P]$$ \hspace{1cm} (4)

with indices 0 referring to initial values (before the first titration step) and n indicating the normalization with the respective initial fluorescence value. With the definition of the dissociation constants for probe, $K_{d,P}$, and RNA, $K_{d,RNA}$:

$$[E] = K_{d,P} \frac{[E \cdot P]}{[P]}, \quad [E \cdot RNA] = \frac{[E] 	imes [RNA]}{[E \cdot RNA]}$$ \hspace{1cm} (5)

one obtains the equation:

$$K_{d,RNA} = K_{d,P} \frac{[RNA]_0}{[E_0]} \frac{[RNA]_0 - [E_0]}{[RNA]_0 - [E_0]}$$ \hspace{1cm} (6)

where $[RNA]_0$, $[E_0]$, and $[P]_0$ are the total added RNA concentration and the initial enzyme and probe concentrations, respectively. Equation (6) was used to calculate values for $K_{d,RNA}$ from single data values.

If V is the initial sample volume in the cuvette, x the volume of added RNA stock solution of concentration $[RNA]_0$, n_I and n_P the amounts of probe and Qb replicase in the sample, and the normalized fluorescence decrease of the reference, $I_{ref,n}$ is represented by a first order decay as in equation (7), then equation (6) can be formed into equation (8):

$$I_{ref,n} = c \times e^{-\frac{t}{n}}$$ \hspace{1cm} (7)

$$E_n = \frac{K_{d,P} [RNA]_0}{n_I (K_{d,RNA} - K_{d,P})} x + c \times e^{-\frac{t}{n}} + \frac{K_{d,RNA} \times n_P}{n_P (K_{d,RNA} - K_{d,P})} \times I_n$$

$$+ \frac{K_{d,RNA} \times n_P}{n_R (K_{d,RNA} - K_{d,P})} \times c \times e^{-\frac{t}{n}} = 0$$ \hspace{1cm} (8)

This second-order polynomial yields the solution:

$$I_n = \frac{p}{2} \pm \sqrt{\frac{p}{2}} + \frac{K_{d,P} [RNA]_0}{n_I (K_{d,RNA} - K_{d,P})} x + c \times e^{-\frac{t}{n}}$$ \hspace{1cm} (9)

with

$$p = \frac{K_{d,P} [RNA]_0}{n_I (K_{d,RNA} - K_{d,P})} x + c \times e^{-\frac{t}{n}} + \frac{K_{d,RNA} \times n_P}{n_P (K_{d,RNA} - K_{d,P})}$$

The positive sign is valid for:

$$K_{d,RNA} < K_{d,P}$$

the negative one for:

$$K_{d,RNA} > K_{d,P}$$

Equation (9) was used to fit the fluorescence data from reverse titrations with $K_{d,RNA}$ as the only parameter varied.

For determination of the available probe binding sites on Qb replicase, we chose a Scatchard plot. With n equivalent and independent binding sites, the fraction ν of bound RNA molecules per enzyme molecule is given to:

$$\nu = \frac{n [E \cdot RNA]}{[E \cdot RNA] + [E \cdot P]} = \frac{n (I_{ref,n} - I_n)}{I_{ref,n}}$$ \hspace{1cm} (10)

Using the same definitions as above, equation (10) leads to:

$$\frac{1}{\nu} = \frac{1}{n} + \frac{K_{d,RNA}}{n} \times \frac{[P]_0 - I_n [E_0]}{K_{d,P} [RNA]_0 - (I_{ref,n} - I_n) [E_0]}$$ \hspace{1cm} (11)

By plotting:

$$\frac{1}{\nu} = \frac{I_{ref,n} - I_n}{I_{ref,n} - I_n}$$

against:

$$\frac{[P]_0 - I_n [E_0]}{K_{d,P} [RNA]_0 - (I_{ref,n} - I_n) [E_0]}$$

the slope of a linear regression line will yield the dissociation constant, while the y-intercept will give the inverse of the number of probe binding sites n.

All data sets were fitted with the appropriate equation using Marquardt-Levenberg least-squares non-linear regression of the program Origin (MicroCal).

Finally, to monitor RNA synthesis by Qb replicase, a standard amplification reaction with 50 mM Tris-HCl (pH 7.5), 10 mM MgCl$_2$, 0.1 mM dithiothreitol, 10% glycerol, 0.5 mM each ATP, CTP, GTP, UTP, and 100 mM salt, replicase in a 60 µl volume was supplemented with 0.25 µM pyrene-labeled probe and initiated with 1 pM MNV-11(+). (Figure 5). For efficient replication, a reac-
tion temperature of 37 °C was chosen. Fluorescence readouts were automatically recorded every four seconds.

Lifetime measurements

The fluorescence lifetime of pyrene was measured in a commercial single-photon counting device (Edinburgh Instruments). A nitrogen discharge lamp at 337.2 nm with a flash frequency of 50,000 s⁻¹ was used for excitation. The time between excitation pulse and emitted single-photon signal was measured by time-amplitude-conversion from a capacitor’s potential into a multiple channel analyzer. The signal of a scattering body was used for deconvolution. No significant difference in the fluorescence decay curves could be detected with and without polarizers, proving that decay rates were not significantly influenced by anisotropic effects. All measurements were performed in 60 µl standard buffer at 16 °C over at least 20 minutes to ensure statistical significance. The probe and the Qβ replicase-probe complex were analyzed at concentrations of 5 µM and 0.25 µM, respectively. 1 µM MDV(ds) was added to obtain a signal from a reverse titration-type of experiment. Data sets were fitted by least-squares non-linear regression to yield up to three exponential decay components together with their relative amplitudes.

Fluorescence anisotropy measurements

Depolarization of fluorescence is predominantly caused by rotational diffusion of the fluorophore and therefore reflects its mobility. The higher the fluorophore mobility is, the more depolarized its emission will be (Lakowicz, 1983). To analyze anisotropies of solutions as a measure for fluorescence polarization, 10 mm Glan-Thompson polarizers were used on an SLM 8000 spectrofluorometer. Fluorescence intensities were measured with the polarizers for excitation (at 340 nm) and emission (at 385 nm) subsequently in all four possible combinations of vertical (v, 0°) or horizontal (h, 90°) alignment, Ivv, Ihv, Ihh, and Ivh. Anisotropy A could then be calculated as described (Lakowicz, 1983) from

\[A = (I_{vv} - g \times I_{vh})/(I_{vv} + 2g \times I_{vh}), \]

where \(g = I_{vh}/I_{hh} \).

Acknowledgments

This work has been supported in part by a grant from the Bundesministerium für Bildung und Forschung. The authors are very grateful to F. Belingue for skillful technical assistance; to Dr E. Birch-Hirschfeld (Institute for Molecular Biotechnology Jena, Germany), Dr G. Kotzorek, and F. Benseler (NAPS Göttingen GmbH, Germany) for synthesis of pyrene-labeled oligodeoxynucleotides; to Dr H. Staerk and B. Frederichs for help with the lifetime measurements; to M. Menzer for help with the anisotropy measurements; to Dr G. Strunk and S. Völker for a gift of Qβ replicase; to Dr P. Schwille for advice on calculations; to Dr C. Biebricher and D. Vitelli for helpful comments on the manuscript; and to Dr M. Eigen and Dr J. McCaskill for a stimulating research environment.

References

cal University Braunschweig, Germany.

strate revealed by fluorescence-detected stopped-

Blumenthal, T., Landers, T. A. & Weber, K. (1972). Bacteriophage Qβ replicase contains the protein biosyn-

Edited by I. Tinoco

(Received 27 May 1997; received in revised form 23 July 1997; accepted 8 August 1997)