Alex R. Howe

Contact Information	Postdoc Department of Astronomy, University of Michigan 1085 S. University Ann Arbor, MI 48109, USA	<i>Mobile:</i> 419-706-8251 <i>E-mail:</i> arhowe@umich.edu <i>WWW:</i> http://sites.lsa.umich.edu/arhowe/
Research Interests	 Extrasolar planet atmospheres. Extrasolar planet spectral modeling. Extrasolar planet internal structure and evolution. Mass loss processes for extrasolar planets. 	
CURRENT POSITION	N Postdoctoral Research Fellow, University of Michiga	n, 2016-Present
EDUCATION	 Graduate School, Department of Astrophysical Sciences, Princeton University, August 2016 Thesis: <i>Topics in Extrasolar Planet Characterization</i> Adviser: Professor Adam Burrows 	
	B.S., Department of Physics and Astronomy, Ohio Wesleyan University, May 2011	
	• Thesis Adviser: Professor Robert A. Haring-Kaye	
Conferences	 American Astronomical Society January 2016: "Forward Models of Exoplanets for Atmosphere Retrievals with JWST" (Presentation). American Astronomical Society January 2015: "Structures, Cooling, and Mass Loss for Super-Earths and Sub-Neptunes" (Presentation). 	
TALKS	• Princeton University Department of Astrophysical Sciences Thursday Lunch Talk, "For- ward Models of Exoplanets for Atmosphere Retrievals with JWST", October 15, 2015.	
EXPERIENCES	• Summer Research Program at Carnegie Observato	ries, 2012
TEACHING Experience	Princeton University,	
	<i>Teaching Assistant</i> for AST 205:"Planets in the Universe", taught by Professor Bakos, G., Fall 2014	
	• Undergraduate-level astronomy course for general audience.	
	<i>Teaching Assistant</i> for AST 204:"Topics in Modern Astronomy", taught by Professor Burrows, A., Spring 2014	
	• Undergraduate-level astronomy course for studen	ts in the sciences.
SOFTWARE SKILLS	 Computer Programming: Thorough experience with Python, C, C++, object of Linux (Unix like) operating systems. Experienced with: Fortran90 BASH MATLAB Matters 	

• Experienced with: Fortran90, BASH, MATLAB, Mathematica

Version Control and Software Configuration Management:

• Git

Numerical skill set:

• Linear algebra, Group theory, Fourier transforms, Monte Carlo analysis, numerical inetgration, parallel processing, machine learning visualization

Operating Systems:

• Linux, Apple OS X, Windows

Software development:

- Transit Spectroscopy: Computation of transit spectra for a planets of a range of masses and radii, atmosphere compositions, and cloud and haze properties. Collaborator: Burrows, A.
- Planetary Structure: Computation of internal structures for planets of a range of masses, compositions, and internal entropies. Collaborators: Burrows, A. and Verne, W.
- Planetary Evolution: Computation of internal structures of planets evolving in time with cooling and mass loss. Collaborators: Burrows, A. and Verne, W.
- JWST Observation Modeling Pipeline: Conversion of theoretical spectra into synthetic JWST observations. Collaborator: Deming, D.
- Work with **CoolTLUSTY**: Software package for atmosphere profiles and emission spectra. Collaborator: Burrows, A.
- Work with Athena: Software package for magnetohydrodynamics. Collaborator: Stone, J.
- **Gaseous Planet Solver (GPS)**: One-dimensional gaseous planet internal structure solver. It employes a relaxation method to solve the one-dimensional PDEs in the planet interior. The package allows for quasi-static evolution calculation under external irradiation or internal heating source. Collaborators: Huang, X., Gong, M.N., Pattarakijwanich, P.
- AWARDS 2011: Finalist for American Physical Society LeRoy Apker Award for Undergraduate Research Achievement

OUTREACH

- 2011-2015: Co-organizer of the Monthly Public Observation at Peyton Observatory.
- 2012-2014: Participant in Project ASTRO educator-astronomy partnerships.

REFEREED PUBLICATIONS

- (1) A.R.Howe & A.S.Burrows, "*Theoretical Transit Spectra for GJ 1214b and Other* "*Super-Earths*"", 2012, **ApJ**, 756, 176 (citations: 56)
- (2) A.R.Howe & R.R.Rafikov, "Probing Oort Cloud and Local Interstellar Medium Properties via Dust Produced in Cometary Collisions", 2013, ApJ, 781, 52 (citations: 7)
- (3) V.Van Grootel, et al. "*Transit Confirmation and Improved Stellar and Planet Parameters for the Super-Earth HD* 97658 *b and its Host Star*", 2012, ApJ, 786, 2 (citations: 17)
- (4) A.R.Howe, A.S.Burrows, & W.Verne, "Mass-radius Relations and Core-envelope Decompositions of Super-Earths and Sub-Neptunes", 2014, ApJ, 787, 173 (citations: 25)
- (5) A.R.Howe, & A.S.Burrows, "Evolutionary Models of Super-Earths and Mini-Neptunes Incorporating Cooling and Mass Loss", 2015, ApJ, 808, 150 (citations: 12)
- (6) G.Á.Bakos, et al., "*HATS-7b: A Hot Super Neptune Transiting a Quiet K Dwarf Star*", 2015, **ApJ**, 813, 2 (citations: 9)
- (7) A.R.Howe, A.S.Burrows, & D.Deming, "An Information-Theoretic Approach to Optimize JWST Observations and Retrievals of Transiting Exoplanet Atmospheres", 2017, accepted to ApJ