MINIREVIEW

Chaperone-client interactions: Non-specificity engenders multifunctionality

Published, Papers in Press, June 15, 2017 DOI 10.1074/jbc.R117.796862

Philipp Koldewey‡1, Scott Horowitz‡1, and James C. A. Bardwell‡52

From the 6Department of Molecular, Cellular, and Developmental Biology and the 8Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109

Edited by Wolfgang Peti

Here, we provide an overview of the different mechanisms whereby three different chaperones, Spy, Hsp70, and Hsp60, interact with folding proteins, and we discuss how these chaperones may guide the folding process. Available evidence suggests that even a single chaperone can use many mechanisms to aid in protein folding, most likely due to the need for most chaperones to bind clients promiscuously. Chaperone mechanism may be better understood by always considering it in the context of the client’s folding pathway and biological function.

Proteins start their lives as unfolded polypeptide chains. However, the ability of proteins to function is closely tied to their ability to fold into the correct native state conformation. The cytosol is very dense, containing up to 400 mg/ml macromolecules (1, 2). As a result, non-specific interactions that can interfere with protein folding are a constant hazard. In addition, due to the importance of conformational flexibility in generating biological activity, proteins are generally only marginally stable and are thus prone to misfolding, particularly in the presence of cellular stress (3, 4). Non-specific interactions involving misfolded states drive aggregate formation, which is often irreversible and toxic (5, 6). To ensure the integrity of its proteome, the cell thus invests in complex protein quality control machinery that includes a network of molecular chaperones. Chaperones assist in folding, ensure conformational integrity, and control aggregation under stress conditions (7). Cells respond to heat-induced folding stress by up-regulating the expression of heat shock proteins (Hsps), many of which have been found to function as molecular chaperones. Chaperones were initially named according to their monomeric molecular weights: Hsp40, Hsp60, Hsp70, Hsp90, etc. (8). In addition to being up-regulated in response to stress, many chaperones are also abundant under non-stress conditions. Furthermore, additional chaperones have been identified that are controlled by stress-response systems other than the general heat-shock response (8–10). The various classes of chaperones work together to ensure the proper folding of both newly synthesized and stress-denatured proteins (11, 12).

Although proteins can potentially fold to the native state on their own, as postulated by the Anfinsen experiment, it is now clear that in the complex, crowded environment of the cell many proteins require a network of molecular chaperones to fold effectively and on a biologically relevant time scale (13, 14). Defects in protein folding have been associated with numerous diseases, including Alzheimer’s and Parkinson’s (15, 16). Chaperones are also thought to be major players in the process of aging, as their levels drop dramatically during aging, likely causing the collapse of protein homeostasis (15–17). Thus, a detailed understanding of the mechanism by which chaperones assist in protein folding may eventually allow us to manipulate chaperone systems in intelligent ways to address folding diseases and aging.

Chaperones undergo complex conformational changes during their reaction cycles; these changes have been extensively studied and are the subject of recent reviews (18–21). In this review, we examine our understanding of how chaperones participate in the protein folding process, focusing on three model chaperones: Spy, Hsp60, and Hsp70. We present evidence suggesting that chaperones do not utilize a single mechanism for all clients and propose that it may be more appropriate to classify chaperone mechanisms only in the context of the client.

Spy

Spy is an ATP-independent chaperone that can aid in protein folding (10, 12, 22). This 16-kDa periplasmic protein is highly overexpressed in response to protein folding stress in a wide range of enterobacteria and protobacteria and in some cyanobacteria (23–27). Like other folding chaperones, Spy has broad client specificity; it prevents aggregation and promotes proper refolding of a diverse set of proteins (27–29). In addition to its ability to stabilize folding intermediates in vitro, Spy has been shown to inhibit the formation of amyloids in vivo (30).

Spy was very recently used as a simple chaperone folding system to identify the kinetic, thermodynamic, and structural properties that allow chaperones to promote client folding and to determine how they affect the folding landscape of client proteins (31–33). The “folding-friendly” amphiphilic and flexible nature of Spy’s client-binding site was found to be critical to its chaperone activity (33). The client-binding site, which

This work was supported by National Institutes of Health Grants R01-GM102829 (to J. C. A. B.) and K99-GM120388 (to S. H.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

‡ Both authors contributed equally to this work.

§ Howard Hughes Medical Investigator. To whom correspondence should be addressed: Dept. of Molecular, Cellular, and Developmental Biology, University of Michigan, Rm. 4007, 830 N. University Ave., Ann Arbor, MI 48109. Tel.: 734-764-8028; Fax: 734-615-4226; E-mail: jbardwel@umich.edu. This is an open access article under the CC BY license.
encompasses a large part of the concave surface of Spy’s cradle-shaped structure, consists of four hydrophobic patches surrounded by positively charged hydrophilic residues and flexible N-terminal helix linkers between helix one and helix two. This combination of flexibility and amphiphilic binding surface allows Spy to dynamically bind the many conformational states that occur along the folding trajectory of its client proteins and hence mediate folding while remaining continuously but loosely bound to its clients (31, 33). The attraction of the aggregation-prone unfolded client to the chaperone is driven by electrostatic forces, which are then complemented by hydrophobic interactions in the complex (32). This mixture of transient hydrophobic and hydrophilic interactions (32, 34) allows the client to explore its folding landscape while bound (33, 35). Thus, the client is bound to Spy as a conformationally heterogeneous ensemble, sampling conformations ranging from unfolded to intermediately and near-natively folded states (Fig. 1) (33). Spy binding induces a compaction of the unfolded client that favors client folding (34, 35). During folding, Spy stays bound to thermodynamically unstable areas, thereby helping the client avoid aggregation (34). Client folding results in hydrophobic core formation and thus reduces stabilizing hydrophobic contacts between chaperone and client (32, 33). This destabilizes the complex, helping to trigger client release (32). Therefore, rather than being dictated by the chaperone, client folding regulates client binding and release. Spy further enables the folding process by serving as an entropy sink, becoming more flexible as the client protein becomes more rigid in the folding process (35). Thus, Spy provides a sanctuary for folding proteins that prevents protein aggregation and misfolding, whereas the folding pathway remains dictated by the primary sequence of the client protein. The electrostatic interactions formed between Spy and the client protein are a central component of this mechanism. Not only do they enhance the client binding rate and therefore kinetically prevent protein aggregation, they also help keep the client protein bound while it folds and hence eliminate the need for pre-native client release, a requirement that was previously considered essential for the successful folding of clients by chaperones (8, 36).

Loose client binding has been postulated to be important for chaperone-mediated client folding (37, 38). The classic folding machines GroEL and TRiC are similar to Spy in that they also provide broad and heterogeneous client-binding sites consisting of small hydrophobic patches surrounded by electrostatic residues (39, 40).

One major caveat to the narrative of Spy’s function is that detailed biochemical and biophysical studies on Spy have only been performed with one client, Im7. Although two separate groups have come to similar conclusions on the folding of Im7 in the presence of Spy (31, 34), there is little evidence to suggest whether or not this mechanism also applies to other client proteins. As will be discussed in the cases below for Hsp60 and Hsp70, this caveat cannot be ignored.

Hsp60

The Hsp60 family of chaperones, also called chaperonins, is found in all three branches of life (8). Hsp60s are divided into two groups based on sequence homology. Type I chaperonins, e.g. GroEL, are encoded in the genome of bacteria and in the endosymbiotic organelles of eukaryotes, whereas type II chaperonins, e.g. TRiC, facilitate protein folding in the eukaryotic cytosol and in most archaea (18, 41). Both types of chaperonins form back-to-back stacked double-ring structures that provide chambers potentially allowing client proteins to fold in isolation, thereby avoiding unwanted intermolecular interactions with the cellular proteome.

Binding of non-native client proteins to chaperonins is mediated both through electrostatic interactions and through patches of hydrophobic residues exposed in the chaperonin rings’ apical domains (Fig. 2, A and C) (39, 40). After client binding, ATP binding and hydrolysis trigger conformational changes in the apical domains that lower client affinity, releas-
ing the client protein into the chamber. The chamber then closes, through binding the co-chaperone GroES (in the case of GroEL) or through conformational changes (in the case of TRiC) (21). Relatively slow ATP hydrolysis provides the client protein time to fold while trapped within the chamber (Fig. 2B). After completion of ATP hydrolysis, the client protein is released. Client rebinding may occur if folding is incomplete (18, 39). The chamber of both chaperonin types is large enough to encapsulate client proteins up to ~60 kDa (18, 42). Larger client proteins may still use the chaperonin system by binding to the apical client-binding sites, which has been shown to facilitate folding outside the chamber (43, 44). In addition, partial encapsulation of larger multidomain proteins has been reported for TRiC, which allows isolated folding of domains separately (45, 46).

Although ATP-driven conformational cycles and mechanisms of client recognition are rather well established for chaperonins, different modes of client binding and release from the chaperonin have been reported to aid protein folding. For instance, several hydrophobic segments of the non-native client may bind to several apical domains of the chaperonin cage simultaneously. This has been reported to partially unfold the client protein, potentially by selecting out less structured states of a client’s flexible ensemble (43, 47, 48). Client unfolding may be further fostered through conformational changes that are triggered by ATP binding (49). This unfolding has been postulated to pull the client protein out of kinetically trapped misfolded state(s) (43). In addition, client release into the chamber may occur bit by bit. In the case of GroEL, bound segments with increased hydrophobicity have been reported to be released later than segments with less hydrophobicity (50, 51). This sequential release of the polypeptide chain may delay hydrophobic collapse within the client and hence also delay the formation of non-native hydrophobic interactions that lead to misfolding (50, 51). Although each ring of GroEL consists of seven identical subunits, TRiC is composed of eight non-identical subunits per ring, each of which exhibits client-binding sites with distinct sets of charged and hydrophilic residues that surround the central hydrophobic binding patch. This allows for the selective binding of distinct client segments and hence a defined orientation of the bound client protein, potentially mediating sequential folding upon release for some clients (39, 52, 53). Differences in ATP binding affinity of each of the eight TRiC monomers may lead to timely delayed conformational changes and hence may facilitate an ordered release of client segments into the chamber, again potentially avoiding misfolding of topologically complex client proteins (54, 55).

Once inside the chaperonin chamber, the client can potentially interact with the cavity’s inner wall and/or fold. The interior lining of the cavity of both GroEL and TRiC are hydrophilic in the closed state. The closed GroEL cavity wall exhibits an overall negative net charge, whereas the interior wall of TRiC forms a gradient of positive to negative net charge from one side of the chamber to the other (41, 56). The conformational changes that lead to the closure of the GroEL cavity through GroES binding and the ejection of the client protein into the chamber bury most of the hydrophobic residues in the apical domain involved in initial client binding (57). In contrast, the conformational changes induced by cage closure of TRiC do still allow for client binding within the cavity (58), albeit with decreased affinity, thus allowing folding (59). Experimental evidence from electron microscopic and X-ray structures, as well as single molecule spectroscopy conducted with GroEL and TRiC in the closed state, suggests that interactions do occur between the chaperonin wall and folding intermediates of certain client proteins (51, 58, 60). Although not much is known about the interactions of the encapsulated client protein with the chaperonin wall, in some cases its charged nature is thought to drive the formation of a hydrophobic core and minimize the interaction of the encapsulated polypeptide chain with the cage wall (61).

About 10% of *Escherichia coli* and mammalian proteins have been reported to use chaperonins for folding (14, 62). Although there are no clear binding motifs, chaperonins’ client proteins share some very broad overall structural similarities. For instance, many of them have complex topologies that are stabilized in the native structure by long-range contacts. As a result, many chaperonin substrates have rugged folding landscapes in which kinetically trapped folding intermediates and misfolded states are frequently populated (14, 63–65). However, whether or not client encapsulation generally affects the folding landscape of chaperone clients, and in doing so enhances folding rates, is not yet clear. Three models of chaperone action have been proposed for GroEL (to date, less is known about TRiC). In
MINIREVIEW: Chaperone-client interactions

Hsp70

Hsp70 is conserved both in prokaryotes and eukaryotes (77). It is a very versatile chaperone, involved not only in protein folding and refolding of a major part of the proteome but also in cellular trafficking, protein aggregate disassembly, and protein degradation (78). Multiple paralogues of Hsp70 are commonly found. Hsp70s function in conjunction with a set of Hsp40 co-chaperones, collectively called J-proteins, because they all contain a J-domain that is required for interaction with Hsp70 (78). Hsp40s exhibit somewhat distinct client specificities; thus, Hsp70’s client affinity is in part fine-tuned by its co-chaperone (79). In addition, Hsp70s function with nucleotide exchange factors, which facilitate ADP-ATP exchange. The number of Hsp70 paralogues, J-proteins, and nucleotide exchange factors increases from prokaryotes to higher eukaryotes, reflecting the corresponding increased complexity of the proteome. Human cells, for example, have 11 Hsp70 homologues and 41 J-proteins (80).

Despite the apparent diversity of Hsp70s and co-factors, all Hsp70s are structurally conserved and follow essentially the same mechanistic principles. Hsp70s consist of two domains, an ATPase domain and a substrate-binding domain. The substrate-binding domain contains a β-sheet-rich N-terminal subdomain that recognizes 5–7 amino acid-long stretches of unfolded polypeptide backbone, although neighboring regions can extend the recognition site by several more amino acids (81). These Hsp70-binding motifs are found in most proteins and are usually buried in the hydrophobic core of natively folded proteins (78). However, they are exposed during protein synthesis and under denaturing conditions such as heat or oxidative damage, and therefore, they are an indicator of protein folding stress (78). Hsp70-binding motifs are enriched in hydrophobic residues but are often flanked by basic residues, indicating that both hydrophobic and electrostatic interactions are important for client binding (81). Hsp70’s affinity for these binding motifs is regulated through the opening and closing motions of the α-helical lid (20, 78, 82), located C-terminal of the β-sheet subdomain. Its opening and closing are mediated through ATP binding and hydrolysis in the ATPase domain (20). Hsp70s are thought to undergo consecutive bind and release cycles with their client proteins, in which binding and release kinetics are custom tailored to the needs of the particular folding client protein through ATP and co-factors (78, 83). The unstructured C-terminal tail of the lid subdomain may function as an additional client-binding site to keep the client in close proximity, increasing the chance of client rebinding if necessary (84). Binding of Hsp70 is thought to keep the interacting domain of the client protein in a less structured state, thereby inhibiting misfolding and allowing the client protein to explore and form native-like secondary structure before a global hydrophobic collapse, either during protein synthesis or after stress-induced denaturation (78).

More recently, the direct impact of Hsp70 on protein folding has been assessed. NMR spectroscopy studies of Hsp70 with different single-domain clients suggested that these clients associated with Hsp70 exist in a conformationally heterogeneous, but primarily unfolded, ensemble (85, 86). At least in one case, this unfolded ensemble maintained some of the local structural propensities of the folded state, regardless of whether it was free in solution or bound to the chaperone (86). Further investigation suggested that the bacterial Hsp70 homologue, DnaK, specifically disrupted tertiary contacts while enabling local structure formation (87). Similarly, Hsp70s can unfold misfolded or even folded proteins through selectively binding to conformations that transiently expose hydrophobic binding motifs, shifting the folding equilibrium to more unfolded conformations and thereby remodeling the folding energy landscape (36, 78, 88). However, biophysical studies have also suggested that the lid subdomain and its flexible tail can adopt several different conformations to accommodate bulkier folded segments of proteins, allowing Hsp70 to bind not just unfolded polypeptide stretches but also folding intermediates and even
Chaperones play an important role in protein folding and homeostasis, facilitating the folding of nascent polypeptides and reorganizing the folding landscape of native proteins. Understanding how chaperones work is crucial, as it reveals how they can maintain the structural integrity of proteins under varying conditions.

One remarkable crystal structure of Hsp70 shows its dimerization capability through client-binding mode. This structure provides insights into the mechanisms of chaperone-client interactions, demonstrating how chaperones can reshape the folding landscape through helical lid and substrate-binding domain interactions.

Concluding comments

Understanding how chaperones function is crucial in biology, given their role as guardians of protein folding and homeostasis. The evolution of chaperones suggests an inherent multifunctional nature, where they can handle a wide variety of clients and adapt to different folding properties. The literature on chaperone-client interactions highlights the complexity of these interactions and the need for a comprehensive understanding of how chaperones contribute to the folding process.
affects the folding of different clients is also subject to various interpretations (19, 93), perhaps in part for the same reasons as discussed here.

Further complicating matters, many chaperones cooperate in chaperone networks, in which a single client can be transferred between chaperones (11). As such, beyond the chaperones having multiple modes of action dependent on each client, these multiple modes can be increased further by stringing together the action of several chaperones that work cooperatively. As a hypothetical example, if the first and second chaperone to bind a client in its folding pathway each have four different possible mechanisms, this will yield a combination of 16 different combinations in which the two chaperones can affect the client, not counting any further modifications due to the chaperones directly modifying each other’s action. Thus, even considering that chaperone mechanisms are client-dependent may still be an oversimplification, as interactions with other chaperones could further modify and diversify the effect on folding.

Contributing to this problem is that scientists are often encouraged to come to generalizable conclusions. This inclination may result in the oversimplification of the multifunctional nature of chaperones. Unlike enzymes, the inherent non-specificity and multifunctionality of chaperones may lead to heterogeneous results that may be difficult to interpret or reproduce. One potential way to increase reproducibility is to use conditions that bias the chaperone to using only one of its many possible operational modes. Using a restricted set of clients is one example of this sort of conditional bias. Although the observed function using one specific client may be valid and reproducible, it may only be able to capture a small part of the overall abilities of the chaperone.

To return to the enzyme corollary, despite a much longer history, it may come as a surprise to some that the underlying principles of how enzymes catalyze reactions are still under vigorous debate (94, 95). Regardless of this controversy, reading undergraduate biochemistry textbooks can lead to the mistaken assumption that the debate is over and that the different models discussed are all part of a “unified” theory. Perhaps finding a single unified mechanism for the action of even a single chaperone is an artificial goal. Instead, accepting the multifunctional nature of chaperones and attempting to classify the many different modes of action of chaperones may provide a more insightful direction.

Acknowledgments—We thank H. Saibil, J. Frydman, L. Joachimiak, and S. Hiller for providing structure files.

References

MINIREVIEW: Chaperone-client interactions

MINIREVIEW: Chaperone-client interactions

46. Thulasiram, V., Yang, C. F., and Frydman, J. (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 18, 85–95

