Decision-making and cognitive control

Chimpanzees and bonobos distinguish between risk and ambiguity

Rosati, A. G., & Hare, B. (2011). Chimpanzees and bonobos distinguish between risk and ambiguity. Biology Letters, 7 15-18.

[PDF]  [Supplementary]  [Publisher’s Version]  Abstract

Although recent research has investigated animal decision-making under risk, little is known about how animals choose under conditions of ambiguity when they lack information about the available alternatives. Many models of choice behaviour assume that ambiguity does not impact decision-makers, but studies of humans suggest that people tend to be more averse to choosing ambiguous options than risky options with known probabilities. To illuminate the evolutionary roots of human economic behaviour, we examined whether our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), share this bias against ambiguity. Apes chose between a certain option that reliably provided an intermediately preferred food type, and a variable option that could vary in the probability that it provided a highly preferred food type. To examine the impact of ambiguity on ape decision-making, we interspersed trials in which chimpanzees and bonobos had no knowledge about the probabilities. Both species avoided the ambiguous option compared with their choices for a risky option, indicating that ambiguity aversion is shared by humans, bonobos and chimpanzees.

Chimpanzees and bonobos distinguish between risk and ambiguity Read More »

Waiting for grapes: Expectancy and delayed gratification in bonobos

Stevens, J. R., Rosati, A. G., Heilbronner, S. R., & Mueloff, N. (2011). Waiting for grapes: Expectancy and delayed gratification in bonobos. International Journal of Comparative Psychology, 24, 99-111.

[PDF] [Publisher’s Version] Abstract

Responses to delayed rewards vary widely across individuals and have important implications for personality and temperament. Animals may avoid delayed rewards because the future is uncertain. Therefore, expectations about receiving a future reward should influence the response to delayed payoffs. Here, we offered bonobos (Pan paniscus) a delayed gratification task in which food accumulated over time. Once subjects chose to consume the reward, food stopped accumulating. We tested their willingness to wait with a reliable and an unreliable experimenter to vary the subjects’ expectations that they would receive the food. Subjects waited less often with the unreliable experimenter but showed individual differences in the degree to which reliability generalized across experimental tasks. These data suggest that the expectations generated about the likelihood of receiving future rewards influence how individuals balance current and future needs.

 

Waiting for grapes: Expectancy and delayed gratification in bonobos Read More »

The adaptive nature of context-dependent choice

Rosati, A. G., & Stevens, J. R. (2009). The adaptive nature of context-dependent choice. In: Rational Animal, Irrational Human, S. Watanabe, A. Young, A. Blaisdell, & Y. Yamazaki (Ed.). Tokyo, Keio University Press, pp. 101-117.

[PDF]  [Publisher’s Version]  Abstract

Although classical economic theory hinges on the assumption that rational actors should seek to maximize gains, psychologists and behavioral economists have recently collected a wealth of evidence challenging this premise. In violation of the principles of rational choice, context appears to dramatically influence human decision making. Like humans, numerous nonhuman animals, ranging from honeybees to primates, are sensitive to context, suggesting deep evolutionary roots for seemingly irrational decision-making. Many psychologists have suggested that such choices may stem from cognitive biases that result in errors. We contend, however, that labeling context-dependent choices as errors obscures the real issue. Natural selection does not create organisms that adhere to economic theory—it creates decision makers that maximize fitness. We review evidence that many species show context-dependence when making decisions and then present a framework for analyzing the adaptive consequences of these choices. We argue for an approach weaving psychological perspectives into an evolutionary framework to elucidate the nature of decision making.

The adaptive nature of context-dependent choice Read More »

Resolving response, decision and strategic control: Evidence for a functional topography in dorsomedial prefrontal cortex

Venkatraman, V., Rosati, A. G., Taren, A., & Huettell, S. (2009). Resolving response, decision and strategic control: Evidence for a functional topography in dorsomedial prefrontal cortex. Journal of Neuroscience, 29, 13158-13164.

[PDF]  [Supplementary]  [Publisher’s VersionAbstract

The dorsomedial prefrontal cortex (DMPFC) plays a central role in aspects of cognitive control and decision making. Here, we provide evidence for an anterior-to-posterior topography within the DMPFC using tasks that evoke three distinct forms of control demands— response, decision, and strategic— each of which could be mapped onto independent behavioral data. Specifically, we identify three spatially distinct regions within the DMPFC: a posterior region associated with control demands evoked by multiple incompatible responses, a middle region associated with control demands evoked by the relative desirability of decision options, and an anterior region that predicts control demands related to deviations from an individual’s preferred decision-making strategy. These results provide new insight into the functional organization of DMPFC and suggest how recent controversies about its role in complex decision making and response mapping can be reconciled.

Resolving response, decision and strategic control: Evidence for a functional topography in dorsomedial prefrontal cortex Read More »

A fruit in the hand or two in the bush? Divergent risk preferences in chimpanzees and bonobos

Heilbronner, S. R., Rosati, A. G., Stevens, J. R., Hare, B., & Hauser, M. D. (2008). A fruit in the hand or two in the bush? Divergent risk preferences in chimpanzees and bonobos. Biology Letters, 4, 246-249.

[PDF]  [Supplementary]  [Publisher’s Version]  Abstract

Human and non-human animals tend to avoid risky prospects. If such patterns of economic choice are adaptive, risk preferences should reflect the typical decision-making environments faced by organisms. However, this approach has not been widely used to examine the risk sensitivity in closely related species with different ecologies. Here, we experimentally examined risk-sensitive behaviour in chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), closely related species whose distinct ecologies are thought to be the major selective force shaping their unique behavioural repertoires. Because chimpanzees exploit riskier food sources in the wild, we predicted that they would exhibit greater tolerance for risk in choices about food. Results confirmed this prediction: chimpanzees significantly preferred the risky option, whereas bonobos preferred the fixed option. These results provide a relatively rare example of risk-prone behaviour in the context of gains and show how ecological pressures can sculpt economic decision making.

A fruit in the hand or two in the bush? Divergent risk preferences in chimpanzees and bonobos Read More »

The evolutionary origins of human patience: Temporal preferences in chimpanzees, bonobos, and human adults

Rosati, A. G., Stevens, J. R., Hare, B., & Hauser, M. D. (2007). The evolutionary origins of human patience: Temporal preferences in chimpanzees, bonobos, and human adults. Current Biology, 17, 1663–1668.

[PDF]  [Supplementary]  [Videos]  [Commentary]  [Publisher’s Version]  Abstract

To make adaptive choices, individuals must sometimes exhibit patience, forgoing immediate benefits to acquire more valuable future rewards. Although humans account for future consequences when making temporal decisions, many animal species wait only a few seconds for delayed benefits. Current research thus suggests a phylogenetic gap between patient humans and impulsive, present-oriented animals, a distinction with implications for our understanding of economic decision making and the origins of human cooperation. On the basis of a series of experimental results, we reject this conclusion. First, bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) exhibit a degree of patience not seen in other animals tested thus far. Second, humans are less willing to wait for food rewards than are chimpanzees. Third, humans are more willing to wait for monetary rewards than for food, and show the highest degree of patience only in response to decisions about money involving low opportunity costs. These findings suggest that core components of the capacity for future-oriented decisions evolved before the human lineage diverged from apes. Moreover, the different levels of patience that humans exhibit might be driven by fundamental differences in the mechanisms representing biological versus abstract rewards.

The evolutionary origins of human patience: Temporal preferences in chimpanzees, bonobos, and human adults Read More »

The effect of handling time on temporal discounting in two New World primates

Rosati, A. G., Stevens, J. R., & Hauser, M. D. (2006). The effect of handling time on temporal discounting in two New World primates. Animal Behaviour, 71, 1379-1387.

[PDF]  [Publisher’s Version]  Abstract

Foraging decisions in nonhuman animals often require choosing between small, immediate food rewards and larger, more delayed rewards. Faced with such choices, animals typically discount or devalue the future quite strongly. Although discounting studies often focus on delays to reward access, other temporal intervals contribute to foraging rate, and thus may potentially influence discounting levels. Here, we examine the effect of handling time, the time required to process and consume food, on discounting in cottontop tamarins, Saguinus oedipus, and common marmosets, Callithrix jacchus, two species that differ in levels of temporal discounting. We presented subjects with a discounting task under two conditions. In the first condition, we made the entire reward available after the delay expired. In the second condition, we experimentally increased the minimum length of time required to consume the reward to simulate a longer handling time. We found that tamarins and marmosets showed sensitivity to increases in the time necessary to process food rewards. Both species adjusted their preferences to account for different handling times at long delays to accessing food. Consequently, models of discounting behaviour that include handling times may better describe animal choices than models that focus exclusively on delays prior to access.

The effect of handling time on temporal discounting in two New World primates Read More »

Will travel for food: Spatial discounting in two New World monkeys

Stevens, J. R., Rosati, A. G., Ross, K. R., & Hauser, M. D. (2005). Will travel for food: Spatial discounting in two New World monkeys. Current Biology, 15, 1855–1860.

[PDF] [Supplementary] [Commentary] [Publisher’s Version] Abstract

Nonhuman animals steeply discount the future, showing a preference for small, immediate over large, delayed rewards. Currently unclear is whether discounting functions depend on context. Here, we examine the effects of spatial context on discounting in cotton-top tamarins (Saguinus oedipus) and common marmosets (Callithrix jacchus), species known to differ in temporal discounting. We presented subjects with a choice between small, nearby rewards and large, distant rewards. Tamarins traveled farther for the large reward than marmosets, attending to the ratio of reward differences rather than their absolute values. This species difference contrasts with performance on a temporal task in which marmosets waited longer than tamarins for the large reward. These comparative data indicate that context influences choice behavior, with the strongest effect seen in marmosets who discounted more steeply over space than over time. These findings parallel details of each species’ feeding ecology. Tamarins range over large distances and feed primarily on insects, which requires using quick, impulsive action. Marmosets range over shorter distances than tamarins and feed primarily on tree exudates, a clumped resource that requires patience to wait for sap to exude. These results show that discounting functions are context specific, shaped by a history of ecological pressures.

 

Will travel for food: Spatial discounting in two New World monkeys Read More »

lsa logoum logoU-M Privacy StatementAccessibility at U-M