Spatial memory and navigation

Heterochrony in chimpanzee and bonobo spatial memory development

Rosati, A.G. (2019). Heterochrony in chimpanzee and bonobo spatial memory development. American Journal of Physical Anthropology, 169: 302-321.

[PDF] [Supplementary] [Videos] [Publisher’s Version] Abstract
Objectives: The emergence of human-unique cognitive abilities has been linked to our species’ extended juvenile period. Comparisons of cognitive development across species can provide new insights into the evolutionary mechanisms shaping cognition. This study examined the development of different components of spatial memory, cognitive mechanisms that support complex foraging, by comparing two species with similar life history that vary in wild ecology: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). Materials and Methods: Spatial memory development was assessed using a cross-sectional experimental design comparing apes ranging from infancy to adulthood. Study 1 tested 73 sanctuary-living apes on a task examining recall of a single location after a one-week delay, compared to an earlier session. Study 2 tested their ability to recall multiple locations within a complex environment. Study 3 examined a subset of individuals from Study 2 on a motivational control task. Results: In Study 1, younger bonobos and chimpanzees of all ages exhibited improved performance in the test session compared to their initial learning experience. Older bonobos, in contrast, did not exhibit a memory boost in performance after the delay. In Study 2, older chimpanzees exhibited an improved ability to recall multiple locations, whereas bonobos did not exhibit any age-related differences. In Study 3, both species were similarly motivated to search for food in the absence of memory demands. Discussion: These results indicate that closely-related species with similar life history characteristics can exhibit divergent patterns of cognitive development, and suggests a role of socioecological niche in shaping patterns of cognition in Pan.

 

Chimpanzee cognition and the roots of the human mind

Rosati, A.G. (2017). Chimpanzee cognition and the roots of the human mind. In: Chimpanzees and Human Evolution (M. Muller, R. Wrangham & D. Pilbeam, eds.). Cambridge: The Belknap Press of Harvard University Press, pp. 703-745.

[PDF] Abstract
The origins of the human mind have been a puzzle ever since Darwin (1871, 1872). Despite striking continuities in the behavior of humans and nonhumans, our species also exhibits a suite of abilities that diverge from the rest of the animal kingdom: we create and utilize complex technology, pass cultural knowledge from generation to generation, and cooperate across numerous and diverse contexts. Why do humans exhibit these abilities, but other animals (mostly) do not? This is a fundamental question in biology, psychology, and philosophy. This puzzle involves two main parts. The first is concerned with identifying the psychological capacities that are unique to humans. This phylogenetic question can be addressed through careful comparisons of humans and other animals to pinpoint the cognitive traits that are likely derived in our species. The second is concerned with the function of these capacities, and the context in which they arose. This evolutionary question examines why, from an ultimate perspective, we evolved these specialized capacities in the first place. Solving these puzzles poses a special challenge because it is only possible to directly measure the cognition of living animals. The bodies of extinct species leave traces in the fossil record, and even some behavioral traits exhibit well-understood relationships with physical traits—such as relationships between dentition and dietary ecology, or mating system and sexual size dimorphism. These relationships provide important benchmarks when biologists infer the behavior of extinct species. Unfortunately, cognition does not fossilize, and neither do the brains that generate cognitive abilities. Even those features of neuroanatomy that do leave some trace in the fossil record—such as brain size or particular anatomical landmarks—are often related to the kinds of complex cognitive capacities potentially unique to humans in a coarse fashion. As such, identifying derived human cognitive traits requires reconstructing the mind of the last common ancestor of chimpanzees (Pan troglodytes), bonobos (Pan paniscus), and humans (Homo sapiens). This reconstruction then can be used to infer what cognitive characteristics have changed in the human lineage.

Ecological variation in cognition: Insights from bonobos and chimpanzees.

Rosati, A.G. (2017). Ecological variation in cognition: Insights from bonobos and chimpanzees. In: Bonobos: Unique in Mind, Brain and Behavior (B. Hare & S. Yamamoto, eds.). Oxford: Oxford University Press, pp. 157-170. 

[PDF] Abstract
Bonobos and chimpanzees are closely related, yet they exhibit important differences in their wild socio-ecology. Whereas bonobos live in environments with less seasonal variation and more access to fallback foods, chimpanzees face more competition over spatially distributed, variable resources. This chapter argues that bonobo and chimpanzee cognition show psychological signatures of their divergent wild ecology. Current evidence shows that despite strong commonalities in many cognitive domains, apes express targeted differences in specific cognitive skills critical for wild foraging behaviours. In particular, bonobos exhibit less accurate spatial memory, reduced levels of patience and greater risk aversion than do chimpanzees. These results have implications for understanding the evolution of human cognition, as studies of apes are a critical tool for modelling the last common ancestor of humans with nonhuman apes. Linking comparative cognition to species’ natural foraging behaviour can begin to address the ultimate reason for why differences in cognition emerge across species.

Foraging cognition: Reviving the ecological intelligence hypothesis

Rosati, A. G. (2017). Foraging cognition: Reviving the ecological intelligence hypothesis. Trends in Cognitive Sciences, 21, 691-702.

[PDF]  [Publisher’s Version]  Abstract

What are the origins of intelligent behavior? The demands associated with living in complex social groups have been the favored explanation for the evolution of primate cognition in general and human cognition in particular. However, recent comparative research indicates that ecological variation can also shape cognitive abilities. I synthesize the emerging evidence that ‘foraging cognition’ – skills used to exploit food resources, including spatial memory, decision-making, and inhibitory control – varies adaptively across primates. These findings provide a new framework for the evolution of human cognition, given our species’ dependence on costly, high-value food resources. Understanding the origins of the human mind will require an integrative theory accounting for how humans are unique in both our sociality and our ecology.

Context influences spatial frames of reference in bonobos (Pan paniscus)

Rosati, A. G. (2015). Context influences spatial frames of reference in bonobos (Pan paniscus). Behaviour, 152, 375-406.

Reprinted in: Bonobo cognition and behavior (B. Hare & S. Yamamoto, eds.)

[PDF]  [Publisher’s Version]  Abstract

Primates must solve complex spatial problems when foraging, such as finding patchy resources and navigating between different locations. However, the nature of the cognitive representations supporting these types of behaviors is currently unclear. In humans, there has been great debate concerning the relative importance of egocentric representations (which are viewer-dependent) versus allocentric representations (which are based on aspects of the external environment). Comparative studies of nonhuman apes can illuminate which aspects of human spatial cognition are shared with other primates, versus which aspects are unique to our lineage. The current studies therefore examined spatial cognitive development in one of our closest living relatives, bonobos (Pan paniscus) across contexts. The first study assessed how younger bonobos encode locations in a place-response task in which apes first learn that one of two locations is consistently baited with a reward, and then must approach the two locations from a flipped perspective. The second study examined how a larger age sample of bonobos responded to a spatial relations task in which they first experience that one location is baited, and then can generalize this learning to a new set of targets. Results indicated that while bonobos exhibited a predominantly allocentric strategy in the first study, they consistently exhibited an egocentric strategy in the second. Together, these results show that bonobos can use both strategies to encode spatial information, and illuminate the complementary contributions to cognition made by egocentric and allocentric representations.

Comparative developmental psychology: How is human cognitive development unique?

Rosati, A. G., Wobber, V., Hughes, K., & Santos, L. R. (2014). Comparative developmental psychology: How is human cognitive development unique?. Evolutionary Psychology, 12, 448-473.

[PDF]  [Publisher’s Version]  Abstract

The fields of developmental and comparative psychology both seek to illuminate the roots of adult cognitive systems. Developmental studies target the emergence of adult cognitive systems over ontogenetic time, whereas comparative studies investigate the origins of human cognition in our evolutionary history. Despite the long tradition of research in both of these areas, little work has examined the intersection of the two: the study of cognitive development in a comparative perspective. In the current article, we review recent work using this comparative developmental approach to study non-human primate cognition. We argue that comparative data on the pace and pattern of cognitive development across species can address major theoretical questions in both psychology and biology. In particular, such integrative research will allow stronger biological inferences about the function of developmental change, and will be critical in addressing how humans come to acquire species-unique cognitive abilities.

The ecology of spatial memory in four lemur species

Rosati, A. G., Rodriguez, K., & Hare, B. (2014). The ecology of spatial memory in four lemur species. Animal Cognition, 17, 947-961.

[PDF]  [Supplementary]  [Videos]  [Publisher’s Version]  Abstract

Evolutionary theories suggest that ecology is a major factor shaping cognition in primates. However, there have been few systematic tests of spatial memory abilities involving multiple primate species. Here, we examine spatial memory skills in four strepsirrhine primates that vary in level of frugivory: ruffed lemurs (Varecia sp.), ring-tailed lemurs (Lemur catta), mongoose lemurs (Eulemur mongoz), and Coquerel’s sifakas (Propithecus coquereli). We compare these species across three studies targeting different aspects of spatial memory: recall after a long-delay, learning mechanisms supporting memory and recall of multiple locations in a complex environment. We find that ruffed lemurs, the most frugivorous species, consistently showed more robust spatial memory than the other species across tasks—especially in comparison with sifakas, the most folivorous species. We discuss these results in terms of the importance of considering both ecological and social factors as complementary explanations for the evolution of primate cognitive skills.

Chimpanzees and bonobos exhibit divergent spatial memory development

Rosati, A. G., & Hare, B. (2012). Chimpanzees and bonobos exhibit divergent spatial memory development. Developmental Science, 15, 840-853.

[PDF]  [Publisher’s Version]  Abstract

Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can illuminate which aspects of human spatial development are shared with other primates, versus which aspects are unique to our lineage. Here we present three studies examining spatial memory development in our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (P. paniscus). We first compared memory in a naturalistic foraging task where apes had to recall the location of resources hidden in a large outdoor enclosure with a variety of landmarks (studies 1 and 2). We then compared older apes using a matched memory choice paradigm (study 3). We found that chimpanzees exhibited more accurate spatial memory than bonobos across contexts, supporting predictions from these species’ different feeding ecologies. Furthermore, chimpanzees—but not bonobos—showed developmental improvements in spatial memory, indicating that bonobos exhibit cognitive paedomorphism (delays in developmental timing) in their spatial abilities relative to chimpanzees. Together, these results indicate that the development of spatial memory may differ even between closely related species. Moreover, changes in the spatial domain can emerge during nonhuman ape ontogeny, much like some changes seen in human children.